package lambdapi
Proof assistant for the λΠ-calculus modulo rewriting
Install
Dune Dependency
Authors
Maintainers
Sources
lambdapi-2.6.0.tbz
sha256=d01e5f13db2eaba6e4fe330667149e0059d4886c651ff9d6b672db2dfc9765ed
sha512=33b68c972aca37985ed73c527076198e7d4961c7e27c89cdabfe4d1cff97cd41ccfb85ae9499eb98ad9a0aefd920bc55555df6393fc441ac2429e4d99cddafa8
doc/src/lambdapi.parsing/scope.ml.html
Source file scope.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
(** Scoping. Convert parsed terms in core terms by finding out which identifiers are bound variables or function symbol declared in open modules. *) open Lplib open Common open Error open Pos open Debug open Syntax open Core open Term open Env open Sig_state open Print (** Logging function for term scoping. *) let log_scop = Logger.make 'o' "scop" "term scoping" let log_scop = log_scop.pp (** [find_qid ~find_sym prt prv ss env qid] returns a boxed term corresponding to a variable of the environment [env] or a symbol which name corresponds to [qid]. In case of a qualified identifier, we search in symbols using [find_sym]. In case of an unqualified identifier, we first search in [env] and the in symbols using [find_sym]. The exception [Fatal] is raised if an error occurs (e.g. when the name cannot be found). If [prt] is true, protected symbols from external modules are allowed (protected symbols from current modules are always allowed). If [prv] is true, private symbols are allowed. *) let find_qid : ?find_sym:find_sym -> bool -> bool -> sig_state -> env -> p_qident -> tbox = fun ?(find_sym = find_sym) prt prv ss env qid -> if Logger.log_enabled () then log_scop "find_qid %a" Pretty.qident qid; let (mp, s) = qid.elt in (* Check for variables in the environment first. *) try if mp <> [] then raise Not_found; (* Variables cannot be qualified. *) _Vari (Env.find s env) with Not_found -> (* Check for symbols. *) _Symb (find_sym ~prt ~prv ss qid) (** Representation of the different scoping modes. Note that the constructors hold specific information for the given mode. *) type lhs_data = { m_lhs_prv : bool (** True if private symbols are allowed. *) ; m_lhs_indices : (string, int ) Hashtbl.t (** Stores index reserved for a pattern variable of the given name. *) ; m_lhs_arities : (int , int ) Hashtbl.t (** Stores the arity of the pattern variable at the given index. *) ; m_lhs_names : (int , string) Hashtbl.t (** Stores the name of the pattern variable at given index (if any). *) ; mutable m_lhs_size : int (** Stores the current known size of the environment of the RHS. *) ; m_lhs_in_env : string list (** Pattern variables definitely needed in the RHS environment. *) } type mode = | M_Term of { m_term_meta_of_key : int -> meta option (** Allows to retrieve generated metas by their key. *) ; m_term_prv : bool (** Indicate if private symbols are allowed. *) } (** Standard scoping mode for terms, holding a map for metavariables introduced by the user, a map for metavariables generated by the system, and a boolean indicating whether private symbols are allowed. *) | M_Patt (** Scoping mode for patterns in the rewrite tactic. *) | M_LHS of lhs_data (** Scoping mode for rewriting rule left-hand sides. *) | M_SearchPatt of (int -> meta option) * lhs_data (** Scoping mode for search queries *) | M_RHS of { m_rhs_prv : bool (** True if private symbols are allowed. *) ; m_rhs_data : (string, tevar) Hashtbl.t (** Environment for variables that we know to be bound in the RHS. *) ; mutable m_rhs_new_metas : problem (** Metavariables generated during scoping. *) } (** Scoping mode for rewriting rule right-hand sides. *) | M_URHS of { mutable m_urhs_vars_nb : int (** Number of distinct variables in the rewriting rule, including variables only in the RHS. It is initialised to the number of (distinct) variables in the LHS and incremented each time a variable of the RHS that was not in the LHS is scoped. *) ; mutable m_urhs_xvars : (string * tevar) list (** Variables scoped that were not in the LHS. This field is only used in unification rules and is updated imperatively for each new variable scoped. A couple [(n, v)] is the name of the variable with the variable itself. The name is needed to ensure that two variables with the same name are scoped as the same variable. *) ; m_urhs_data : (string, tevar) Hashtbl.t } (** Scoping mode for unification rule right-hand sides. During scoping, we always have [m_urhs_vars_nb = m_lhs_size + length m_urhs_xvars]. *) (** [scope_iden ~find_sym md ss env qid] calls [find_qid] with the [prt] and [prv] flags set according to [md]. *) let scope_iden : ?find_sym:find_sym -> mode -> sig_state -> env -> p_qident -> tbox = fun ?find_sym md ss env qid -> let prt = match md with M_LHS _ | M_SearchPatt _ -> true | _ -> false and prv = match md with | M_SearchPatt _ -> true | M_LHS(d) -> d.m_lhs_prv | M_Term(d) -> d.m_term_prv | M_RHS(d) -> d.m_rhs_prv | _ -> false in find_qid ?find_sym prt prv ss env qid (** [fresh_patt name ts] creates a unique pattern variable applied to [ts]. [name] is used as suffix if distinct from [None]. *) let fresh_patt : lhs_data -> string option -> tbox array -> tbox = fun data nopt ts -> let fresh_index () = let i = data.m_lhs_size in data.m_lhs_size <- i + 1; let arity = Array.length ts in Hashtbl.add data.m_lhs_arities i arity; i in match nopt with | Some name -> let i = try Hashtbl.find data.m_lhs_indices name with Not_found -> let i = fresh_index () in Hashtbl.add data.m_lhs_indices name i; Hashtbl.add data.m_lhs_names i name; i in _Patt (Some i) (string_of_int i) ts | None -> let i = fresh_index () in _Patt (Some i) (string_of_int i) ts (** [is_invalid_bindlib_id s] says whether [s] can be safely used as variable name in Bindlib. Indeed, because Bindlib converts any suffix consisting of a sequence of digits into an integer, and increment it, we cannot use as bound variable names escaped identifiers or regular identifiers ending with a non-negative integer with leading zeros. *) let is_invalid_bindlib_id : string -> bool = let rec last_digit s k = let l = k-1 in if l < 0 then 0 else match s.[l] with | '0' .. '9' -> last_digit s l | _ -> k in fun s -> let n = String.length s - 1 in n >= 0 && match s.[n] with | '0' .. '9' -> let k = last_digit s n in s.[k] = '0' && k < n | '}' -> true | _ -> false (* unit tests *) let _ = let invalid = is_invalid_bindlib_id in let valid s = not (invalid s) in assert (invalid "00"); assert (invalid "01"); assert (invalid "a01"); assert (invalid "{|:|}"); assert (valid "_x_100"); assert (valid "_z1002"); assert (valid "case_ex2_intro"); assert (valid "case_ex02_intro"); assert (valid "case_ex02_intro0"); assert (valid "case_ex02_intro1"); assert (valid "case_ex02_intro10") (* used in desugaring decimal notations *) let strint = Array.init 11 string_of_int (** [scope ~find_sym ~typ k md ss env t] turns a parser-level term [t] into an actual term. *) let rec scope : ?find_sym:find_sym -> ?typ:bool -> int -> mode -> sig_state -> env -> p_term -> tbox = fun ?find_sym ?(typ=false) k md ss env t -> if Logger.log_enabled () then log_scop "%a before Pratt: %a" D.depth k Pretty.term t; let u = Pratt.parse ?find_sym ss env t in if Logger.log_enabled () then log_scop "%a after Pratt: %a" D.depth k Pretty.term u; scope_parsed ?find_sym ~typ k md ss env u (** [scope_parsed ~find_sym ~typ k md ss env t] turns a parser-level Pratt-parsed term [t] into an actual term. *) and scope_parsed : ?find_sym:find_sym -> ?typ:bool -> int -> mode -> sig_state -> env -> p_term -> tbox = fun ?find_sym ?(typ=false) k md ss env t -> if Logger.log_enabled () then log_scop "%a%a" D.depth k Pretty.term t; (* Extract the spine. *) let p_head, args = Syntax.p_get_args t in (* Check that LHS pattern variables are applied to no argument. *) begin match p_head.elt, md with | P_Patt _, M_LHS _ when args <> [] -> begin match args with | [{elt=P_Expl _;_}] -> fatal t.pos "Explicit terms are forbidden in rule LHS. \ You perhaps forgot to write a dot before?" | _ -> fatal t.pos "Pattern variables cannot be applied." end | _ -> () end; (* Scope the head and obtain the implicitness of arguments. *) let h = scope_head ?find_sym ~typ k md ss env p_head in (* Find out whether [h] has implicit arguments. *) let rec get_impl p_head = match p_head.elt with | P_Wrap e -> get_impl e | P_Iden (_, false) -> (* We avoid unboxing if [h] is not closed (and hence not a symbol). *) if Bindlib.is_closed h then match Bindlib.unbox h with | Symb s -> s.sym_impl | _ -> [] else [] | P_Abst (params_list, t) -> Syntax.get_impl_params_list params_list @ get_impl t | _ -> [] in let impl = match p_head.elt, args with | P_Abst _, [] -> [] | _ -> minimize_impl (get_impl p_head) in (* Scope and insert the (implicit) arguments. *) add_impl ?find_sym k md ss env t.pos h impl args |> D.log_and_return (fun e -> log_scop "%agot %a" D.depth k Raw.term (Bindlib.unbox e)) (** [add_impl ~find_sym k md ss env loc h impl args] scopes [args] and returns the application of [h] to the scoped arguments. [impl] is a boolean list described the implicit arguments. Implicit arguments are added as underscores before scoping. *) and add_impl : ?find_sym:find_sym -> int -> mode -> sig_state -> Env.t -> popt -> tbox -> bool list -> p_term list -> tbox = fun ?find_sym k md ss env loc h impl args -> let appl = match md with M_LHS _ | M_SearchPatt _ -> _Appl_not_canonical | _ -> _Appl in let appl_p_term t u = appl t (scope_parsed ?find_sym (k+1) md ss env u) in let appl_meta t = appl t (scope_head ?find_sym (k+1) md ss env P.wild) in match impl, args with (* The remaining arguments are all explicit. *) | [], _ -> List.fold_left appl_p_term h args (* Only implicit arguments remain. *) | true::impl, [] -> add_impl ?find_sym k md ss env loc (appl_meta h) impl [] (* The first argument is implicit (could be [a] if made explicit). *) | true::impl, a::args -> begin match a.elt with | P_Expl b -> add_impl ?find_sym k md ss env loc (appl_p_term h {a with elt = P_Wrap b}) impl args | _ -> add_impl ?find_sym k md ss env loc (appl_meta h) impl (a::args) end (* The first argument [a] is explicit. *) | false::impl, a::args -> begin match a.elt with | P_Expl _ -> fatal a.pos "Unexpected explicit argument." | _ -> add_impl ?find_sym k md ss env loc (appl_p_term h a) impl args end (* The application is too "partial" to insert all implicit arguments. *) | false::_, [] -> (* NOTE this could be improved with more general implicits. *) fatal loc "More arguments are required to instantiate implicits." (** [scope_domain ~find_sym k md ss env t] scopes [t] as the domain of an abstraction or product. *) and scope_domain : ?find_sym:find_sym -> int -> mode -> sig_state -> env -> p_term option -> tbox = fun ?find_sym k md ss env a -> match a, md with | (Some {elt=P_Wild;_}|None), (M_LHS data | M_SearchPatt (_,data)) -> fresh_patt data None (Env.to_tbox env) | (Some {elt=P_Wild;_}|None), _ -> _Plac true | Some a, _ -> scope ?find_sym ~typ:true k md ss env a (** [scope_binder ~find_sym ~typ k md ss cons env params_list t] scopes [t], abstract [params_list] and returns a tbox using [cons] (either [_Abst] or [_Prod]). *) and scope_binder : ?find_sym:find_sym -> ?typ:bool -> int -> mode -> sig_state -> (tbox -> tbinder Bindlib.box -> tbox) -> Env.t -> p_params list -> p_term option -> tbox = fun ?find_sym ?(typ=false) k md ss cons env params_list t -> (* [n] is used to give different names to parameters of the form "_" *) let rec scope_params_list n env params_list = match params_list with | [] -> begin match t with | Some t -> scope ?find_sym ~typ (k+1) md ss env t | None -> _Plac true end | (idopts,typopt,_implicit)::params_list -> let dom = scope_domain ?find_sym (k+1) md ss env typopt in scope_params n env idopts dom params_list and scope_params n env idopts a params_list = let rec aux n env idopts = match idopts with | [] -> scope_params_list n env params_list | None::idopts -> let v = if n = 0 then new_tvar "_" else new_tvar_ind "_" n in let t = aux (n+1) env idopts in cons a (Bindlib.bind_var v t) | Some {elt=id;pos}::idopts -> if is_invalid_bindlib_id id then fatal pos "\"%s\": Escaped identifiers or regular identifiers \ having an integer suffix with leading zeros \ are not allowed for bound variable names." id; let v = new_tvar id in let env = Env.add v a None env in let t = aux n env idopts in cons a (Bindlib.bind_var v t) in aux n env idopts in scope_params_list 0 env params_list (** [scope_head ~find_sym ~typ k md ss env t] scopes [t] as term head. *) and scope_head : ?find_sym:find_sym -> ?typ:bool -> int -> mode -> sig_state -> env -> p_term -> tbox = fun ?find_sym ?(typ=false) k md ss env t -> match (t.elt, md) with | (P_Type, _) -> _Type | (P_Iden(qid,_), _) -> scope_iden ?find_sym md ss env qid | (P_NLit(s), _) -> let neg, s = let neg = s.[0] = '-' in let s = if neg then String.sub s 1 (String.length s - 1) else s in neg, s in let sym_of s = _Symb (Builtin.get ss t.pos s) in let sym = Array.map sym_of strint in let digit = function | '0' -> sym.(0) | '1' -> sym.(1) | '2' -> sym.(2) | '3' -> sym.(3) | '4' -> sym.(4) | '5' -> sym.(5) | '6' -> sym.(6) | '7' -> sym.(7) | '8' -> sym.(8) | '9' -> sym.(9) | _ -> assert false in let sym_add = sym_of "+" in let add x y = _Appl (_Appl sym_add x) y in let sym_mul = sym_of "*" in let mul x y = _Appl (_Appl sym_mul x) y in let rec unsugar i = if i <= 0 then digit s.[0] else add (digit s.[i]) (mul sym.(10) (unsugar (i-1))) in let n = unsugar (String.length s - 1) in if neg then _Appl (sym_of "-") n else n | (P_Wild, M_URHS(data)) -> let x = let name = string_of_int data.m_urhs_vars_nb in let x = new_tevar name in data.m_urhs_vars_nb <- data.m_urhs_vars_nb + 1; data.m_urhs_xvars <- (name, x) :: data.m_urhs_xvars; x in _TEnv (_TE_Vari x) (Env.to_tbox env) | (P_Wild, (M_LHS data | M_SearchPatt (_,data))) -> fresh_patt data None (Env.to_tbox env) | (P_Wild, M_Patt) -> _Wild | (P_Wild, (M_RHS _|M_Term _)) -> _Plac typ | (P_Meta({elt;pos} as mk,ts), (M_Term {m_term_meta_of_key;_} | M_SearchPatt(m_term_meta_of_key,_))) -> ( match m_term_meta_of_key elt with | None -> fatal pos "Metavariable %a not found among generated variables: \ metavariables can only be created by the system." Pretty.meta_ident mk | Some m -> _Meta m (Array.map (scope ?find_sym (k + 1) md ss env) ts)) | (P_Meta(_), _) -> fatal t.pos "Metavariables are not allowed here." | (P_Patt(id,ts), (M_LHS(d) | M_SearchPatt(_,d))) -> (* Check that [ts] are variables. *) let scope_var t = match unfold (Bindlib.unbox (scope ?find_sym (k+1) md ss env t)) with | Vari(x) -> x | _ -> fatal t.pos "Only bound variables are allowed in the \ environment of pattern variables." in let ts = match ts with | None -> if env = [] then [||] (* $M stands for $M[] *) else fatal t.pos "Missing square brackets under binder." | Some ts -> let vs = Array.map scope_var ts in (* Check that [vs] are distinct variables. *) for i = 0 to Array.length vs - 2 do for j = i + 1 to Array.length vs - 1 do if Bindlib.eq_vars vs.(i) vs.(j) then fatal ts.(j).pos "Variable %a appears more than once \ in the environment of a pattern variable." var vs.(j) done done; Array.map _Vari vs in begin match id with | None when List.length env = Array.length ts -> wrn t.pos "Pattern [%a] could be replaced by [_]." Pretty.term t; | Some {elt=id;pos} when not (List.mem id d.m_lhs_in_env) -> if List.length env = Array.length ts then wrn pos "Pattern variable %s can be replaced by a '_'." id else wrn pos "Pattern variable %s doesn't need to be named." id | _ -> () end; fresh_patt d (Option.map (fun id -> id.elt) id) ts | (P_Patt(id,ts), M_URHS(r)) -> let x = match id with | None -> fatal t.pos "Wildcard pattern not allowed in the right \ hand-side of a unification rule." | Some {elt=id;_} -> (* Search in variables declared in LHS. *) try Hashtbl.find r.m_urhs_data id with Not_found -> (* Search in variables already declared in RHS. *) try List.assoc id r.m_urhs_xvars with Not_found -> let name = string_of_int r.m_urhs_vars_nb in let x = new_tevar name in r.m_urhs_vars_nb <- r.m_urhs_vars_nb + 1; r.m_urhs_xvars <- (id, x) :: r.m_urhs_xvars; x in let ts = match ts with | None -> [||] (* $M stands for $M[] *) | Some ts -> Array.map (scope ?find_sym (k+1) md ss env) ts in _TEnv (_TE_Vari x) ts | (P_Patt(id,ts), M_RHS(r)) -> let x = match id with | None -> fatal t.pos "Wildcard pattern not allowed in a RHS." | Some(id) -> (* Search in variables declared in LHS. *) try Hashtbl.find r.m_rhs_data id.elt with Not_found -> fatal t.pos "Variable must be in LHS." in let ts = match ts with | None -> [||] (* $M stands for $M[] *) | Some ts -> Array.map (scope ?find_sym (k+1) md ss env) ts in _TEnv (_TE_Vari x) ts | (P_Patt(_,_), _) -> fatal t.pos "Pattern variables are only allowed in rewriting rules." | (P_Appl(_,_), _) -> assert false (* Unreachable. *) | (P_Arro(_,_), M_Patt) -> fatal t.pos "Arrows are not allowed in patterns." | (P_Arro(a,b), _) -> _Impl (scope ?find_sym ~typ:true (k+1) md ss env a) (scope ?find_sym ~typ:true (k+1) md ss env b) | (P_Abst(_,_), M_Patt) -> fatal t.pos "Abstractions are not allowed in patterns." | (P_Abst(xs,t), _) -> scope_binder ?find_sym k md ss _Abst env xs (Some(t)) | (P_Prod(_,_), M_Patt) -> fatal t.pos "Dependent products are not allowed in patterns." | (P_Prod(xs,b), _) -> scope_binder ?find_sym ~typ:true k md ss _Prod env xs (Some b) | (P_LLet(x,xs,a,t,u), (M_Term _|M_URHS _|M_RHS _|M_SearchPatt _)) -> let a = scope_binder ?find_sym ~typ:true (k+1) md ss _Prod env xs a in let t = scope_binder ?find_sym (k+1) md ss _Abst env xs (Some(t)) in let v = new_tvar x.elt in let u = scope ?find_sym ~typ (k+1) md ss (Env.add v a (Some t) env) u in if not (Bindlib.occur v u) then wrn x.pos "Useless let-binding (%s is not bound)." x.elt; _LLet a t (Bindlib.bind_var v u) | (P_LLet(_), M_LHS(_)) -> fatal t.pos "Let-bindings are not allowed in a LHS." | (P_LLet(_), M_Patt) -> fatal t.pos "Let-bindings are not allowed in patterns." (* Evade the addition of implicit arguments inside the wrap *) | (P_Wrap ({ elt = (P_Iden _ | P_Abst _); _ } as id), _) -> scope_head ?find_sym ~typ (k+1) md ss env id | (P_Wrap t, _) -> scope ?find_sym ~typ (k+1) md ss env t | (P_Expl(_), _) -> fatal t.pos "Explicit argument not allowed here." let scope = let open Stdlib in let r = ref _Kind in fun ?find_sym ?(typ=false) k md ss env t -> Debug.(record_time Scoping (fun () -> r := scope ?find_sym ~typ k md ss env t)); !r (** [scope_term ~find_sym ~typ ~mok prv ss env t] scopes [t] in mode [M_Term] with [m_term_prv] set to [prv], and [m_term_meta_of_key] set to [mok] (which defaults to the constant function equal to [None]). *) let scope_term : ?find_sym:find_sym -> ?typ:bool -> ?mok:(int -> meta option) -> bool -> sig_state -> env -> p_term -> term = fun ?find_sym ?(typ=false) ?(mok=fun _ -> None) m_term_prv ss env t -> let md = M_Term {m_term_meta_of_key=mok; m_term_prv} in Bindlib.unbox (scope ?find_sym ~typ 0 md ss env t) (** [scope_search_pattern ~find_sym ~typ prv ss env t] scopes [t] in mode [M_SearchPatt] with [m_term_meta_of_key] set to [mok] (which defaults to the constant function equal to [None]). *) let scope_search_pattern : ?find_sym:find_sym -> ?typ:bool -> ?mok:(int -> meta option) -> sig_state -> env -> p_term -> term = fun ?find_sym ?(typ=false) ?(mok=fun _ -> None) ss env t -> let md = M_SearchPatt(mok,{m_lhs_prv = true ; m_lhs_indices = Hashtbl.create 7 ; m_lhs_arities = Hashtbl.create 7 ; m_lhs_names = Hashtbl.create 7 ; m_lhs_size = 0 ; m_lhs_in_env = [] }) in Bindlib.unbox (scope ?find_sym ~typ 0 md ss env t) (** [patt_vars t] returns a couple [(pvs,nl)]. The first compoment [pvs] is an association list giving the arity of all the “pattern variables” appearing in the parser-level term [t]. The second component [nl] contains the names of the “pattern variables” that appear non-linearly. If a given “pattern variable” occurs with different arities the program fails gracefully. *) let patt_vars : p_term -> (string * int) list * string list = let rec patt_vars acc t = match t.elt with | P_Type -> acc | P_Iden(_) -> acc | P_Wild -> acc | P_Meta(_,ts) -> Array.fold_left patt_vars acc ts | P_Patt(id,ts) -> add_patt acc id ts | P_Appl(t,u) -> patt_vars (patt_vars acc t) u | P_Arro(a,b) -> patt_vars (patt_vars acc a) b | P_Abst(args,t) -> patt_vars (patt_vars_args acc args) t | P_Prod(args,b) -> patt_vars (patt_vars_args acc args) b | P_LLet(_,args,a,t,u) -> let pvs = patt_vars (patt_vars (patt_vars_args acc args) t) u in begin match a with | None -> pvs | Some(a) -> patt_vars pvs a end | P_NLit(_) -> acc | P_Wrap(t) -> patt_vars acc t | P_Expl(t) -> patt_vars acc t and add_patt ((pvs, nl) as acc) id ts = let acc, arity = match ts with | None -> (acc, 0) | Some(ts) -> (Array.fold_left patt_vars acc ts, Array.length ts) in match id with | None -> acc | Some {elt=id;pos} -> begin try if List.assoc id pvs <> arity then fatal pos "Arity mismatch for pattern variable %s." id; if List.mem id nl then acc else (pvs, id::nl) with Not_found -> ((id, arity)::pvs, nl) end and patt_vars_args acc args = match args with | [] -> acc | (_,a,_)::args -> let acc = match a with None -> acc | Some a -> patt_vars acc a in patt_vars_args acc args in patt_vars ([],[]) (** Representation of a rewriting rule prior to SR-checking. *) type pre_rule = { pr_sym : sym (** Head symbol of the LHS. *) ; pr_lhs : term list (** Arguments of the LHS. *) ; pr_vars : term_env Bindlib.mvar (** Pattern variables that appear in the RHS. The last [pr_xvars_nb] variables do not appear in the LHS. *) ; pr_rhs : tbox (** Body of the RHS, should only be unboxed once. *) ; pr_names : (int, string) Hashtbl.t (** Gives the original name (if any) of pattern variable at given index. *) ; pr_arities : int array (** Gives the arity of all the pattern variables in field [pr_vars]. *) ; pr_xvars_nb : int (** Number of variables that appear in the RHS but not in the LHS. *) } (** [rule_of_pre_rule r] converts a pre-rewrite rule into a rewrite rule. *) let rule_of_pre_rule : pre_rule loc -> rule = fun { elt = pr; pos = rule_pos } -> let {pr_lhs; pr_vars; pr_rhs; pr_arities; pr_xvars_nb; _} = pr in { lhs = pr_lhs ; rhs = Bindlib.(unbox (bind_mvar pr_vars pr_rhs)) ; arity = List.length pr_lhs ; arities = pr_arities ; vars = pr_vars ; xvars_nb = pr_xvars_nb ; rule_pos } (** [scope_rule ~find_sym ur ss r] turns a parser-level rewriting rule [r], or a unification rule if [ur] is true, into a pre-rewriting rule. *) let scope_rule : ?find_sym:find_sym -> bool -> sig_state -> p_rule -> pre_rule loc = fun ?(find_sym=Sig_state.find_sym) ur ss { elt = (p_lhs, p_rhs); pos } -> (* Compute the set of pattern variables on both sides. *) let (pvs_lhs, nl) = patt_vars p_lhs in (* NOTE to reject non-left-linear rules check [nl = []] here. *) let (pvs_rhs, _ ) = patt_vars p_rhs in (* Check that pattern variables of RHS that are in the LHS have the right arity. *) let check_arity (m,i) = try let j = List.assoc m pvs_lhs in if i <> j then fatal p_lhs.pos "Arity mismatch for %s." m with Not_found -> () in List.iter check_arity pvs_rhs; (* [get_root t] returns the symbol at the root of the p_term [t]. *) let rec get_root t = get_root_after_pratt (Pratt.parse ~find_sym ss [] t) and get_root_after_pratt t = match t.elt with | P_Iden(qid,_) -> find_sym ~prt:true ~prv:true ss qid | P_Appl(t, _) -> get_root_after_pratt t | P_Wrap(t) -> get_root t | _ -> fatal p_lhs.pos "Rule left hand-side not headed by a function symbol." in (* Check that the LHS is headed by a function symbol that is definable and not protected. *) let pr_sym = get_root p_lhs in if is_constant pr_sym then fatal p_lhs.pos "Symbol %s has been declared constant, it cannot be used as the \ head of a rewrite rule LHS." pr_sym.sym_name; if Timed.(!(pr_sym.sym_opaq) || (!(pr_sym.sym_def) <> None)) then fatal p_lhs.pos "No rewriting rule can be added on an opaque symbol \ or a symbol already defined with ≔"; if pr_sym.sym_expo = Protec && ss.signature.sign_path <> pr_sym.sym_path then fatal p_lhs.pos "Cannot define rules on foreign protected symbols."; (* Scope the LHS and get the reserved index for named pattern variables. *) let (pr_lhs, lhs_indices, lhs_arities, pr_names, lhs_size) = let mode = M_LHS{ m_lhs_prv = is_private pr_sym ; m_lhs_indices = Hashtbl.create 7 ; m_lhs_arities = Hashtbl.create 7 ; m_lhs_names = Hashtbl.create 7 ; m_lhs_size = 0 ; m_lhs_in_env = nl @ List.map fst pvs_rhs } in let pr_lhs = scope ~find_sym 0 mode ss Env.empty p_lhs in match mode with | M_LHS{ m_lhs_indices; m_lhs_names; m_lhs_size; m_lhs_arities; _} -> let pr_lhs = snd (get_args (Bindlib.unbox pr_lhs)) in (pr_lhs, m_lhs_indices, m_lhs_arities, m_lhs_names, m_lhs_size) | _ -> assert false in (* Create the pattern variables that can be bound in the RHS. *) let pr_vars = Array.init lhs_size (fun i -> new_tevar (string_of_int i)) in let mode = let htbl_vars = Hashtbl.create (Hashtbl.length lhs_indices) in let fn k i = Hashtbl.add htbl_vars k pr_vars.(i) in Hashtbl.iter fn lhs_indices; if ur then M_URHS{ m_urhs_data = htbl_vars ; m_urhs_vars_nb = Array.length pr_vars ; m_urhs_xvars = [] } else M_RHS{ m_rhs_prv = is_private pr_sym; m_rhs_data = htbl_vars; m_rhs_new_metas = new_problem() } in let pr_rhs = scope ~find_sym 0 mode ss Env.empty p_rhs in let prerule = (* We put everything together to build the pre-rule. *) let pr_arities = let f i = try Hashtbl.find lhs_arities i with Not_found -> assert false (* Unreachable. *) in Array.init lhs_size f in if ur then (* Unification rule. *) (* We scope the RHS and retrieve variables not occurring in the LHS. *) let xvars = match mode with | M_URHS{m_urhs_xvars;_} -> m_urhs_xvars | _ -> assert false (* Guarded by the [if ur] *) in (* Add RHS-only variables to [pr_vars] and get index of the first one. *) let (pr_vars, pr_xvars_nb) = (* If there is no variable introduced in RHS, do nothing (typically while scoping regular rewriting rules.) *) if Stdlib.(xvars = []) then (pr_vars, 0) else let xvars = Array.of_list (List.map snd xvars) in (Array.append pr_vars xvars, Array.length xvars) in (* We put everything together to build the pre-rule. *) { pr_sym ; pr_lhs ; pr_vars ; pr_rhs ; pr_arities ; pr_names ; pr_xvars_nb } else (* Rewrite rule. *) { pr_sym ; pr_lhs ; pr_vars ; pr_rhs ; pr_arities ; pr_names ; pr_xvars_nb=0 } in Pos.make pos prerule (** [scope_pattern ss env t] turns a parser-level term [t] into an actual term in mode [M_Patt], i.e. as a selection pattern in a rewrite tactic. *) let scope_pattern : sig_state -> env -> p_term -> term = fun ss env t -> Bindlib.unbox (scope 0 M_Patt ss env t) (** [scope_rw_patt ss env s] scopes the parser-level rewrite tactic specification [s] into an actual rewrite specification. *) let scope_rw_patt : sig_state -> env -> p_rw_patt -> (term, tbinder) rw_patt = fun ss env s -> match s.elt with | Rw_Term(t) -> Rw_Term(scope_pattern ss env t) | Rw_InTerm(t) -> Rw_InTerm(scope_pattern ss env t) | Rw_InIdInTerm(x,t) -> let v = new_tvar x.elt in let t = scope_pattern ss ((x.elt,(v, _Kind, None))::env) t in Rw_InIdInTerm(bind v lift_not_canonical t) | Rw_IdInTerm(x,t) -> let v = new_tvar x.elt in let t = scope_pattern ss ((x.elt,(v, _Kind, None))::env) t in Rw_IdInTerm(bind v lift_not_canonical t) | Rw_TermInIdInTerm(u,(x,t)) -> let u = scope_pattern ss env u in let v = new_tvar x.elt in let t = scope_pattern ss ((x.elt,(v, _Kind, None))::env) t in Rw_TermInIdInTerm(u, bind v lift_not_canonical t) | Rw_TermAsIdInTerm(u,(x,t)) -> let u = scope_pattern ss env u in let v = new_tvar x.elt in let t = scope_pattern ss ((x.elt,(v, _Kind, None))::env) t in Rw_TermAsIdInTerm(u, bind v lift_not_canonical t)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>