package lambdapi
Proof assistant for the λΠ-calculus modulo rewriting
Install
Dune Dependency
Authors
Maintainers
Sources
lambdapi-2.6.0.tbz
sha256=d01e5f13db2eaba6e4fe330667149e0059d4886c651ff9d6b672db2dfc9765ed
sha512=33b68c972aca37985ed73c527076198e7d4961c7e27c89cdabfe4d1cff97cd41ccfb85ae9499eb98ad9a0aefd920bc55555df6393fc441ac2429e4d99cddafa8
doc/src/lambdapi.handle/query.ml.html
Source file query.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
(** Handling of queries. *) open Common open Error open Pos open Parsing open Syntax open Core open Term open Print open Proof open Lplib open Base open Timed let infer : Pos.popt -> problem -> ctxt -> term -> term * term = fun pos p ctx t -> match Infer.infer_noexn p ctx t with | None -> fatal pos "%a is not typable." term t | Some (t, a) -> if Unif.solve_noexn p then begin if !p.unsolved = [] then (t, a) else (List.iter (wrn pos "Cannot solve %a." constr) !p.unsolved; fatal pos "Failed to infer the type of %a." term t) end else fatal pos "%a is not typable." term t let check : Pos.popt -> problem -> ctxt -> term -> term -> term = fun pos p ctx t a -> let die () = fatal pos "[%a] does not have type [%a]." term t term a in match Infer.check_noexn p ctx t a with | Some t -> if Unif.solve_noexn p then begin if !p.unsolved = [] then t else (List.iter (wrn pos "Cannot solve %a." constr) !p.unsolved; die ()) end else die () | None -> die () let check_sort : Pos.popt -> problem -> ctxt -> term -> term * term = fun pos p ctx t -> match Infer.check_sort_noexn p ctx t with | None -> fatal pos "[%a] is not typable by a sort." term t | Some (t,s) -> if Unif.solve_noexn p then begin if !p.unsolved = [] then (t, s) else (List.iter (wrn pos "Cannot solve %a." constr) !p.unsolved; fatal pos "Failed to check that [%a] is typable by a sort." term s) end else fatal pos "[%a] is not typable by a sort." term t (** Result of query displayed on hover in the editor. *) type result = (unit -> string) option (** [return pp x] prints [x] using [pp] on [Stdlib.(!out_fmt)] at verbose level 1 and returns a function for printing [x] on a string using [pp]. *) let return : 'a pp -> 'a -> result = fun pp x -> Console.out 1 "%a" pp x; Some (fun () -> Format.asprintf "%a" pp x) (** [handle_query ss ps q] *) let handle : Sig_state.t -> proof_state option -> p_query -> result = fun ss ps {elt;pos} -> match elt with | P_query_debug(e,s) -> Logger.set_debug e s; Console.out 1 "debug %s%s" (if e then "+" else "-") s; None | P_query_verbose(i) -> let i = try int_of_string i with Failure _ -> fatal pos "Too big number (max is %d)" max_int in if i < 0 then fatal pos "Negative number"; if Timed.(!Console.verbose) = 0 then (Timed.(Console.verbose := i); Console.out 1 "verbose %i" i) else (Console.out 1 "verbose %i" i; Timed.(Console.verbose := i)); None | P_query_flag(id,b) -> (try Console.set_flag id b with Not_found -> fatal pos "Unknown flag \"%s\"." id); Console.out 1 "flag %s %s" id (if b then "on" else "off"); None | P_query_prover(s) -> Timed.(Why3_tactic.default_prover := s); None | P_query_prover_timeout(n) -> let n = try int_of_string n with Failure _ -> fatal pos "Too big number (max is %d)" max_int in if n < 0 then fatal pos "Negative number"; Timed.(Why3_tactic.timeout := n); None | P_query_print(None) -> begin match ps with | None -> fatal pos "Not in a proof." | Some ps -> return Proof.goals ps end | P_query_print(Some qid) -> let sym_info ppf s = let open Timed in (* Function to print a definition. *) let def ppf = Option.iter (out ppf "@ ≔ %a" term) in (* Function to print a notation *) let notation ppf s = Option.iter (out ppf "notation %a %a;@." sym s (notation float)) (notation_of s) in (* Function to print rules. *) let rules ppf s = match !(s.sym_rules) with | [] -> () | r::rs -> let rule ppf r = sym_rule ppf (s,r) in let with_rule ppf r = out ppf "@.with %a" rule r in out ppf "rule %a%a;@." rule r (List.pp with_rule "") rs in (* Function to print a symbol declaration. *) let decl ppf s = out ppf "%a%a%asymbol %a : %a%a;@.%a%a" expo s.sym_expo prop s.sym_prop match_strat s.sym_mstrat sym s prod (!(s.sym_type), s.sym_impl) def !(s.sym_def) notation s rules s in (* Function to print constructors and the induction principle if [qid] is an inductive type. *) let ind ppf s = let open Sign in (* get the signature of [s] *) let sign = try Path.Map.find s.sym_path Timed.(!loaded) with Not_found -> assert false in try let ind = SymMap.find s Timed.(!(sign.sign_ind)) in List.pp decl "" ppf ind.ind_cons; decl ppf ind.ind_prop with Not_found -> () in if s == Unif_rule.equiv || s == Coercion.coerce then rules ppf s else (decl ppf s; ind ppf s) in return sym_info (Sig_state.find_sym ~prt:true ~prv:true ss qid) | P_query_proofterm -> (match ps with | None -> fatal pos "Not in a proof" | Some ps -> match ps.proof_term with | Some m -> return term (mk_Meta(m,[||])) | None -> fatal pos "Not in a definition") | _ -> let env = Proof.focus_env ps in let mok = match ps with | None -> fun _ -> None | Some ps -> Proof.meta_of_key ps in let scope ?(typ=false) = Scope.scope_term ~typ ~mok true ss env in let ctxt = Env.to_ctxt env in let p = new_problem() in match elt with | P_query_search s -> return string (Tool.Indexing.search_cmd_txt s) | P_query_debug(_,_) | P_query_verbose(_) | P_query_flag(_,_) | P_query_prover(_) | P_query_prover_timeout(_) | P_query_print(_) | P_query_proofterm -> assert false (* already done *) | P_query_assert(must_fail, P_assert_typing(pt,pa)) -> let t = scope pt and a = scope ~typ:true pa in Console.out 2 "assertion: it is %b that %a" (not must_fail) typing (ctxt, t, a); (* Check that [a] is typable by a sort. *) let (a, _) = check_sort pos p ctxt a in let result = try ignore (check pos p ctxt t a); true with Fatal _ -> false in if result = must_fail then fatal pos "Assertion failed."; None | P_query_assert(must_fail, P_assert_conv(pt,pu)) -> let t = scope pt and u = scope pu in Console.out 2 "assertion: it is %b that %a" (not must_fail) constr (ctxt, t, u); (* Check that [t] is typable. *) let (t, a) = infer pt.pos p ctxt t in (* Check that [u] is typable. *) let (u, b) = infer pu.pos p ctxt u in (* Check that [t] and [u] have the same type. *) p := {!p with to_solve = (ctxt,a,b)::!p.to_solve}; if Unif.solve_noexn p then if !p.unsolved = [] then begin if Eval.eq_modulo ctxt t u = must_fail then fatal pos "Assertion failed." end else begin List.iter (wrn pos "Cannot solve [%a]." constr) !p.unsolved; fatal pos "[%a] has type [%a],@ [%a] has type [%a].@.\ Those two types are not unifiable." term t term a term u term b end else fatal pos "[%a] has type [%a],@ [%a] has type [%a].@.\ Those two types are not unifiable." term t term a term u term b; None | P_query_infer(pt, cfg) -> let t = scope pt in return term (Eval.eval cfg ctxt (snd (infer pt.pos p ctxt t))) | P_query_normalize(pt, cfg) -> let t = scope pt in let t, _ = infer pt.pos p ctxt t in return term (Eval.eval cfg ctxt t)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>