package lambdapi
Proof assistant for the λΠ-calculus modulo rewriting
Install
Dune Dependency
Authors
Maintainers
Sources
lambdapi-2.6.0.tbz
sha256=d01e5f13db2eaba6e4fe330667149e0059d4886c651ff9d6b672db2dfc9765ed
sha512=33b68c972aca37985ed73c527076198e7d4961c7e27c89cdabfe4d1cff97cd41ccfb85ae9499eb98ad9a0aefd920bc55555df6393fc441ac2429e4d99cddafa8
doc/src/lambdapi.core/unif.ml.html
Source file unif.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
(** Solving unification constraints. *) open Lplib open Color open Timed open Common open Error open Debug open Term open LibTerm open Print (** Logging function for unification. *) let log = Logger.make 'u' "unif" "unification" let log = log.pp (** Given a meta [m] of type [Πx1:a1,..,Πxn:an,b], [set_to_prod p m] sets [m] to a product term of the form [Πy:m1[x1;..;xn],m2[x1;..;xn;y]] with [m1] and [m2] fresh metavariables, and adds these metavariables to [p]. *) let set_to_prod : problem -> meta -> unit = fun p m -> let n = m.meta_arity in let env, s = Env.of_prod_nth [] n !(m.meta_type) in let vs = Env.vars env in let xs = Array.map _Vari vs in (* domain *) let u1 = Env.to_prod env _Type in let m1 = LibMeta.fresh p u1 n in let a = _Meta m1 xs in (* codomain *) let y = new_tvar "y" in let env' = Env.add y (_Meta m1 xs) None env in let u2 = Env.to_prod env' (lift s) in let m2 = LibMeta.fresh p u2 (n+1) in let b = Bindlib.bind_var y (_Meta m2 (Array.append xs [|_Vari y|])) in (* result *) let r = _Prod a b in if Logger.log_enabled () then log (red "%a ≔ %a") meta m term (Bindlib.unbox r); LibMeta.set p m (Bindlib.unbox (Bindlib.bind_mvar vs r)) (** [type_app c a ts] returns [Some u] where [u] is a type of [add_args x ts] in context [c] where [x] is any term of type [a] if [x] can be applied to at least [List.length ts] arguments, and [None] otherwise. *) let rec type_app : ctxt -> term -> term list -> term option = fun c a ts -> match a, ts with | _, [] -> Some a | Prod(_,b), t::ts -> type_app c (Bindlib.subst b t) ts | LLet(_,d,b), t::ts -> assert (Eval.pure_eq_modulo c d t); type_app c (Bindlib.subst b d) ts | _ -> match Eval.whnf c a, ts with | Prod(_,b), t::ts -> type_app c (Bindlib.subst b t) ts | _ -> None (** [add_constr p c] adds the constraint [c] into [p.to_solve]. *) let add_constr : problem -> constr -> unit = fun p c -> if Logger.log_enabled () then log (mag "add %a") constr c; p := {!p with to_solve = c::!p.to_solve} (** [try_unif_rules p c s t] tries to simplify the unification problem [c ⊢ s ≡ t] with the user-defined unification rules. *) let try_unif_rules : problem -> ctxt -> term -> term -> bool = fun p c s t -> if Logger.log_enabled () then log "check unif_rules"; let exception No_match in let open Unif_rule in try let rhs = let start = add_args (mk_Symb equiv) [s;t] in let reduced = Eval.whnf c start in if reduced != start then reduced else let start = add_args (mk_Symb equiv) [t;s] in let reduced = Eval.whnf c start in if reduced != start then reduced else raise No_match in (* Refine generated unification problems to replace holes. *) let sanitise (c, t, u) = match Infer.infer_noexn p c t, Infer.infer_noexn p c u with | Some (t, a), Some(u, b) -> add_constr p (c,t,u); add_constr p (c,a,b); (c,t,u) | t', u' -> (* Error reporting *) Error.fatal_msg "@[A unification rule generated the \ ill-typed unification problem@ [%a].@]" Print.constr (c, t, u); if t' = None then Error.fatal_msg "@[Term@ [%a]@ is not typable.@]" term t; if u' = None then Error.fatal_msg "@[Term@ [%a]@ is not typable.@]" term u; Error.fatal_no_pos "Untypable unification problem." in let cs = List.map (fun (t,u) -> sanitise (c,t,u)) (unpack rhs) in if Logger.log_enabled () then log "rewrites to: %a" constrs cs; true with No_match -> if Logger.log_enabled () then log "found no unif_rule"; false (** [instantiable c m ts u] tells whether, in a problem [m[ts]=u], [m] can be instantiated. It does not check whether the instantiation is closed though. *) let instantiable : ctxt -> meta -> term array -> term -> bool = fun c m ts u -> nl_distinct_vars ts <> None && not (LibMeta.occurs m c u) (** [instantiation c m ts u] tells whether, in a problem [m[ts]=u], [m] can be instantiated and returns the corresponding instantiation, simplified. It does not check whether the instantiation is closed though. *) let instantiation : ctxt -> meta -> term array -> term -> tmbinder Bindlib.box option = fun c m ts u -> match nl_distinct_vars ts with | None -> None | Some(vs, map) -> if LibMeta.occurs m c u then None else let u = Eval.simplify c (sym_to_var map u) in Some (Bindlib.bind_mvar vs (lift u)) (** Checking type or not during meta instanciation. *) let do_type_check = Stdlib.ref true (** [instantiate p c m ts u] checks whether, with a constraint [m[ts] ≡ u], [m] can be instantiated and, if so, instantiates it and updates the metavariables of [p]. *) let instantiate : problem -> ctxt -> meta -> term array -> term -> bool = fun p c m ts u -> if Logger.log_enabled () then log "try instantiate"; match instantiation c m ts u with | Some b when Bindlib.is_closed b -> let do_instantiate p = if Logger.log_enabled () then log (red "%a ≔ %a") meta m term u; LibMeta.set p m (Bindlib.unbox b); p := {!p with recompute = true}; true in if Stdlib.(!do_type_check) then begin if Logger.log_enabled () then log "check typing"; let typ_mts = match type_app c !(m.meta_type) (Array.to_list ts) with | Some a -> a | None -> assert false in if Infer.check_noexn p c u typ_mts <> None then do_instantiate p else (if Logger.log_enabled () then log "typing failed"; false) end else do_instantiate p | i -> if Logger.log_enabled () then begin match i with | None -> if LibMeta.occurs m c u then log "occur check failed" else log "arguments are not distinct variables: %a" (Array.pp term "; ") ts | Some _ -> log "not closed" end; false (** [add_to_unsolved p c t1 t2] checks whether [t1] is equivalent to [t2] in context [c]. If not, then it tries to apply unification rules. If no unification rule applies then it adds [(c,t1,t2)] to the unsolved constraints of [p]. *) let add_to_unsolved : problem -> ctxt -> term -> term -> unit = fun p c t1 t2 -> if Eval.pure_eq_modulo c t1 t2 then (if Logger.log_enabled () then log "equivalent terms") else if not (try_unif_rules p c t1 t2) then (if Logger.log_enabled () then log "move to unsolved"; p := {!p with unsolved = (c,t1,t2)::!p.unsolved}) (** [decompose p c ts1 ts2] tries to decompose a problem of the form [h ts1 ≡ h ts2] into the problems [t1 ≡ u1; ..; tn ≡ un], assuming that [ts1 = [t1;..;tn]] and [ts2 = [u1;..;un]]. *) let decompose : problem -> ctxt -> term list -> term list -> unit = fun p c ts1 ts2 -> if Logger.log_enabled () && ts1 <> [] then log "decompose"; List.iter2 (fun a b -> add_constr p (c,a,b)) ts1 ts2 (** For a problem of the form [h1 ≡ h2] with [h1 = m[ts]], [h2 = Πx:_,_] (or the opposite) and [ts] distinct bound variables, [imitate_prod p c m h1 h2 p] instantiates [m] to a product and adds the constraint [h1 ≡ h2] to [p]. *) let imitate_prod : problem -> ctxt -> meta -> term -> term -> unit = fun p c m h1 h2 -> if Logger.log_enabled () then log "imitate_prod %a" meta m; set_to_prod p m; add_constr p (c,h1,h2) (** For a problem [m[vs] ≡ s(ts)] in context [c], where [vs] are distinct variables, [m] is a meta of type [Πy0:a0,..,Πyk-1:ak-1,b] with [k = length vs], [s] is an injective symbol of type [Πx0:b0,..,Πxn-1:bn-1,c] with [n = length ts], [imitate_inj p c m vs us s ts] tries to instantiate [m] by [s(m0[vs],..,mn-1[vs])] where [mi] is a fresh meta of type [Πv0:a0,..,Πvk-1:ak-1{y0=v0,..,yk-2=vk-2}, bi{x0=m0[vs],..,xi-1=mi-1[vs]}]. It returns [true] if it can and [false] otherwise. *) let imitate_inj : problem -> ctxt -> meta -> term array -> term list -> sym -> term list -> bool = fun p c m vs us s ts -> if Logger.log_enabled () then log "imitate_inj %a ≡ %a" term (add_args (mk_Meta(m,vs)) us) term (add_args (mk_Symb s) ts); let exception Cannot_imitate in try if us <> [] || not (is_injective s) || LibMeta.occurs m c (add_args (mk_Symb s) ts) then raise Cannot_imitate; let vars = match distinct_vars c vs with | None -> raise Cannot_imitate | Some vars -> vars in (* Build the environment (yk-1,ak-1{y0=v0,..,yk-2=vk-2});..;(y0,a0). *) let env, _ = Env.of_prod_using c vars !(m.meta_type) in (* Build the term s(m0[vs],..,mn-1[vs]). *) let k = Array.length vars in let t = let rec build i acc t = if i <= 0 then add_args (mk_Symb s) (List.rev acc) else match unfold t with | Prod(a,b) -> let m = LibMeta.fresh p (Env.to_prod env (lift a)) k in let u = mk_Meta (m,vs) in build (i-1) (u::acc) (Bindlib.subst b u) | _ -> raise Cannot_imitate in build (List.length ts) [] !(s.sym_type) in if Logger.log_enabled () then log (red "%a ≔ %a") meta m term t; LibMeta.set p m (binds vars lift t); true with Cannot_imitate | Invalid_argument _ -> false (** [imitate_lam_cond h ts] tells whether [ts] is headed by a variable not occurring in [h]. *) let imitate_lam_cond : term -> term list -> bool = fun h ts -> match ts with | [] -> false | e :: _ -> match unfold e with | Vari x -> not (Bindlib.occur x (lift h)) | _ -> false (** For a problem of the form [Appl(m[ts],[Vari x;_]) ≡ _], where [m] is a metavariable of arity [n] and type [Πx1:a1,..,Πxn:an,t], and [x] does not occur in [m[ts]], instantiate [m] by [λx1:a1,..,λxn:an,λx:a,m1[x1,..,xn,x]] where [m1] is a new metavariable of arity [n+1] and: - either [t = Πx:a,b] and [m1] is of type [Πx1:a1,..,Πxn:an,Πx:a,b] - or we add the problem [t ≡ Πx:m2[x1,..,xn],m3[x1,..,xn,x]] where [m2] is a new metavariable of arity [n] and type [Πx1:a1,..,Πxn:an,TYPE] and [m3] is a new metavariable of arity [n+1] and type [Πx1:a1,..,Πxn:an,Πx:m2[x1,..,xn],TYPE], and do as in the previous case. *) let imitate_lam : problem -> ctxt -> meta -> unit = fun p c m -> if Logger.log_enabled () then log "imitate_lam %a" meta m; let n = m.meta_arity in let env, t = Env.of_prod_nth c n !(m.meta_type) in let of_prod a b = let x,b = LibTerm.unbind_name "x" b in let a = lift a in let env' = Env.add x a None env in x, a, env', lift b in let x, a, env', b = match Eval.whnf c t with | Prod(a,b) -> of_prod a b | Meta(n,ts) as t when nl_distinct_vars ts <> None -> begin set_to_prod p n; match unfold t with | Prod(a,b) -> of_prod a b | _ -> assert false end | _ -> let tm2 = Env.to_prod env _Type in let m2 = LibMeta.fresh p tm2 n in let a = _Meta m2 (Env.to_tbox env) in let x = new_tvar "x" in let env' = Env.add x a None env in let tm3 = Env.to_prod env' _Type in let m3 = LibMeta.fresh p tm3 (n+1) in let b = _Meta m3 (Env.to_tbox env') in let u = Bindlib.unbox (_Prod a (Bindlib.bind_var x b)) in add_constr p (Env.to_ctxt env, u, t); x, a, env', b in let tm1 = Env.to_prod env' b in let m1 = LibMeta.fresh p tm1 (n+1) in let u1 = _Meta m1 (Env.to_tbox env') in let xu1 = _Abst a (Bindlib.bind_var x u1) in let v = Bindlib.bind_mvar (Env.vars env) xu1 in if Logger.log_enabled () then log (red "%a ≔ %a") meta m term (Bindlib.unbox xu1); LibMeta.set p m (Bindlib.unbox v) (** [inverse_opt s ts v] returns [Some(t, inverse s v)] if [ts=[t]], [s] is injective and [inverse s v] does not fail, and [None] otherwise. *) let inverse_opt : sym -> term list -> term -> (term * term) option = fun s ts v -> if Logger.log_enabled () then log "try inverse %a" sym s; try match ts with | [t] when is_injective s -> Some (t, Inverse.inverse s v) | _ -> raise Not_found with Not_found -> if Logger.log_enabled () then log "failed"; None (** Exception raised when a constraint is not solvable. *) exception Unsolvable (** [error t1 t2] @raise Unsolvable. *) let error : term -> term -> 'a = fun t1 t2 -> fatal_msg "@[<hov>%a and %a are not unifiable.@]@." (D.bracket term) t1 (D.bracket term) t2; raise Unsolvable (** [inverse p c t1 s ts1 t2] tries to replace a problem of the form [t1 ≡ t2] with [t1 = s(ts1)] and [ts1=[u]] by [u ≡ inverse s t2], when [s] is injective. *) let inverse : problem -> ctxt -> term -> sym -> term list -> term -> unit = fun p c t1 s ts1 t2 -> match inverse_opt s ts1 t2 with | Some (t, u) -> add_constr p (c,t,u) | _ -> if not (try_unif_rules p c t1 t2) then match unfold t2 with | Prod _ when is_constant s -> error t1 t2 | _ -> if Logger.log_enabled () then log "move to unsolved"; p := {!p with unsolved = (c, t1, t2)::!p.unsolved} (** [sym_sym_whnf p c t1 s1 ts1 t2 s2 ts2 p] handles the case [s1(ts1) = s2(ts2); p] when [s1(ts1)] and [s2(ts2)] are in whnf. *) let sym_sym_whnf : problem -> ctxt -> term -> sym -> term list -> term -> sym -> term list -> unit = fun p c t1 s1 ts1 t2 s2 ts2 -> if s1 == s2 then if is_injective s1 then if List.same_length ts1 ts2 then decompose p c ts1 ts2 else error t1 t2 else add_to_unsolved p c t1 t2 else if is_constant s1 && is_constant s2 then error t1 t2 else match inverse_opt s1 ts1 t2 with | Some (t, u) -> add_constr p (c,t,u) | None -> inverse p c t2 s2 ts2 t1 (** [solve p] tries to simplify the constraints of [p]. @raise [Unsolvable] if it finds a constraint that cannot be satisfied. Otherwise, [p.to_solve] is empty but [p.unsolved] may still contain constraints that could not be simplified. *) let solve : problem -> unit = fun p -> while !p.to_solve <> [] || (!p.recompute && !p.unsolved <> []) do begin log "solve %a" problem p; match !p.to_solve with | [] -> if Logger.log_enabled () then log "recompute"; p := {!p with to_solve = !p.unsolved; unsolved = []; recompute = false} | (c,t1,t2)::to_solve -> (*if Logger.log_enabled () then log "%d constraints" (1 + List.length to_solve);*) (* We remove the first constraint from [p] for not looping. *) p := {!p with to_solve}; (* We first try without normalizing wrt user-defined rules. *) let = [`NoRw; `NoExpand] in let t1 = Eval.whnf ~tags c t1 and t2 = Eval.whnf ~tags c t2 in if Logger.log_enabled () then log (gre "solve %a") constr (c,t1,t2); if Eval.pure_eq_modulo ~tags c t1 t2 then (if Logger.log_enabled () then log "equivalent terms") else let h1, ts1 = get_args t1 and h2, ts2 = get_args t2 in match h1, h2 with | Type, Type | Kind, Kind -> () | Prod(a1,b1), Prod(a2,b2) | Abst(a1,b1), Abst(a2,b2) -> (* [ts1] and [ts2] must be empty because of typing or normalization. *) if Logger.log_enabled () then log "decompose"; add_constr p (c,a1,a2); let (x,b1,b2) = Bindlib.unbind2 b1 b2 in let c' = (x,a1,None)::c in add_constr p (c',b1,b2); | Vari x1, Vari x2 when Bindlib.eq_vars x1 x2 -> if List.same_length ts1 ts2 then decompose p c ts1 ts2 else error t1 t2 | Type, (Kind|Prod _|Symb _|Vari _|Abst _) | Kind, (Type|Prod _|Symb _|Vari _|Abst _) | Prod _, (Type|Kind|Vari _) | Vari _, (Type|Kind|Vari _|Prod _) -> error t1 t2 | ((Vari _|Abst _|Prod _), Symb s | Symb s, (Type|Kind|Vari _|Abst _|Prod _)) when s.sym_prop = Const -> error t1 t2 | Symb s1, Symb s2 when s1 == s2 && is_injective s1 && List.same_length ts1 ts2 -> decompose p c ts1 ts2 | Symb s1, Symb s2 when s1 != s2 && is_constant s1 && is_constant s2 -> error t1 t2 (*TODO try to factorize calls to instantiate/instantiable/nl_distinct_vars. *) | Meta(m,ts), _ when ts1 = [] && instantiate p c m ts t2 -> () | _, Meta(m,ts) when ts2 = [] && instantiate p c m ts t1 -> () | Meta(m,ts), Prod _ when ts1 = [] && instantiable c m ts h2 -> imitate_prod p c m h1 h2 | Prod _, Meta(m,ts) when ts2 = [] && instantiable c m ts h1 -> imitate_prod p c m h1 h2 | Meta(m,ts), _ when imitate_lam_cond h1 ts1 && nl_distinct_vars ts <> None -> imitate_lam p c m; add_constr p (c,t1,t2) | _, Meta(m,ts) when imitate_lam_cond h2 ts2 && nl_distinct_vars ts <> None -> imitate_lam p c m; add_constr p (c,t1,t2) | _ -> (* We normalize wrt user-defined rules and try again. *) if Logger.log_enabled () then log "whnf"; let t1 = Eval.whnf c t1 and t2 = Eval.whnf c t2 in if Logger.log_enabled () then log (gre "solve %a") constr (c,t1,t2); let h1, ts1 = get_args t1 and h2, ts2 = get_args t2 in match h1, h2 with | Type, Type | Kind, Kind -> () | Prod(a1,b1), Prod(a2,b2) | Abst(a1,b1), Abst(a2,b2) -> (* [ts1] and [ts2] must be empty because of typing or normalization. *) if Logger.log_enabled () then log "decompose"; add_constr p (c,a1,a2); let (x,b1,b2) = Bindlib.unbind2 b1 b2 in let c' = (x,a1,None)::c in add_constr p (c',b1,b2) | Vari x1, Vari x2 when Bindlib.eq_vars x1 x2 -> if List.same_length ts1 ts2 then decompose p c ts1 ts2 else error t1 t2 | Type, (Kind|Prod _|Symb _|Vari _|Abst _) | Kind, (Type|Prod _|Symb _|Vari _|Abst _) | Prod _, (Type|Kind|Vari _|Abst _) | Vari _, (Type|Kind|Vari _|Prod _) | Abst _, (Type|Kind|Prod _) -> error t1 t2 | ((Vari _|Abst _|Prod _), Symb s | Symb s, (Type|Kind|Vari _|Abst _|Prod _)) when s.sym_prop = Const -> error t1 t2 | Symb s1, Symb s2 -> sym_sym_whnf p c t1 s1 ts1 t2 s2 ts2 (*TODO try to factorize calls to instantiate/instantiable/nl_distinct_vars. *) | Meta(m,ts), _ when ts1 = [] && instantiate p c m ts t2 -> () | _, Meta(m,ts) when ts2 = [] && instantiate p c m ts t1 -> () | Meta(m,ts), Prod _ when ts1 = [] && instantiable c m ts h2 -> imitate_prod p c m h1 h2 | Prod _, Meta(m,ts) when ts2 = [] && instantiable c m ts h1 -> imitate_prod p c m h1 h2 | Meta(m,ts), _ when imitate_lam_cond h1 ts1 && nl_distinct_vars ts <> None -> imitate_lam p c m; add_constr p (c,t1,t2) | _, Meta(m,ts) when imitate_lam_cond h2 ts2 && nl_distinct_vars ts <> None -> imitate_lam p c m; add_constr p (c,t1,t2) | Meta(m,ts), Symb s -> if imitate_inj p c m ts ts1 s ts2 then add_constr p (c,t1,t2) else add_to_unsolved p c t1 t2 | Symb s, Meta(m,ts) -> if imitate_inj p c m ts ts2 s ts1 then add_constr p (c,t1,t2) else add_to_unsolved p c t1 t2 | Meta _, _ | _, Meta _ -> add_to_unsolved p c t1 t2 | Symb s, _ -> inverse p c t1 s ts1 t2 | _, Symb s -> inverse p c t2 s ts2 t1 | _ -> add_to_unsolved p c t1 t2 end done (** [solve_noexn ~type_check p] tries to simplify the constraints of [p]. It returns [false] if it finds a constraint that cannot be satisfied. Otherwise, [p.to_solve] is empty but [p.unsolved] may still contain constraints that could not be simplified. Metavariable instantiations are type-checked only if the optional argument [~type_check] is [true] (default). *) let solve_noexn : ?type_check:bool -> problem -> bool = fun ?(type_check=true) p -> Stdlib.(do_type_check := type_check); if Logger.log_enabled () then log_hndl (Color.blu "solve_noexn %a") problem p; try time_of "solve" (fun () -> solve p; true) with Unsolvable -> false let solve_noexn = let open Stdlib in let r = ref false in fun ?type_check p -> Debug.(record_time Solving (fun () -> r := solve_noexn ?type_check p)); !r
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>