package lambdapi
Proof assistant for the λΠ-calculus modulo rewriting
Install
Dune Dependency
Authors
Maintainers
Sources
lambdapi-2.6.0.tbz
sha256=d01e5f13db2eaba6e4fe330667149e0059d4886c651ff9d6b672db2dfc9765ed
sha512=33b68c972aca37985ed73c527076198e7d4961c7e27c89cdabfe4d1cff97cd41ccfb85ae9499eb98ad9a0aefd920bc55555df6393fc441ac2429e4d99cddafa8
doc/src/lambdapi.core/print.ml.html
Source file print.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
(** Pretty-printing for the core AST. The functions of this module are used for printing terms and other objects defined in the {!module:Term} module. This is mainly used for displaying log messages, and feedback in case of success or error while type-checking terms or testing convertibility. *) open Lplib open Base open Extra open Timed open Common open Debug open Term open Sig_state (** Logging function for printing. *) let log_prnt = Logger.make 'p' "prnt" "pretty-printing" let log_prnt = log_prnt.pp (** Current signature state. *) let sig_state : sig_state ref = ref Sig_state.dummy (** [notation_of s] returns the notation of symbol [s] or [None]. *) let notation_of : sym -> float Sign.notation option = fun s -> SymMap.find_opt s !sig_state.notations (** Flag for printing the domains of λ-abstractions. *) let print_domains : bool ref = Console.register_flag "print_domains" false (** Flag for printing implicit arguments. *) let print_implicits : bool ref = Console.register_flag "print_implicits" false (** Flag for printing the type of uninstanciated metavariables. Remark: this does not generate parsable terms; use for debug only. *) let print_meta_types : bool ref = Console.register_flag "print_meta_types" false (** Flag for printing contexts in unification problems. *) let print_contexts : bool ref = Console.register_flag "print_contexts" false (** Flag for printing metavariable arguments. *) let print_meta_args : bool ref = Console.register_flag "print_meta_args" false let assoc : Pratter.associativity pp = fun ppf assoc -> match assoc with | Neither -> () | Left -> out ppf " left" | Right -> out ppf " right" let notation : 'a pp -> 'a Sign.notation pp = fun elt -> let rec notation ppf = function | Sign.Prefix(p) -> out ppf "prefix %a" elt p | Infix(a,p) -> out ppf "infix%a %a" assoc a elt p | Postfix(p) -> out ppf "postfix %a" elt p | Succ (Some n) -> notation ppf n | Quant -> out ppf "quantifier" | _ -> () in notation let uid : string pp = string let path : Path.t pp = Path.pp let prop : prop pp = fun ppf p -> match p with | AC true -> out ppf "left associative commutative " | AC false -> out ppf "associative commutative " | Assoc true -> out ppf "left associative " | Assoc false -> out ppf "associative " | Const -> out ppf "constant " | Commu -> out ppf "commutative " | Defin -> () | Injec -> out ppf "injective " let expo : expo pp = fun ppf e -> match e with | Privat -> out ppf "private " | Protec -> out ppf "protected " | Public -> () let match_strat : match_strat pp = fun ppf s -> match s with | Eager -> () | Sequen -> out ppf "sequential " let do_not_qualify = ref false let without_qualifying f = let saved = !do_not_qualify in do_not_qualify := true ; let res = f () in do_not_qualify := saved ; res let sym : sym pp = fun ppf s -> if !print_implicits && s.sym_impl <> [] then out ppf "@"; let ss = !sig_state and n = s.sym_name and p = s.sym_path in if !do_not_qualify || Path.Set.mem p ss.open_paths then uid ppf n else match Path.Map.find_opt p ss.path_alias with | None -> (* Hack for printing symbols replacing metavariables in infer.ml unqualified. *) if n <> "" && let c = n.[0] in c = '$' || c = '?' then uid ppf n else out ppf "%a.%a" path p uid n | Some alias -> out ppf "%a.%a" uid alias uid n let var : 'a Bindlib.var pp = fun ppf x -> uid ppf (Bindlib.name_of x) (** Exception raised when trying to convert a term into a nat. *) exception Not_a_nat let builtin name = try StrMap.find name (!sig_state).builtins with Not_found -> raise Not_a_nat (** [nat_of_term t] converts a term into a natural number. @raise Not_a_nat if this is not possible. *) let nat_of_term : term -> int = fun t -> let zero = builtin "nat_zero" and succ = builtin "nat_succ" in let rec nat acc = fun t -> match get_args t with | (Symb s, [u]) when s == succ -> nat (acc+1) u | (Symb s, []) when s == zero -> acc | _ -> raise Not_a_nat in nat 0 t (** [pos_of_term t] converts a term into a positive number. @raise Not_a_nat if this is not possible. *) let pos_of_term : term -> int = fun t -> let one = builtin "pos_one" and dbl = builtin "pos_double" and suc_dbl = builtin "pos_succ_double" in let rec pos acc = fun t -> match get_args t with | (Symb s, [u]) when s == dbl -> pos (2*acc) u | (Symb s, [u]) when s == suc_dbl -> pos (2*acc+1) u | (Symb s, []) when s == one -> acc | _ -> raise Not_a_nat in pos 1 t (** [int_of_term t] converts a term into a positive number. @raise Not_a_nat if this is not possible. *) let int_of_term : term -> int = fun t -> let zero = builtin "int_zero" and pos = builtin "int_positive" and neg = builtin "int_negative" in match get_args t with | (Symb s, [u]) when s == pos -> pos_of_term u | (Symb s, [u]) when s == neg -> - (pos_of_term u) | (Symb s, []) when s == zero -> 0 | _ -> raise Not_a_nat (** [are_quant_args args] returns [true] iff [args] has only one argument that is an abstraction. *) let are_quant_args : term list -> bool = fun args -> match args with | [b] -> is_abst b | _ -> false (** The possible priority levels are [`Func] (top level, including abstraction and product), [`Appl] (application) and [`Atom] (smallest priority). *) type priority = [`Func | `Appl | `Atom] let rec meta : meta pp = fun ppf m -> if !print_meta_types then out ppf "(?%d:%a)" m.meta_key term !(m.meta_type) else out ppf "?%d" m.meta_key and typ : term pp = fun ppf a -> if !print_domains then out ppf ": %a" term a and term : term pp = fun ppf t -> let rec atom ppf t = pp `Atom ppf t and appl ppf t = pp `Appl ppf t and func ppf t = pp `Func ppf t and pp p ppf t = let (h, args) = get_args t in (* standard application *) let pp_appl h args = match args with | [] -> head (p <> `Func) ppf h | args -> if p = `Atom then out ppf "("; head true ppf h; List.iter (out ppf " %a" atom) args; if p = `Atom then out ppf ")" in (* postfix symbol application *) let postfix h s args = match args with | l::args -> (* Can be improved by looking at symbol priority. *) if p <> `Func then out ppf "("; if args = [] then out ppf "%a %a" appl l sym s else out ppf "(%a %a)" appl l sym s; List.iter (out ppf " %a" appl) args; if p <> `Func then out ppf ")" | [] -> out ppf "("; head true ppf h; out ppf ")" in match h with | Symb(s) -> if !print_implicits && s.sym_impl <> [] then pp_appl h args else let number f t = try out ppf "%i" (f t) with Not_a_nat -> pp_appl h args in let args = LibTerm.remove_impl_args s args in begin match notation_of s with | Some Quant when are_quant_args args -> if p <> `Func then out ppf "("; quantifier s args; if p <> `Func then out ppf ")" | Some (Postfix _) -> postfix h s args | Some (Infix _) -> begin match args with | l::r::args -> if p <> `Func then out ppf "("; (* Can be improved by looking at symbol priority. *) if args = [] then out ppf "%a %a %a" appl l sym s appl r else out ppf "(%a %a %a)" appl l sym s appl r; List.iter (out ppf " %a" appl) args; if p <> `Func then out ppf ")" | [] -> out ppf "("; head true ppf h; out ppf ")" | _ -> if p = `Atom then out ppf "("; out ppf "("; head true ppf h; out ppf ")"; List.iter (out ppf " %a" atom) args; if p = `Atom then out ppf ")" end | Some (Zero|IntZero) -> out ppf "0" | Some (Succ (Some (Postfix _))) -> (try out ppf "%i" (nat_of_term t) with Not_a_nat -> postfix h s args) | Some (Succ _) -> number nat_of_term t | Some PosOne -> out ppf "1" | Some (PosDouble|PosSuccDouble) -> number pos_of_term t | Some (IntPos|IntNeg) -> number int_of_term t | _ -> pp_appl h args end | _ -> pp_appl h args and quantifier s args = (* assume [are_quant_args s args = true] *) match args with | [b] -> begin match unfold b with | Abst(a,b) -> let (x,p) = Bindlib.unbind b in out ppf "`%a %a%a, %a" sym s var x typ a func p | _ -> assert false end | _ -> assert false and head wrap ppf t = let env ppf ts = if Array.length ts > 0 then out ppf ".[%a]" (Array.pp func ";") ts in let term_env ppf te = match te with | TE_Vari(m) -> var ppf m | _ -> assert false in match unfold t with | Appl(_,_) -> assert false (* Application is handled separately, unreachable. *) | Wild -> out ppf "_" | TRef(r) -> (match !r with | None -> out ppf "<TRef>" | Some t -> atom ppf t) (* Atoms are printed inconditonally. *) | Vari(x) -> var ppf x | Type -> out ppf "TYPE" | Kind -> out ppf "KIND" | Symb(s) -> sym ppf s | Meta(m,e) -> if !print_meta_args then out ppf "%a%a" meta m env e else meta ppf m | Plac(_) -> out ppf "_" | Patt(_,n,e) -> out ppf "$%a%a" uid n env e | TEnv(t,e) -> out ppf "$%a%a" term_env t env e (* Product and abstraction (only them can be wrapped). *) | Abst(a,b) -> if wrap then out ppf "("; let (x,t) = Bindlib.unbind b in out ppf "λ %a" bvar (b,x); if !print_domains then out ppf ": %a, %a" func a func t else abstractions ppf t; if wrap then out ppf ")" | Prod(a,b) -> if wrap then out ppf "("; let (x,t) = Bindlib.unbind b in if Bindlib.binder_occur b then out ppf "Π %a: %a, %a" var x appl a func t else out ppf "%a → %a" appl a func t; if wrap then out ppf ")" | LLet(a,t,b) -> if wrap then out ppf "("; out ppf "let "; let (x,u) = Bindlib.unbind b in bvar ppf (b,x); if !print_domains then out ppf ": %a" atom a; out ppf " ≔ %a in %a" func t func u; if wrap then out ppf ")" and bvar ppf (b,x) = if Bindlib.binder_occur b then out ppf "%a" var x else out ppf "_" and abstractions ppf t = match unfold t with | Abst(_,b) -> let (x,t) = Bindlib.unbind b in out ppf " %a%a" bvar (b,x) abstractions t | t -> out ppf ", %a" func t in func ppf t let term : term pp = fun ppf t -> term ppf (cleanup t) let term_in : Bindlib.ctxt -> term pp = fun c ppf t -> term ppf (cleanup ~ctxt:c t) (*let term ppf t = out ppf "<%a printed %a>" Term.term t term t*) (*let term = Term.term*) let rec prod : (term * bool list) pp = fun ppf (t, impl) -> match unfold t, impl with | Prod(a,b), true::impl -> let x, b = Bindlib.unbind b in out ppf "Π [%a: %a], %a" var x term a prod (b, impl) | Prod(a,b), false::impl -> let x, b = Bindlib.unbind b in out ppf "Π %a: %a, %a" var x term a prod (b, impl) | _ -> term ppf t let sym_rule : sym_rule pp = fun ppf r -> out ppf "%a ↪ %a" term (lhs r) term (rhs r) let rule_of : sym -> rule pp = fun s ppf r -> sym_rule ppf (s,r) let unif_rule : rule pp = rule_of Unif_rule.equiv let rules_of : sym pp = fun ppf s -> D.list (rule_of s) ppf !(s.sym_rules) (* ends with a space if [!print_contexts = true] *) let ctxt : ctxt pp = fun ppf ctx -> if !print_contexts then begin let def ppf t = out ppf " ≔ %a" term t in let decl ppf (x,a,t) = out ppf "%a%a%a" var x typ a (Option.pp def) t in out ppf "%a%s⊢ " (List.pp decl ", ") (List.rev ctx) (if ctx <> [] then " " else "") end let typing : constr pp = fun ppf (ctx, t, u) -> out ppf "@[<h>%a%a : %a@]" ctxt ctx term t term u let constr : constr pp = fun ppf (ctx, t, u) -> out ppf "@[<h>%a%a ≡ %a@]" ctxt ctx term t term u let constrs : constr list pp = List.pp constr "; " (* for debug only *) let metaset : MetaSet.t pp = D.iter ~sep:(fun fmt () -> out fmt ",@ ") MetaSet.iter meta let problem : problem pp = fun ppf p -> out ppf "{ recompute=%b;@ metas={%a};@ to_solve=[%a];@ unsolved=[%a] }" !p.recompute metaset !p.metas constrs !p.to_solve constrs !p.unsolved
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>