package lambdapi
Proof assistant for the λΠ-calculus modulo rewriting
Install
Dune Dependency
Authors
Maintainers
Sources
lambdapi-2.6.0.tbz
sha256=d01e5f13db2eaba6e4fe330667149e0059d4886c651ff9d6b672db2dfc9765ed
sha512=33b68c972aca37985ed73c527076198e7d4961c7e27c89cdabfe4d1cff97cd41ccfb85ae9499eb98ad9a0aefd920bc55555df6393fc441ac2429e4d99cddafa8
doc/src/lambdapi.handle/tactic.ml.html
Source file tactic.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
(** Handling of tactics. *) open Lplib open Common open Error open Pos open Parsing open Syntax open Core open Term open Print open Proof open Timed (** Logging function for tactics. *) let log = Logger.make 't' "tact" "tactics" let log = log.pp (** Number of admitted axioms in the current signature. Used to name the generated axioms. This reference is reset in {!module:Compile} for each new compiled module. *) let admitted_initial_value = min_int let admitted : int Stdlib.ref = Stdlib.ref admitted_initial_value let reset_admitted() = Stdlib.(admitted := admitted_initial_value) (** [add_axiom ss sym_pos m] adds in signature state [ss] a new axiom symbol of type [!(m.meta_type)] and instantiate [m] with it. WARNING: It does not check whether the type of [m] contains metavariables. Return updated signature state [ss] and the new axiom symbol.*) let add_axiom : Sig_state.t -> popt -> meta -> sym = fun ss sym_pos m -> let name = let i = Stdlib.(incr admitted; !admitted) in assert (i<=0); Printf.sprintf "_ax%i" (i + max_int) in (* Create a symbol with the same type as the metavariable *) let sym = Console.out 1 (Color.red "axiom %a: %a") uid name term !(m.meta_type); (* Temporary hack for axioms to have a declaration position in the order they are created. *) let pos = shift Stdlib.(!admitted) sym_pos in let id = Pos.make pos name in (* We ignore the new ss returned by Sig_state.add_symbol: axioms do not need to be in scope. *) snd (Sig_state.add_symbol ss Public Defin Eager true id None !(m.meta_type) [] None) in (* Create the value which will be substituted for the metavariable. This value is [sym x0 ... xn] where [xi] are variables that will be substituted by the terms of the explicit substitution of the metavariable. *) let meta_value = let vars = Array.init m.meta_arity (new_tvar_ind "x") in let ax = _Appl_Symb sym (Array.to_list vars |> List.map _Vari) in Bindlib.(bind_mvar vars ax |> unbox) in LibMeta.set (new_problem()) m meta_value; sym (** [admit_meta ss sym_pos m] adds as many axioms as needed in the signature state [ss] to instantiate the metavariable [m] by a fresh axiom added to the signature [ss]. *) let admit_meta : Sig_state.t -> popt -> meta -> unit = fun ss sym_pos m -> (* [ms] records the metas that we are instantiating. *) let rec admit ms m = (* This assertion should be ensured by the typechecking algorithm. *) assert (not (MetaSet.mem m ms)); LibMeta.iter true (admit (MetaSet.add m ms)) [] !(m.meta_type); ignore (add_axiom ss sym_pos m) in admit MetaSet.empty m (** [tac_admit ss pos ps gt] admits typing goal [gt]. *) let tac_admit: Sig_state.t -> popt -> proof_state -> goal_typ -> proof_state = fun ss sym_pos ps gt -> admit_meta ss sym_pos gt.goal_meta; remove_solved_goals ps (** [tac_solve pos ps] tries to simplify the unification goals of the proof state [ps] and fails if constraints are unsolvable. *) let tac_solve : popt -> proof_state -> proof_state = fun pos ps -> if Logger.log_enabled () then log "@[<v>tac_solve@ %a@]" goals ps; (* convert the proof_state into a problem *) let gs_typ, gs_unif = List.partition is_typ ps.proof_goals in let p = new_problem() in let add_meta ms = function | Unif _ -> ms | Typ gt -> MetaSet.add gt.goal_meta ms in p := {!p with metas = List.fold_left add_meta MetaSet.empty gs_typ ; to_solve = List.rev_map get_constr gs_unif}; (* try to solve the problem *) if not (Unif.solve_noexn p) then fatal pos "Unification goals are unsatisfiable."; (* compute the new list of goals by preserving the order of initial goals and adding the new goals at the end *) let non_instantiated g = match g with | Typ gt when !(gt.goal_meta.meta_value) = None -> Some (Goal.simpl Eval.simplify g) | _ -> None in let gs_typ = List.filter_map non_instantiated gs_typ in let is_eq_goal_meta m = function | Typ gt -> m == gt.goal_meta | _ -> assert false in let add_goal m gs = if List.exists (is_eq_goal_meta m) gs_typ then gs else Goal.of_meta m :: gs in let proof_goals = gs_typ @ MetaSet.fold add_goal (!p).metas (List.map (fun c -> Unif c) (!p).unsolved) in {ps with proof_goals} (** [tac_refine pos ps gt gs p t] refines the typing goal [gt] with [t]. [p] is the set of metavariables created by the scoping of [t]. *) let tac_refine : ?check:bool -> popt -> proof_state -> goal_typ -> goal list -> problem -> term -> proof_state = fun ?(check=true) pos ps gt gs p t -> if Logger.log_enabled () then log "@[tac_refine@ %a@]" term t; let c = Env.to_ctxt gt.goal_hyps in if LibMeta.occurs gt.goal_meta c t then fatal pos "Circular refinement."; (* Check that [t] has the required type. *) let t = if check then match Infer.check_noexn p c t gt.goal_type with | None -> fatal pos "%a@ does not have type@ %a." term t term gt.goal_type | Some t -> t else t in if Logger.log_enabled () then log (Color.red "%a ≔ %a") meta gt.goal_meta term t; LibMeta.set p gt.goal_meta (binds (Env.vars gt.goal_hyps) lift t); (* Convert the metas and constraints of [p] not in [gs] into new goals. *) if Logger.log_enabled () then log "%a" problem p; tac_solve pos {ps with proof_goals = Proof.add_goals_of_problem p gs} (** [ind_data t] returns the [ind_data] structure of [s] if [t] is of the form [s t1 .. tn] with [s] an inductive type. Fails otherwise. *) let ind_data : popt -> Env.t -> term -> Sign.ind_data = fun pos env a -> let h, ts = get_args (Eval.whnf (Env.to_ctxt env) a) in match h with | Symb s -> let sign = Path.Map.find s.sym_path Sign.(!loaded) in begin try let ind = SymMap.find s !(sign.sign_ind) in let _, ts = List.cut ts ind.ind_nb_params (*remove parameters*) in let ctxt = Env.to_ctxt env in if LibTerm.distinct_vars ctxt (Array.of_list ts) = None then fatal pos "%a is not applied to distinct variables." sym s else ind with Not_found -> fatal pos "%a is not an inductive type." sym s end | _ -> fatal pos "%a is not headed by an inductive type." term a (** [tac_induction pos ps gt] tries to apply the induction tactic on the typing goal [gt]. *) let tac_induction : popt -> proof_state -> goal_typ -> goal list -> proof_state = fun pos ps ({goal_type;goal_hyps;_} as gt) gs -> let ctx = Env.to_ctxt goal_hyps in match Eval.whnf ctx goal_type with | Prod(a,_) -> let ind = ind_data pos goal_hyps a in let n = ind.ind_nb_params + ind.ind_nb_types + ind.ind_nb_cons in let p = new_problem () in let metas = let fresh_meta _ = let mt = LibMeta.make p ctx mk_Type in LibMeta.make p ctx mt in (* Reverse to have goals properly sorted. *) List.(rev (init (n - 1) fresh_meta)) in let t = add_args (mk_Symb ind.ind_prop) metas in tac_refine pos ps gt gs p t | _ -> fatal pos "[%a] is not a product." term goal_type (** [count_products a] returns the number of consecutive products at the top of the term [a]. *) let count_products : ctxt -> term -> int = fun c -> let rec count acc t = match Eval.whnf c t with | Prod(_,b) -> count (acc + 1) (Bindlib.subst b mk_Kind) | _ -> acc in count 0 (** [get_prod_ids env do_whnf t] returns the list [v1;..;vn] if [do_whnf] is true and [whnf t] is of the form [Π v1:A1, .., Π vn:An, u] with [u] not a product, or if [do_whnf] is false and [t] is of the form [Π v1:A1, .., Π vn:An, u] with [u] not a product. *) let get_prod_ids env = let rec aux acc do_whnf t = match get_args t with | Prod(_,b), _ -> let x,b = Bindlib.unbind b in aux (Bindlib.name_of x::acc) do_whnf b | _ -> if do_whnf then aux acc false (Eval.whnf (Env.to_ctxt env) t) else List.rev acc in aux [] (** [gen_valid_idopts env ids] generates a list of pairwise distinct identifiers distinct from those of [env] to replace [ids]. *) let gen_valid_idopts env ids = let add_decl ids (s,_) = Extra.StrSet.add s ids in let idset = ref (List.fold_left add_decl Extra.StrSet.empty env) in let f id idopts = let id = Extra.get_safe_prefix id !idset in idset := Extra.StrSet.add id !idset; Some(Pos.none id)::idopts in List.fold_right f ids [] (** [handle ss sym_pos prv ps tac] applies tactic [tac] in the proof state [ps] and returns the new proof state. *) let rec handle : Sig_state.t -> popt -> bool -> proof_state -> p_tactic -> proof_state = fun ss sym_pos prv ps {elt;pos} -> match ps.proof_goals with | [] -> assert false (* done before *) | g::gs -> match elt with | P_tac_fail | P_tac_query _ -> assert false (* done before *) (* Tactics that apply to both unification and typing goals: *) | P_tac_simpl None -> {ps with proof_goals = Goal.simpl Eval.snf g :: gs} | P_tac_simpl (Some qid) -> let s = Sig_state.find_sym ~prt:true ~prv:true ss qid in {ps with proof_goals = Goal.simpl (fun _ -> Eval.unfold_sym s) g :: gs} | P_tac_solve -> tac_solve pos ps | _ -> (* Tactics that apply to typing goals only: *) match g with | Unif _ -> fatal pos "Not a typing goal." | Typ ({goal_hyps=env;_} as gt) -> let scope t = Scope.scope_term ~mok:(Proof.meta_of_key ps) prv ss env t in (* Function to apply the assume tactic several times without checking the validity of identifiers. *) let assume idopts = match idopts with | [] -> ps | _ -> tac_refine pos ps gt gs (new_problem()) (scope (P.abst_list idopts P.wild)) in (* Function for checking that an identifier is not already in use. *) let check id = if Env.mem id.elt env then fatal id.pos "Identifier already in use." in match elt with | P_tac_fail | P_tac_query _ | P_tac_simpl _ | P_tac_solve -> assert false (* done before *) | P_tac_admit -> tac_admit ss sym_pos ps gt | P_tac_apply pt -> let t = scope pt in (* Compute the product arity of the type of [t]. *) (* FIXME: this does not take into account implicit arguments. *) let n = let c = Env.to_ctxt env in let p = new_problem () in match Infer.infer_noexn p c t with | None -> fatal pos "[%a] is not typable." term t | Some (_, a) -> count_products c a in let t = scope (P.appl_wild pt n) in let p = new_problem () in tac_refine pos ps gt gs p t | P_tac_assume idopts -> (* Check that no idopt is None. *) if List.exists ((=) None) idopts then fatal pos "underscores not allowed in assume"; (* Check that the given identifiers are not already used. *) List.iter (Option.iter check) idopts; (* Check that the given identifiers are pairwise distinct. *) Syntax.check_distinct_idopts idopts; assume idopts | P_tac_generalize {elt=id; pos=idpos} -> (* From a goal [e1,id:a,e2 ⊢ ?[e1,id,e2] : u], generate a new goal [e1 ⊢ ?m[e1] : Π id:a, Π e2, u], and refine [?[e]] with [?m[e1] id e2]. *) begin try let p = new_problem() in let e2, x, e1 = List.split (fun (s,_) -> s = id) env in let u = lift gt.goal_type in let q = Env.to_prod_box [x] (Env.to_prod_box e2 u) in let m = LibMeta.fresh p (Env.to_prod e1 q) (List.length e1) in let me1 = Bindlib.unbox (_Meta m (Env.to_tbox e1)) in let t = List.fold_left (fun t (_,(v,_,_)) -> mk_Appl(t, mk_Vari v)) me1 (x :: List.rev e2) in tac_refine pos ps gt gs p t with Not_found -> fatal idpos "Unknown hypothesis %a" uid id; end | P_tac_have(id, t) -> (* From a goal [e ⊢ ?[e] : u], generate two new goals [e ⊢ ?1[e] : t] and [e,x:t ⊢ ?2[e,x] : u], and refine [?[e]] with [?2[e,?1[e]]. *) check id; let p = new_problem() in let t = scope t in (* Generate the constraints for [t] to be of type [Type]. *) let c = Env.to_ctxt env in begin match Infer.check_noexn p c t mk_Type with | None -> fatal pos "%a is not of type Type." term t | Some t -> (* Create a new goal of type [t]. *) let n = List.length env in let bt = lift t in let m1 = LibMeta.fresh p (Env.to_prod env bt) n in (* Refine the focused goal. *) let v = new_tvar id.elt in let env' = Env.add v bt None env in let m2 = LibMeta.fresh p (Env.to_prod env' (lift gt.goal_type)) (n+1) in let ts = Env.to_tbox env in let u = Bindlib.unbox (_Meta m2 (Array.append ts [|_Meta m1 ts|])) in tac_refine pos ps gt gs p u end | P_tac_set(id,t) -> (* From a goal [e ⊢ ?[e]:a], generate a new goal [e,id:b ⊢ ?1[e,x]:a], where [b] is the type of [t], and refine [?[e]] with [?1[e,t]]. *) check id; let p = new_problem() in let t = scope t in let c = Env.to_ctxt env in begin match Infer.infer_noexn p c t with | None -> fatal pos "%a is not typable." term t | Some (t,b) -> let x = new_tvar id.elt in let bt = lift t in let e' = Env.add x (lift b) (Some bt) env in let a = lift gt.goal_type in let m = LibMeta.fresh p (Env.to_prod e' a) (List.length e') in let u = _Meta m (Array.append (Env.to_tbox env) [|bt|]) in (*tac_refine pos ps gt gs p (Bindlib.unbox u)*) LibMeta.set p gt.goal_meta (Bindlib.unbox (Bindlib.bind_mvar (Env.vars env) u)); (*let g = Goal.of_meta m in*) let g = Typ {goal_meta=m; goal_hyps=e'; goal_type=gt.goal_type} in {ps with proof_goals = g :: gs} end | P_tac_induction -> tac_induction pos ps gt gs | P_tac_refine t -> tac_refine pos ps gt gs (new_problem()) (scope t) | P_tac_refl -> begin let cfg = Rewrite.get_eq_config ss pos in let _,vs = Rewrite.get_eq_data cfg pos gt.goal_type in let idopts = gen_valid_idopts env (List.map Bindlib.name_of vs) in let ps = assume idopts in match ps.proof_goals with | [] -> assert false | Unif _::_ -> assert false | Typ gt::gs -> let cfg = Rewrite.get_eq_config ss pos in let (a,l,_),_ = Rewrite.get_eq_data cfg pos gt.goal_type in let prf = add_args (mk_Symb cfg.symb_refl) [a; l] in tac_refine pos ps gt gs (new_problem()) prf end | P_tac_remove ids -> (* Remove hypothesis [id] in goal [g]. *) let remove g id = match g with | Unif _ -> assert false | Typ gt -> let k = try List.pos (fun (s,_) -> s = id.elt) env with Not_found -> fatal id.pos "Unknown hypothesis." in let m = gt.goal_meta in let n = m.meta_arity - 1 in let a = cleanup !(m.meta_type) in (* cleanup necessary *) let b = LibTerm.codom_binder (n - k) a in if Bindlib.binder_occur b then fatal id.pos "%s cannot be removed because of dependencies." id.elt; let env' = List.filter (fun (s,_) -> s <> id.elt) env in let a' = Env.to_prod env' (lift gt.goal_type) in let p = new_problem() in let m' = LibMeta.fresh p a' n in let t = _Meta m' (Env.to_tbox env') in let v = Bindlib.bind_mvar (Env.vars env) t in LibMeta.set p m (Bindlib.unbox v); Goal.of_meta m' in Syntax.check_distinct ids; (* Reorder [ids] wrt their positions. *) let n = gt.goal_meta.meta_arity - 1 in let id_pos id = try id, n - List.pos (fun (s,_) -> s = id.elt) env with Not_found -> fatal id.pos "Unknown hypothesis." in let cmp (_,k1) (_,k2) = Stdlib.compare k2 k1 in let ids = List.map fst (List.sort cmp (List.map id_pos ids)) in let g = List.fold_left remove g ids in {ps with proof_goals = g::gs} | P_tac_rewrite(l2r,pat,eq) -> let pat = Option.map (Scope.scope_rw_patt ss env) pat in let p = new_problem() in tac_refine pos ps gt gs p (Rewrite.rewrite ss p pos gt l2r pat (scope eq)) | P_tac_sym -> let cfg = Rewrite.get_eq_config ss pos in let (a,l,r),_ = Rewrite.get_eq_data cfg pos gt.goal_type in let p = new_problem() in let prf = let mt = mk_Appl(mk_Symb cfg.symb_P, add_args (mk_Symb cfg.symb_eq) [a;r;l]) in let meta_term = LibMeta.make p (Env.to_ctxt env) mt in (* The proofterm is [eqind a r l M (λx,eq a l x) (refl a l)]. *) Rewrite.swap cfg a r l meta_term in tac_refine pos ps gt gs p prf | P_tac_why3 cfg -> begin let ids = get_prod_ids env false gt.goal_type in let idopts = gen_valid_idopts env ids in let ps = assume idopts in match ps.proof_goals with | Typ gt::_ -> Why3_tactic.handle ss pos cfg gt; tac_admit ss sym_pos ps gt | _ -> assert false end | P_tac_try tactic -> try handle ss sym_pos prv ps tactic with Fatal(_, _s) -> ps (** Representation of a tactic output. *) type tac_output = proof_state * Query.result (** [handle ss sym_pos prv ps tac] applies tactic [tac] in the proof state [ps] and returns the new proof state. *) let handle : Sig_state.t -> popt -> bool -> proof_state -> p_tactic -> tac_output = fun ss sym_pos prv ps ({elt;pos} as tac) -> match elt with | P_tac_fail -> fatal pos "Call to tactic \"fail\"" | P_tac_query(q) -> if Logger.log_enabled () then log "%a@." Pretty.tactic tac; ps, Query.handle ss (Some ps) q | _ -> match ps.proof_goals with | [] -> fatal pos "No remaining goals." | g::_ -> if Logger.log_enabled () then log ("%a@\n" ^^ Color.red "%a") Proof.Goal.pp g Pretty.tactic tac; handle ss sym_pos prv ps tac, None (** [handle sym_pos prv r tac n] applies the tactic [tac] from the previous tactic output [r] and checks that the number of goals of the new proof state is compatible with the number [n] of subproofs. *) let handle : Sig_state.t -> popt -> bool -> tac_output -> p_tactic -> int -> tac_output = fun ss sym_pos prv (ps, _) t nb_subproofs -> let (ps', _) as a = handle ss sym_pos prv ps t in let nb_goals_before = List.length ps.proof_goals in let nb_goals_after = List.length ps'.proof_goals in let nb_newgoals = nb_goals_after - nb_goals_before in if nb_newgoals <= 0 then if nb_subproofs = 0 then a else fatal t.pos "A subproof is given but there is no subgoal." else if is_destructive t then match nb_newgoals + 1 - nb_subproofs with | 0 -> a | n when n > 0 -> fatal t.pos "Missing subproofs (%d subproofs for %d subgoals):@.%a" nb_subproofs (nb_newgoals + 1) goals ps' | _ -> fatal t.pos "Too many subproofs (%d subproofs for %d subgoals):@.%a" nb_subproofs (nb_newgoals + 1) goals ps' else match nb_newgoals - nb_subproofs with | 0 -> a | n when n > 0 -> fatal t.pos "Missing subproofs (%d subproofs for %d subgoals):@.%a" nb_subproofs nb_newgoals goals ps' | _ -> fatal t.pos "Too many subproofs (%d subproofs for %d subgoals)." nb_subproofs nb_newgoals
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>