package lambdapi
Proof assistant for the λΠ-calculus modulo rewriting
Install
Dune Dependency
Authors
Maintainers
Sources
lambdapi-2.6.0.tbz
sha256=d01e5f13db2eaba6e4fe330667149e0059d4886c651ff9d6b672db2dfc9765ed
sha512=33b68c972aca37985ed73c527076198e7d4961c7e27c89cdabfe4d1cff97cd41ccfb85ae9499eb98ad9a0aefd920bc55555df6393fc441ac2429e4d99cddafa8
doc/src/lambdapi.core/eval.ml.html
Source file eval.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
(** Evaluation and conversion. *) open Lplib open Extra open Timed open Common open Error open Debug open Term open Print (** The head-structure of a term t is: - λx:_,h if t=λx:a,u and h is the head-structure of u - Π if t=Πx:a,u - h _ if t=uv and h is the head-structure of u - ? if t=?M[t1,..,tn] (and ?M is not instantiated) - t itself otherwise (TYPE, KIND, x, f) A term t is in head-normal form (hnf) if its head-structure is invariant by reduction. A term t is in weak head-normal form (whnf) if it is an abstration or if it is in hnf. In particular, a term in head-normal form is in weak head-normal form. A term t is in strong normal form (snf) if it cannot be reduced further. *) (** Logging function for evaluation. *) let log_eval = Logger.make 'e' "eval" "evaluation" let log_eval = log_eval.pp (** Logging function for equality modulo rewriting. *) let log_conv = Logger.make 'c' "conv" "conversion" let log_conv = log_conv.pp (** Convert modulo eta. *) let eta_equality : bool ref = Console.register_flag "eta_equality" false (** Counter used to preserve physical equality in {!val:whnf}. *) let steps : int Stdlib.ref = Stdlib.ref 0 (** {1 Define reduction functions parametrised by {!whnf}} *) (** [hnf whnf t] computes a hnf of [t] using [whnf]. *) let hnf : (term -> term) -> (term -> term) = fun whnf -> let rec hnf t = match whnf t with | Abst(a,t) -> let x, t = Bindlib.unbind t in mk_Abst(a, bind x lift (hnf t)) | t -> t in hnf (** [snf whnf t] computes a snf of [t] using [whnf]. *) let snf : (term -> term) -> (term -> term) = fun whnf -> let rec snf t = if Logger.log_enabled () then log_eval "snf %a" term t; let h = whnf t in if Logger.log_enabled () then log_eval "whnf %a = %a" term t term h; match h with | Vari _ | Type | Kind | Symb _ -> h | LLet(_,t,b) -> snf (Bindlib.subst b t) | Prod(a,b) -> let x, b = Bindlib.unbind b in mk_Prod(snf a, bind x lift (snf b)) | Abst(a,b) -> let x, b = Bindlib.unbind b in mk_Abst(snf a, bind x lift (snf b)) | Appl(t,u) -> mk_Appl(snf t, snf u) | Meta(m,ts) -> mk_Meta(m, Array.map snf ts) | Patt(i,n,ts) -> mk_Patt(i,n,Array.map snf ts) | Plac _ -> h (* may happen when reducing coercions *) | TEnv(_,_) -> assert false | Wild -> assert false | TRef(_) -> assert false in snf type rw_tag = [ `NoBeta | `NoRw | `NoExpand ] (** Configuration of the reduction engine. *) module Config = struct type t = { context : ctxt (** Context of the reduction used for generating metas. *) ; varmap : term VarMap.t (** Variable definitions. *) ; rewrite : bool (** Whether to apply user-defined rewriting rules. *) ; expand_defs : bool (** Whether to expand definitions. *) ; beta : bool (** Whether to beta-normalise *) ; dtree : sym -> dtree (** Retrieves the dtree of a symbol *) } (** [make ?dtree ?rewrite c] creates a new configuration with tags [?rewrite] (being empty if not provided), context [c] and dtree map [?dtree] (defaulting to getting the dtree from the symbol). By default, beta reduction and rewriting is enabled for all symbols. *) let make : ?dtree:(sym -> dtree) -> ?tags:rw_tag list -> ctxt -> t = fun ?(dtree=fun sym -> !(sym.sym_dtree)) ?(=[]) context -> let beta = not @@ List.mem `NoBeta tags in let expand_defs = not @@ List.mem `NoExpand tags in let rewrite = not @@ List.mem `NoRw tags in {context; varmap = Ctxt.to_map context; rewrite; expand_defs; beta; dtree} (** [unfold cfg a] unfolds [a] if it's a variable defined in the configuration [cfg]. *) let rec unfold : t -> term -> term = fun cfg a -> match Term.unfold a with | Vari x as a -> begin match VarMap.find_opt x cfg.varmap with | None -> a | Some v -> unfold cfg v end | a -> a end type config = Config.t (** [eq_alpha a b] tests the equality modulo alpha of [a] and [b]. *) let rec eq_alpha a b = match unfold a, unfold b with | Vari x, Vari y -> Bindlib.eq_vars x y | Type, Type | Kind, Kind -> true | Symb s1, Symb s2 -> s1==s2 | Prod(a1,b1), Prod(a2,b2) | Abst(a1,b1), Abst(a2,b2) -> eq_alpha a1 a2 && let _,b1,b2 = Bindlib.unbind2 b1 b2 in eq_alpha b1 b2 | Appl(a1,b1), Appl(a2,b2) -> eq_alpha a1 a2 && eq_alpha b1 b2 | Meta(m1,a1), Meta(m2,a2) -> m1 == m2 && Array.for_all2 eq_alpha a1 a2 | LLet(a1,t1,u1), LLet(a2,t2,u2) -> eq_alpha a1 a2 && eq_alpha t1 t2 && let _,u1,u2 = Bindlib.unbind2 u1 u2 in eq_alpha u1 u2 | Patt(Some i,_,ts), Patt(Some j,_,us) -> i=j && Array.for_all2 eq_alpha ts us | Patt(None,_,_), _ | _, Patt(None,_,_) -> assert false | TEnv _, _| _, TEnv _ -> assert false | _ -> false (** [eq_modulo whnf a b] tests the convertibility of [a] and [b] using [whnf]. *) let eq_modulo : (config -> term -> term) -> config -> term -> term -> bool = fun whnf -> let rec eq : config -> (term * term) list -> unit = fun cfg l -> match l with | [] -> () | (a,b)::l -> if Logger.log_enabled () then log_conv "eq: %a ≡ %a" term a term b; if eq_alpha a b then eq cfg l else let a = Config.unfold cfg a and b = Config.unfold cfg b in match a, b with | LLet(_,t,u), _ -> let x,u = Bindlib.unbind u in eq {cfg with varmap = VarMap.add x t cfg.varmap} ((u,b)::l) | _, LLet(_,t,u) -> let x,u = Bindlib.unbind u in eq {cfg with varmap = VarMap.add x t cfg.varmap} ((a,u)::l) | Patt(None,_,_), _ | _, Patt(None,_,_) -> assert false | Patt(Some i,_,ts), Patt(Some j,_,us) -> if i=j then eq cfg (List.add_array2 ts us l) else raise Exit | TEnv _, _| _, TEnv _ -> assert false | Kind, Kind | Type, Type -> eq cfg l | Vari x, Vari y -> if Bindlib.eq_vars x y then eq cfg l else raise Exit | Symb f, Symb g when f == g -> eq cfg l | Prod(a1,b1), Prod(a2,b2) | Abst(a1,b1), Abst(a2,b2) -> let _,b1,b2 = Bindlib.unbind2 b1 b2 in eq cfg ((a1,a2)::(b1,b2)::l) | Abst _, (Type|Kind|Prod _) | (Type|Kind|Prod _), Abst _ -> raise Exit | (Abst(_ ,b), t | t, Abst(_ ,b)) when !eta_equality -> let x,b = Bindlib.unbind b in eq cfg ((b, mk_Appl(t, mk_Vari x))::l) | Meta(m1,a1), Meta(m2,a2) when m1 == m2 -> eq cfg (if a1 == a2 then l else List.add_array2 a1 a2 l) (* cases of failure *) | Kind, _ | _, Kind | Type, _ | _, Type -> raise Exit | ((Symb f, (Vari _|Meta _|Prod _|Abst _)) | ((Vari _|Meta _|Prod _|Abst _), Symb f)) when is_constant f -> raise Exit | _ -> let a = whnf cfg a and b = whnf cfg b in if Logger.log_enabled () then log_conv "whnf: %a ≡ %a" term a term b; match a, b with | Patt(None,_,_), _ | _, Patt(None,_,_) -> assert false | Patt(Some i,_,ts), Patt(Some j,_,us) -> if i=j then eq cfg (List.add_array2 ts us l) else raise Exit | TEnv _, _| _, TEnv _ -> assert false | Kind, Kind | Type, Type -> eq cfg l | Vari x, Vari y when Bindlib.eq_vars x y -> eq cfg l | Symb f, Symb g when f == g -> eq cfg l | Prod(a1,b1), Prod(a2,b2) | Abst(a1,b1), Abst(a2,b2) -> let _,b1,b2 = Bindlib.unbind2 b1 b2 in eq cfg ((a1,a2)::(b1,b2)::l) | (Abst(_ ,b), t | t, Abst(_ ,b)) when !eta_equality -> let x,b = Bindlib.unbind b in eq cfg ((b, mk_Appl(t, mk_Vari x))::l) | Meta(m1,a1), Meta(m2,a2) when m1 == m2 -> eq cfg (if a1 == a2 then l else List.add_array2 a1 a2 l) | Appl(t1,u1), Appl(t2,u2) -> eq cfg ((u1,u2)::(t1,t2)::l) | _ -> raise Exit in fun cfg a b -> if Logger.log_enabled () then log_conv "eq_modulo: %a ≡ %a" term a term b; try eq cfg [(a,b)]; true with Exit -> if Logger.log_enabled () then log_conv "failed"; false (** Abstract machine stack. *) type stack = term list (** [to_tref t] transforms {!constructor:Appl} into {!constructor:TRef}. *) let to_tref : term -> term = fun t -> match t with | Appl _ -> mk_TRef(ref (Some t)) | Symb s when s.sym_prop <> Const -> mk_TRef(ref (Some t)) | t -> t (** {1 Define the main {!whnf} function that takes a {!config} as argument} *) (** [whnf cfg t] computes a whnf of the term [t] wrt configuration [c]. *) let rec whnf : config -> term -> term = fun cfg t -> (*if Logger.log_enabled () then log_eval "whnf %a" term t;*) let n = Stdlib.(!steps) in let u, stk = whnf_stk cfg t [] in let r = if Stdlib.(!steps) <> n then add_args u stk else unfold t in (*if Logger.log_enabled () then log_eval "whnf %a%a = %a" ctxt cfg.context term t term r;*) r (** [whnf_stk cfg t stk] computes a whnf of [add_args t stk] wrt configuration [c]. *) and whnf_stk : config -> term -> stack -> term * stack = fun cfg t stk -> (*if Logger.log_enabled () then log_eval "whnf_stk %a%a %a" ctxt cfg.context term t (D.list term) stk;*) let t = unfold t in match t, stk with | Appl(f,u), stk -> whnf_stk cfg f (to_tref u::stk) | Abst(_,f), u::stk when cfg.Config.beta -> Stdlib.incr steps; whnf_stk cfg (Bindlib.subst f u) stk | LLet(_,t,u), stk -> Stdlib.incr steps; whnf_stk cfg (Bindlib.subst u t) stk | (Symb s as h, stk) as r -> begin match !(s.sym_def) with | Some t -> if !(s.sym_opaq) || not cfg.Config.expand_defs then r else (Stdlib.incr steps; whnf_stk cfg t stk) | None when not cfg.Config.rewrite -> r | None -> (* If [s] is modulo C or AC, we put its arguments in whnf and reorder them to have a term in AC-canonical form. *) let stk = if is_modulo s then let n = Stdlib.(!steps) in (* We put the arguments in whnf. *) let stk' = List.map (whnf cfg) stk in if Stdlib.(!steps) = n then (* No argument has been reduced. *) stk else (* At least one argument has been reduced. *) (* We put the term in AC-canonical form. *) snd (get_args (add_args h stk')) else stk in match tree_walk cfg (cfg.dtree s) stk with | None -> h, stk | Some (t', stk') -> if Logger.log_enabled () then log_eval "tree_walk %a%a %a = %a %a" ctxt cfg.context term t (D.list term) stk term t' (D.list term) stk'; Stdlib.incr steps; whnf_stk cfg t' stk' end | (Vari x, stk) as r -> begin match VarMap.find_opt x cfg.varmap with | Some v -> Stdlib.incr steps; whnf_stk cfg v stk | None -> r end | r -> r (** {b NOTE} that in {!val:tree_walk} matching with trees involves two collections of terms. 1. The argument stack [stk] of type {!type:stack} which contains the terms that are matched against the decision tree. 2. An array [vars] containing subterms of the argument stack [stk] that are filtered by a pattern variable. These terms may be used for non-linearity or free-variable checks, or may be bound in the RHS. The [bound] array is similar to the [vars] array except that it is used to save terms with free variables. *) (** {b NOTE} in the {!val:tree_walk} function, bound variables involve three elements: 1. a {!constructor:Term.term.Abst} which introduces the bound variable in the term; 2. a {!constructor:Term.term.Vari} which is the bound variable previously introduced; 3. a {!constructor:Tree_type.TC.t.Vari} which is a simplified representation of a variable for trees. *) (** [tree_walk cfg dt stk] tries to apply a rewrite rule by matching the stack [stk] against the decision tree [dt]. The resulting state of the abstract machine is returned in case of success. Even if matching fails, the stack [stk] may be imperatively updated since a reduction step taken in elements of the stack is preserved (this is done using {!constructor:Term.term.TRef}). *) and tree_walk : config -> dtree -> stack -> (term * stack) option = fun cfg tree stk -> let (lazy capacity, lazy tree) = tree in let vars = Array.make capacity mk_Kind in (* dummy terms *) let bound = Array.make capacity TE_None in (* [walk tree stk cursor vars_id id_vars] where [stk] is the stack of terms to match and [cursor] the cursor indicating where to write in the [vars] array described in {!module:Term} as the environment of the RHS during matching. [vars_id] maps the free variables contained in the term to the indexes defined during tree build, and [id_vars] is the inverse mapping of [vars_id]. *) let rec walk tree stk cursor vars_id id_vars = let open Tree_type in match tree with | Fail -> None | Leaf(rhs_subst, (act, xvars)) -> (* Apply the RHS substitution *) (* Allocate an environment where to place terms coming from the pattern variables for the action. *) let env_len = Bindlib.mbinder_arity act in assert (List.length rhs_subst = env_len - xvars); let env = Array.make env_len TE_None in (* Retrieve terms needed in the action from the [vars] array. *) let f (pos, (slot, xs)) = match bound.(pos) with | TE_Vari(_) -> assert false | TE_Some(_) -> env.(slot) <- bound.(pos) | TE_None -> if Array.length xs = 0 then let t = unfold vars.(pos) in let b = Bindlib.raw_mbinder [||] [||] 0 of_tvar (fun _ -> t) in env.(slot) <- TE_Some(b) else let xs = Array.map (fun e -> IntMap.find e id_vars) xs in env.(slot) <- TE_Some(binds xs lift vars.(pos)) in List.iter f rhs_subst; (* Complete the array with fresh meta-variables if needed. *) for i = env_len - xvars to env_len - 1 do let b = Bindlib.raw_mbinder [||] [||] 0 of_tvar (fun _ -> mk_Plac false) in env.(i) <- TE_Some(b) done; Some (Bindlib.msubst act env, stk) | Cond({ok; cond; fail}) -> let next = match cond with | CondNL(i, j) -> if eq_modulo whnf cfg vars.(i) vars.(j) then ok else fail | CondFV(i,xs) -> let allowed = (* Variables that are allowed in the term. *) let fn id = try IntMap.find id id_vars with Not_found -> assert false in Array.map fn xs in let forbidden = (* Term variables forbidden in the term. *) IntMap.filter (fun id _ -> not (Array.mem id xs)) id_vars in (* Ensure there are no variables from [forbidden] in [b]. *) let no_forbidden b = not (IntMap.exists (fun _ x -> Bindlib.occur x b) forbidden) in (* We first attempt to match [vars.(i)] directly. *) let b = Bindlib.bind_mvar allowed (lift vars.(i)) in if no_forbidden b then (bound.(i) <- TE_Some(Bindlib.unbox b); ok) else (* As a last resort we try matching the SNF. *) let b = Bindlib.bind_mvar allowed (lift (snf (whnf cfg) vars.(i))) in if no_forbidden b then (bound.(i) <- TE_Some(Bindlib.unbox b); ok) else fail in walk next stk cursor vars_id id_vars | Eos(l, r) -> let next = if stk = [] then l else r in walk next stk cursor vars_id id_vars | Node({swap; children; store; abstraction; default; product}) -> match List.destruct stk swap with | exception Not_found -> None | (left, examined, right) -> if TCMap.is_empty children && abstraction = None && product = None (* If there is no specialisation tree, try directly default case. *) then let fn t = let cursor = if store then (vars.(cursor) <- examined; cursor + 1) else cursor in let stk = List.reconstruct left [] right in walk t stk cursor vars_id id_vars in Option.bind default fn else let s = Stdlib.(!steps) in let (t, args) = whnf_stk cfg examined [] in let args = if store then List.map to_tref args else args in (* If some reduction has been performed by [whnf_stk] ([steps <> 0]), update the value of [examined] which may be stored into [vars]. *) if Stdlib.(!steps) <> s then begin match examined with | TRef(v) -> v := Some(add_args t args) | _ -> () end; let cursor = if store then (vars.(cursor) <- add_args t args; cursor + 1) else cursor in (* [default ()] carries on the matching on the default branch of the tree. Nothing is added to the stack. *) let default () = let fn d = let stk = List.reconstruct left [] right in walk d stk cursor vars_id id_vars in Option.bind default fn in (* [walk_binder a b id tr] matches on binder [b] of type [a] introducing variable [id] and branching on tree [tr]. The type [a] and [b] substituted are re-inserted in the stack.*) let walk_binder a b id tr = let (bound, body) = Bindlib.unbind b in let vars_id = VarMap.add bound id vars_id in let id_vars = IntMap.add id bound id_vars in let stk = List.reconstruct left (a::body::args) right in walk tr stk cursor vars_id id_vars in match t with | Type -> begin try let matched = TCMap.find TC.Type children in let stk = List.reconstruct left args right in walk matched stk cursor vars_id id_vars with Not_found -> default () end | Symb(s) -> let cons = TC.Symb(s.sym_path, s.sym_name, List.length args) in begin try (* Get the next sub-tree. *) let matched = TCMap.find cons children in (* Re-insert the arguments the symbol is applied to in the stack. *) let stk = List.reconstruct left args right in walk matched stk cursor vars_id id_vars with Not_found -> default () end | Vari(x) -> begin try let id = VarMap.find x vars_id in let matched = TCMap.find (TC.Vari(id)) children in (* Re-insert the arguments the variable is applied to in the stack. *) let stk = List.reconstruct left args right in walk matched stk cursor vars_id id_vars with Not_found -> default () end | Abst(a, b) -> begin match abstraction with | None -> default () | Some(id,tr) -> walk_binder a b id tr end | Prod(a, b) -> begin match product with | None -> default () | Some(id,tr) -> walk_binder a b id tr end | Kind | Patt _ | Meta(_, _) -> default () | Plac _ -> assert false (* Should not appear in typechecked terms. *) | TRef(_) -> assert false (* Should be reduced by [whnf_stk]. *) | Appl(_) -> assert false (* Should be reduced by [whnf_stk]. *) | LLet(_) -> assert false (* Should be reduced by [whnf_stk]. *) | TEnv(_) -> assert false (* Should not appear in terms. *) | Wild -> assert false (* Should not appear in terms. *) in walk tree stk 0 VarMap.empty IntMap.empty (** {1 Define exposed functions} that take optional arguments rather than a config. *) type reducer = ?tags:rw_tag list -> ctxt -> term -> term let time_reducer (f: reducer): reducer = let open Stdlib in let r = ref mk_Kind in fun ? cfg t -> Debug.(record_time Rewriting (fun () -> r := f ?tags cfg t)); !r (** [snf ~dtree c t] computes a snf of [t], unfolding the variables defined in the context [c]. The function [dtree] maps symbols to dtrees. *) let snf : ?dtree:(sym -> dtree) -> reducer = fun ?dtree ? c t -> Stdlib.(steps := 0); let u = snf (whnf (Config.make ?dtree ?tags c)) t in let r = if Stdlib.(!steps = 0) then unfold t else u in (*if Logger.log_enabled () then log_eval "snf %a%a\n= %a" ctxt cfg term t term r;*) r let snf ?dtree = time_reducer (snf ?dtree) (** [hnf c t] computes a hnf of [t], unfolding the variables defined in the context [c], and using user-defined rewrite rules. *) let hnf : reducer = fun ? c t -> Stdlib.(steps := 0); let u = hnf (whnf (Config.make ?tags c)) t in let r = if Stdlib.(!steps = 0) then unfold t else u in (*if Logger.log_enabled () then log_eval "hnf %a%a\n= %a" ctxt cfg term t term r;*) r let hnf = time_reducer hnf (** [eq_modulo c a b] tests the convertibility of [a] and [b] in context [c]. WARNING: may have side effects in TRef's introduced by whnf. *) let eq_modulo : ?tags:rw_tag list -> ctxt -> term -> term -> bool = fun ? c -> eq_modulo whnf (Config.make ?tags c) let eq_modulo = let open Stdlib in let r = ref false in fun ? c t u -> Debug.(record_time Rewriting (fun () -> r := eq_modulo ?tags c t u)); !r (** [pure_eq_modulo c a b] tests the convertibility of [a] and [b] in context [c] with no side effects. *) let pure_eq_modulo : ?tags:rw_tag list -> ctxt -> term -> term -> bool = fun ? c a b -> Timed.pure_test (fun (c,a,b) -> eq_modulo ?tags c a b) (c,a,b) (** [whnf c t] computes a whnf of [t], unfolding the variables defined in the context [c], and using user-defined rewrite rules if [~rewrite]. *) let whnf : reducer = fun ? c t -> Stdlib.(steps := 0); let u = whnf (Config.make ?tags c) t in let r = if Stdlib.(!steps = 0) then unfold t else u in (*if Logger.log_enabled () then log_eval "whnf %a%a\n= %a" ctxt c term t term r;*) r let whnf = time_reducer whnf (** [simplify c t] computes a beta whnf of [t] in context [c] belonging to the set S such that (1) terms of S are in beta whnf normal format, (2) if [t] is a product, then both its domain and codomain are in S. *) let simplify : ctxt -> term -> term = fun c -> let = [`NoRw; `NoExpand ] in let rec simp t = match get_args (whnf ~tags c t) with | Prod(a,b), _ -> let x, b = Bindlib.unbind b in mk_Prod (simp a, bind x lift (simp b)) | h, ts -> add_args_map h (whnf ~tags c) ts in simp let simplify = let open Stdlib in let r = ref mk_Kind in fun c t -> Debug.(record_time Rewriting (fun () -> r := simplify c t)); !r (** If [s] is a non-opaque symbol having a definition, [unfold_sym s t] replaces in [t] all the occurrences of [s] by its definition. *) let unfold_sym : sym -> term -> term = let unfold_sym : sym -> (term list -> term) -> term -> term = fun s unfold_sym_app -> let rec unfold_sym t = let h, args = get_args t in let args = List.map unfold_sym args in match h with | Symb s' when s' == s -> unfold_sym_app args | _ -> let h = match h with | Abst(a,b) -> mk_Abst(unfold_sym a, unfold_sym_binder b) | Prod(a,b) -> mk_Prod(unfold_sym a, unfold_sym_binder b) | Meta(m,ts) -> mk_Meta(m, Array.map unfold_sym ts) | LLet(a,t,u) -> mk_LLet(unfold_sym a, unfold_sym t, unfold_sym_binder u) | _ -> h in add_args h args and unfold_sym_binder b = let x, b = Bindlib.unbind b in bind x lift (unfold_sym b) in unfold_sym in fun s -> if !(s.sym_opaq) then fun t -> t else match !(s.sym_def) with | Some d -> unfold_sym s (add_args d) | None -> match !(s.sym_rules) with | [] -> fun t -> t | _ -> let cfg = Config.make [] and dt = !(s.sym_dtree) in let unfold_sym_app args = match tree_walk cfg dt args with | Some(r,ts) -> add_args r ts | None -> add_args (mk_Symb s) args in unfold_sym s unfold_sym_app (** Dedukti evaluation strategies. *) type strategy = | WHNF (** Reduce to weak head-normal form. *) | HNF (** Reduce to head-normal form. *) | SNF (** Reduce to strong normal form. *) | NONE (** Do nothing. *) type strat = { strategy : strategy (** Evaluation strategy. *) ; steps : int option (** Max number of steps if given. *) } (** [eval cfg c t] evaluates the term [t] in the context [c] according to evaluation configuration [cfg]. *) let eval : strat -> ctxt -> term -> term = fun s c t -> match s.strategy, s.steps with | _, Some 0 | NONE, _ -> t | WHNF, None -> whnf c t | SNF, None -> snf c t | HNF, None -> hnf c t (* TODO implement the rest. *) | _, Some _ -> wrn None "Number of steps not supported."; t
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>