package lambdapi
Proof assistant for the λΠ-calculus modulo rewriting
Install
Dune Dependency
Authors
Maintainers
Sources
lambdapi-2.6.0.tbz
sha256=d01e5f13db2eaba6e4fe330667149e0059d4886c651ff9d6b672db2dfc9765ed
sha512=33b68c972aca37985ed73c527076198e7d4961c7e27c89cdabfe4d1cff97cd41ccfb85ae9499eb98ad9a0aefd920bc55555df6393fc441ac2429e4d99cddafa8
doc/src/lambdapi.handle/rewrite.ml.html
Source file rewrite.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
(** Implementation of the rewrite tactic. *) open Lplib open Timed open Common open Pos open Error open Debug open Core open Term open Print open Proof (** Logging function for the rewrite tactic. *) let log_rewr = Logger.make 'r' "rewr" "the rewrite tactic" let log_rewr = log_rewr.pp (** Equality configuration. *) type eq_config = { symb_P : sym (** Encoding of propositions. *) ; symb_T : sym (** Encoding of types. *) ; symb_eq : sym (** Equality proposition. *) ; symb_eqind : sym (** Induction principle on equality. *) ; symb_refl : sym (** Reflexivity of equality. *) } (** [get_eq_config ss pos] returns the current configuration for equality, used by tactics such as “rewrite” or “reflexivity”. *) let get_eq_config : Sig_state.t -> popt -> eq_config = fun ss pos -> let builtin = Builtin.get ss pos in { symb_P = builtin "P" ; symb_T = builtin "T" ; symb_eq = builtin "eq" ; symb_eqind = builtin "eqind" ; symb_refl = builtin "refl" } (* Register checks for the builtin symbols related to rewriting. *) let _ = let check_codomain_is_Type _ss pos sym = let valid = match Eval.whnf [] !(sym.sym_type) with | Prod(_, b) -> Eval.eq_modulo [] (snd (Bindlib.unbind b)) mk_Type | _ -> false in if not valid then fatal pos "The type of [%s] is not of the form [_ → TYPE]." sym.sym_name in (* The type of the builtin ["T"] should be [U → TYPE]. *) Builtin.register "T" check_codomain_is_Type; (* The type of the builtin ["P"] should be [Prop → TYPE]. *) Builtin.register "P" check_codomain_is_Type; let get_domain_of_type s = match Eval.whnf [] !(s.sym_type) with | Prod(a,_) -> a | _ -> assert false in let register_builtin = Builtin.register_expected_type (Eval.eq_modulo []) term in let expected_eq_type pos map = (* [Π (a:U), T a → T a → Prop] *) let symb_T = Builtin.get pos map "T" in let symb_P = Builtin.get pos map "P" in let term_U = lift (get_domain_of_type symb_T) in let term_Prop = lift (get_domain_of_type symb_P) in let a = new_tvar "a" in let term_T_a = _Appl (_Symb symb_T) (_Vari a) in let impls = _Impl term_T_a (_Impl term_T_a term_Prop) in Bindlib.unbox (_Prod term_U (Bindlib.bind_var a impls)) in register_builtin "eq" expected_eq_type; let expected_refl_type pos map = (* [Π (a:U) (x:T a), P (eq a x x)] *) let symb_T = Builtin.get pos map "T" in let symb_P = Builtin.get pos map "P" in let symb_eq = Builtin.get pos map "eq" in let term_U = lift (get_domain_of_type symb_T) in let a = new_tvar "a" in let x = new_tvar "x" in let appl_eq = _Appl (_Symb symb_eq) (_Vari a) in let appl_eq = _Appl (_Appl appl_eq (_Vari x)) (_Vari x) in let appl = _Appl (_Symb symb_P) appl_eq in let term_T_a = _Appl (_Symb symb_T) (_Vari a) in let prod = _Prod term_T_a (Bindlib.bind_var x appl) in Bindlib.unbox (_Prod term_U (Bindlib.bind_var a prod)) in register_builtin "refl" expected_refl_type; let expected_eqind_type pos map = (* [Π (a:U) (x y:T a), P (eq x y) → Π (p:T a→Prop), P (p y) → P (p x)] *) let symb_T = Builtin.get pos map "T" in let term_T = _Symb symb_T in let symb_P = Builtin.get pos map "P" in let term_P = _Symb symb_P in let symb_eq = Builtin.get pos map "eq" in let term_eq = _Symb symb_eq in let term_U = lift (get_domain_of_type symb_T) in let term_Prop = lift (get_domain_of_type symb_P) in let a = new_tvar "a" in let x = new_tvar "x" in let y = new_tvar "y" in let p = new_tvar "p" in let term_T_a = _Appl term_T (_Vari a) in let term_P_p_x = _Appl term_P (_Appl (_Vari p) (_Vari x)) in let term_P_p_y = _Appl term_P (_Appl (_Vari p) (_Vari y)) in let impl = _Impl term_P_p_y term_P_p_x in let prod = _Prod (_Impl term_T_a term_Prop) (Bindlib.bind_var p impl) in let eq = _Appl (_Appl (_Appl term_eq (_Vari a)) (_Vari x)) (_Vari y) in let impl = _Impl (_Appl term_P eq) prod in let prod = _Prod term_T_a (Bindlib.bind_var y impl) in let prod = _Prod term_T_a (Bindlib.bind_var x prod) in Bindlib.unbox (_Prod term_U (Bindlib.bind_var a prod)) in register_builtin "eqind" expected_eqind_type (** [get_eq_data pos cfg a] returns [((a,l,r),[v1;..;vn])] if [a ≡ Π v1:A1, .., Π vn:An, P (eq a l r)] and fails otherwise. *) let get_eq_data : eq_config -> popt -> term -> (term * term * term) * tvar list = fun cfg -> let exception Not_eq of term in let get_eq_args u = if Logger.log_enabled () then log_rewr "get_eq_args %a" term u; match get_args u with | eq, [a;l;r] when is_symb cfg.symb_eq eq -> a, l, r | _ -> raise (Not_eq u) in let exception Not_P of term in let return vs r = r, List.rev vs in let rec get_eq vs t notin_whnf = if Logger.log_enabled () then log_rewr "get_eq %a" term t; match get_args t with | Prod(_,t), _ -> let v,t = Bindlib.unbind t in get_eq (v::vs) t true | p, [u] when is_symb cfg.symb_P p -> begin let u = Eval.whnf ~tags:[`NoRw;`NoExpand] [] u in try return vs (get_eq_args u) with Not_eq _ -> (try return vs (get_eq_args (Eval.whnf [] u)) with Not_eq _ when notin_whnf -> get_eq vs (Eval.whnf [] t) false) end | _ -> if notin_whnf then get_eq vs (Eval.whnf [] t) false else raise (Not_P t) in fun pos t -> if Logger.log_enabled () then log_rewr "get_eq_data %a" term t; try get_eq [] t true with | Not_P u -> fatal pos "Expected %a _ but found %a." sym cfg.symb_P term u | Not_eq u -> fatal pos "Expected %a _ _ but found %a." sym cfg.symb_eq term u (** Type of a term with the free variables that need to be substituted. It is usually used to store the LHS of a proof of equality, together with the variables that were quantified over. *) type to_subst = tvar array * term (** [matches p t] instantiates the [TRef]'s of [p] so that [p] gets equal to [t] and returns [true] if all [TRef]'s of [p] could be instantiated, and [false] otherwise. *) let matches : term -> term -> bool = let exception Not_equal in let rec eq l = match l with | [] -> () | (p,t)::l -> if Term.cmp p t = 0 then eq l else begin let hp, ps, k = get_args_len p and ht, ts, n = get_args_len t in if Logger.log_enabled() then log_rewr "matches %a %a ≡ %a %a" term hp (D.list term) ps term ht (D.list term) ts; match hp with | Wild -> assert false (* used in user syntax only *) | Patt _ -> assert false (* used in rules only *) | TEnv _ -> assert false (* used in rules only *) | Plac _ -> assert false (* used in scoping only *) | Appl _ -> assert false (* not possible after get_args_len *) | Type -> assert false (* not possible because of typing *) | Kind -> assert false (* not possible because of typing *) | TRef r -> if k > n then raise Not_equal; let ts1, ts2 = List.cut ts (n-k) in let u = add_args ht ts1 in if Logger.log_enabled() then log_rewr (Color.red "<TRef> ≔ %a") term u; r := Some u; eq (List.fold_left2 (fun l pi ti -> (pi,ti)::l) l ps ts2) | Meta _ | Prod _ | Abst _ | LLet _ | Symb _ | Vari _ -> if k <> n then raise Not_equal; let add_args l = List.fold_left2 (fun l pi ti -> (pi,ti)::l) l ps ts in match hp, ht with | Vari x, Vari y when Bindlib.eq_vars x y -> eq (add_args l) | Symb f, Symb g when f == g -> eq (add_args l) | _ -> if Logger.log_enabled() then log_rewr "distinct heads"; raise Not_equal end in fun p t -> try eq [(p,t)]; if Logger.log_enabled() then log_rewr "matches OK"; true with Not_equal -> if Logger.log_enabled() then log_rewr "matches KO"; false (** [matching_subs (xs,p) t] attempts to match the pattern [p] containing the variables [xs]) with the term [t]. If successful, it returns [Some ts] where [ts] is an array of terms such that substituting [xs] by the corresponding elements of [ts] in [p] yields [t]. *) let matching_subs : to_subst -> term -> term array option = fun (xs,p) t -> (* We replace [xs] by fresh [TRef]'s. *) let ts = Array.map (fun _ -> mk_TRef(ref None)) xs in let p = Bindlib.msubst (binds xs lift_not_canonical p) ts in if matches p t then Some(Array.map unfold ts) else None (** [find_subst (xs,p) t] tries to find the first instance of a subterm of [t] matching [p]. If successful, the function returns the array of terms by which [xs] must substituted. *) let find_subst : to_subst -> term -> term array option = fun xsp t -> let time = Time.save () in let rec find_subst : term -> term array option = fun t -> if Logger.log_enabled() then log_rewr "find_subst %a ≡ %a" term (snd xsp) term t; match matching_subs xsp t with | None -> begin Time.restore time; match unfold t with | Appl(t,u) -> begin match find_subst t with | None -> Time.restore time; find_subst u | sub -> sub end | _ -> None end | sub -> sub in find_subst t (** [find_subterm_matching p t] tries to find a subterm of [t] that matches [p] by instantiating the [TRef]'s of [p]. In case of success, the function returns [true]. *) let find_subterm_matching : term -> term -> bool = fun p t -> let time = Time.save () in let rec find_subterm : term -> bool = fun t -> if matches p t then true else begin Time.restore time; match unfold t with | Appl(t,u) -> begin match find_subterm t with | false -> Time.restore time; find_subterm u | true -> true end | _ -> false end in find_subterm t (** [bind_pattern p t] replaces in the term [t] every occurence of the pattern [p] by a fresh variable, and returns the binder on this variable. *) let bind_pattern : term -> term -> tbinder = fun p t -> let z = new_tvar "z" in let rec replace : term -> tbox = fun t -> if matches p t then _Vari z else match unfold t with | Appl(t,u) -> _Appl (replace t) (replace u) | Prod(a,b) -> let x,b = Bindlib.unbind b in _Prod (replace a) (Bindlib.bind_var x (replace b)) | Abst(a,b) -> let x,b = Bindlib.unbind b in _Abst (replace a) (Bindlib.bind_var x (replace b)) | LLet(typ, def, body) -> let x, body = Bindlib.unbind body in _LLet (replace typ) (replace def) (Bindlib.bind_var x (replace body)) | Meta(m,ts) -> _Meta m (Array.map replace ts) | TEnv _ -> assert false | Wild -> assert false | TRef _ -> assert false | Patt _ -> assert false | Plac _ -> assert false | _ -> lift t in Bindlib.(unbox (bind_var z (replace t))) (** [swap cfg a r l t] returns a term of type [P (eq a l r)] from a term [t] of type [P (eq a r l)]. *) let swap : eq_config -> term -> term -> term -> term -> term = fun cfg a r l t -> (* We build the predicate “λx:T a, eq a l x”. *) let pred = let x = new_tvar "x" in let pred = add_args (mk_Symb cfg.symb_eq) [a; l; mk_Vari x] in mk_Abst(mk_Appl(mk_Symb cfg.symb_T, a), bind x lift pred) in (* We build the proof term. *) let refl_a_l = add_args (mk_Symb cfg.symb_refl) [a; l] in add_args (mk_Symb cfg.symb_eqind) [a; r; l; t; pred; refl_a_l] (** [replace_wild_by_tref t] substitutes every wildcard of [t] by a fresh [TRef]. *) let rec replace_wild_by_tref : term -> term = fun t -> match unfold t with | Wild -> mk_TRef(ref None) | Appl(t,u) -> mk_Appl_not_canonical(replace_wild_by_tref t, replace_wild_by_tref u) | _ -> t (** [rewrite ss p pos gt l2r pat t] generates a term for the refine tactic representing the application of the rewrite tactic to the goal type [gt]. Every occurrence of the first instance of the left-hand side is replaced by the right-hand side of the obtained proof (or the reverse if l2r is false). [pat] is an optional SSReflect pattern. [t] is the equational lemma that is appied. It handles the full set of SSReflect patterns. *) let rewrite : Sig_state.t -> problem -> popt -> goal_typ -> bool -> (term, tbinder) Parsing.Syntax.rw_patt option -> term -> term = fun ss p pos {goal_hyps=g_env; goal_type=g_type; _} l2r pat t -> (* Obtain the required symbols from the current signature. *) let cfg = get_eq_config ss pos in (* Infer the type of [t] (the argument given to the tactic). *) let g_ctxt = Env.to_ctxt g_env in let (t, t_type) = Query.infer pos p g_ctxt t in (* Check that [t_type ≡ Π x1:a1, ..., Π xn:an, P (eq a l r)]. *) let (a, l, r), vars = get_eq_data cfg pos t_type in let vars = Array.of_list vars in (* Apply [t] to the variables of [vars] to get a witness of the equality. *) let t = Array.fold_left (fun t x -> mk_Appl(t, mk_Vari x)) t vars in (* Reverse the members of the equation if l2r is false. *) let (t, l, r) = if l2r then (t, l, r) else (swap cfg a l r t, r, l) in (* Bind the variables in this new witness. *) let bound = let triple = Bindlib.box_triple (lift t) (lift_not_canonical l) (lift r) in Bindlib.unbox (Bindlib.bind_mvar vars triple) in (* Extract the term from the goal type (get “u” from “P u”). *) let g_term = match get_args g_type with | t, [u] when is_symb cfg.symb_P t -> u | _ -> fatal pos "Goal not of the form (%a _)." sym cfg.symb_P in (* Obtain the different components depending on the pattern. *) let (pred_bind, new_term, t, l, r) = match pat with (* Simple rewrite, no pattern. *) | None -> (* Build a substitution from the first instance of [l] in the goal. *) let sigma = match find_subst (vars, l) g_term with | Some(sigma) -> sigma | None -> fatal pos "No subterm of [%a] matches [%a]." term g_term term l in (* Build the required data from that substitution. *) let (t, l, r) = Bindlib.msubst bound sigma in let pred_bind = bind_pattern l g_term in (pred_bind, Bindlib.subst pred_bind r, t, l, r) (* Basic patterns. *) | Some(Rw_Term(p)) -> (* Find a subterm [match_p] of the goal that matches [p]. *) let match_p = let p_refs = replace_wild_by_tref p in if not (find_subterm_matching p_refs g_term) then fatal pos "No subterm of [%a] matches [%a]." term g_term term p; p_refs (* [TRef] cells have been instantiated here. *) in (* Build a substitution by matching [match_p] with the LHS [l]. *) let sigma = match matching_subs (vars,l) match_p with | Some(sigma) -> sigma | None -> fatal pos "No subterm of [%a] matches [%a]." term match_p term l in (* Build the data from the substitution. *) let (t, l, r) = Bindlib.msubst bound sigma in let pred_bind = bind_pattern l g_term in (pred_bind, Bindlib.subst pred_bind r, t, l, r) (* Nested patterns. *) | Some(Rw_InTerm(p)) -> (* Find a subterm [match_p] of the goal that matches [p]. *) let match_p = let p_refs = replace_wild_by_tref p in if not (find_subterm_matching p_refs g_term) then fatal pos "No subterm of [%a] matches [%a]." term g_term term p; p_refs (* [TRef] cells have been instantiated here. *) in (* Build a substitution from a subterm of [match_p] matching [l]. *) let sigma = match find_subst (vars,l) match_p with | Some(sigma) -> sigma | None -> fatal pos "No subterm of the pattern [%a] matches [%a]." term match_p term l in (* Build the data from the substitution. *) let (t, l, r) = Bindlib.msubst bound sigma in let p_x = bind_pattern l match_p in let p_r = Bindlib.subst p_x r in let pred_bind = bind_pattern match_p g_term in let new_term = Bindlib.subst pred_bind p_r in let (x, p_x) = Bindlib.unbind p_x in let pred = Bindlib.subst pred_bind p_x in let pred_bind = bind x lift pred in (pred_bind, new_term, t, l, r) | Some(Rw_IdInTerm(p)) -> (* The code here works as follows: *) (* 1 - Try to match [p] with some subterm of the goal. *) (* 2 - If we succeed we do two things, we first replace [id] with its value, [id_val], the value matched to get [pat_l] and try to match [id_val] with the LHS of the lemma. *) (* 3 - If we succeed we create the "RHS" of the pattern, which is [p] with [sigma r] in place of [id]. *) (* 4 - We then construct the following binders: a - [pred_bind_l] : A binder with a new variable replacing each occurrence of [pat_l] in g_term. b - [pred_bind] : A binder with a new variable only replacing the subterms where a rewrite happens. *) (* 5 - The new goal [new_term] is constructed by substituting [r_pat] in [pred_bind_l]. *) let (id,p) = Bindlib.unbind p in let p_refs = replace_wild_by_tref p in let id_val = match find_subst ([|id|],p_refs) g_term with | Some(id_val) -> id_val.(0) | None -> fatal pos "The pattern [%a] does not match [%a]." term p term l in let pat = bind id lift_not_canonical p_refs in (* The LHS of the pattern, i.e. the pattern with id replaced by *) (* id_val. *) let pat_l = Bindlib.subst pat id_val in (* This must match with the LHS of the equality proof we use. *) let sigma = match matching_subs (vars,l) id_val with | Some(sigma) -> sigma | None -> fatal pos "The value of [%a], [%a], in [%a] does not match [%a]." var id term id_val term p term l in (* Build t, l, using the substitution we found. Note that r *) (* corresponds to the value we get by applying rewrite to *) (* id val. *) let (t,l,r) = Bindlib.msubst bound sigma in (* The RHS of the pattern, i.e. the pattern with id replaced *) (* by the result of rewriting id_val. *) let pat_r = Bindlib.subst pat r in (* Build the predicate, identifying all occurrences of pat_l *) (* substituting them, first with pat_r, for the new goal and *) (* then with l_x for the lambda term. *) let pred_bind_l = bind_pattern pat_l g_term in (* This will be the new goal. *) let new_term = Bindlib.subst pred_bind_l pat_r in (* [l_x] is the pattern with [id] replaced by the variable X *) (* that we use for building the predicate. *) let (x, l_x) = Bindlib.unbind pat in let pred_bind = bind x lift (Bindlib.subst pred_bind_l l_x) in (pred_bind, new_term, t, l, r) (* Combinational patterns. *) | Some(Rw_TermInIdInTerm(s,p)) -> (* This pattern combines the previous. First, we identify the subterm of [g_term] that matches with [p] where [p] contains an identifier. Once we have the value that the identifier in [p] has been matched to, we find a subterm of it that matches with [s]. Then in all the occurrences of the first instance of [p] in [g_term] we rewrite all occurrences of the first instance of [s] in the subterm of [p] that was matched with the identifier. *) let (id,p) = Bindlib.unbind p in let p_refs = replace_wild_by_tref p in let id_val = match find_subst ([|id|],p_refs) g_term with | Some(id_val) -> id_val | None -> fatal pos "The pattern [%a] does not match [%a]." term p term l in (* Once we get the value of id, we work with that as our main term since this is where s will appear and will be substituted in. *) let id_val = id_val.(0) in (* [pat] is the full value of the pattern, with the wildcards now replaced by subterms of the goal and [id]. *) let pat = bind id lift_not_canonical p_refs in let pat_l = Bindlib.subst pat id_val in (* We then try to match the wildcards in [s] with subterms of [id_val]. *) let s_refs = replace_wild_by_tref s in if not (find_subterm_matching s_refs id_val) then fatal pos "The value of [%a], [%a], in [%a] does not match [%a]." var id term id_val term p term s; (* Now we must match s, which no longer contains any TRef's with the LHS of the lemma,*) let s = s_refs in let sigma = match matching_subs (vars,l) s with | Some(sigma) -> sigma | None -> fatal pos "The term [%a] does not match the LHS [%a]" term s term l in let (t,l,r) = Bindlib.msubst bound sigma in (* First we work in [id_val], that is, we substitute all the occurrences of [l] in [id_val] with [r]. *) let id_bind = bind_pattern l id_val in (* [new_id] is the value of [id_val] with [l] replaced by [r] and [id_x] is the value of [id_val] with the free variable [x]. *) let new_id = Bindlib.subst id_bind r in let (x, id_x) = Bindlib.unbind id_bind in (* Then we replace in pat_l all occurrences of [id] with [new_id]. *) let pat_r = Bindlib.subst pat new_id in (* To get the new goal we replace all occurrences of [pat_l] in [g_term] with [pat_r]. *) let pred_bind_l = bind_pattern pat_l g_term in (* [new_term] is the type of the new goal meta. *) let new_term = Bindlib.subst pred_bind_l pat_r in (* Finally we need to build the predicate. First we build the term l_x, in a few steps. We substitute all the rewrites in new_id with x and we repeat some steps. *) let l_x = Bindlib.subst pat id_x in (* The last step to build the predicate is to substitute [l_x] everywhere we find [pat_l] and bind that x. *) let pred = Bindlib.subst pred_bind_l l_x in (bind x lift pred, new_term, t, l, r) | Some(Rw_TermAsIdInTerm(s,p)) -> (* This pattern is essentially a let clause. We first match the value of [pat] with some subterm of the goal, and then rewrite in each of the occurences of [id]. *) let (id,pat) = Bindlib.unbind p in let s = replace_wild_by_tref s in let p_s = Bindlib.subst p s in (* Try to match p[s/id] with a subterm of the goal. *) let p_refs = replace_wild_by_tref p_s in if not (find_subterm_matching p_refs g_term) then fatal pos "No subterm of [%a] matches the pattern [%a]" term g_term term p_s; let p = p_refs in let pat_refs = replace_wild_by_tref pat in (* Here we have already asserted tat an instance of p[s/id] exists so we know that this will match something. The step is repeated in order to get the value of [id]. *) let sub = match matching_subs ([|id|], pat_refs) p with | Some(sub) -> sub | None -> assert false in let id_val = sub.(0) in (* This part of the term-building is similar to the previous case, as we are essentially rebuilding a term, with some subterms that are replaced by new ones. *) let sigma = match matching_subs (vars, l) id_val with | Some(sigma) -> sigma | None -> fatal pos "The value of X, [%a], does not match the LHS, [%a]" term id_val term l in let (t,l,r) = Bindlib.msubst bound sigma in (* Now to do some term building. *) let p_x = bind_pattern l p in let p_r = Bindlib.subst p_x r in let pred_bind = bind_pattern p g_term in let new_term = Bindlib.subst pred_bind p_r in let (x, p_x) = Bindlib.unbind p_x in let pred_bind = bind x lift (Bindlib.subst pred_bind p_x) in (pred_bind, new_term, t, l, r) | Some(Rw_InIdInTerm(q)) -> (* This is very similar to the [Rw_IdInTerm] case. Instead of matching [id_val] with [l], we try to match a subterm of [id_val] with [l], and then we rewrite this subterm. As a consequence, we just change the way we construct a [pat_r]. *) let (id,q) = Bindlib.unbind q in let q_refs = replace_wild_by_tref q in let id_val = match find_subst ([|id|],q_refs) g_term with | Some(id_val) -> id_val | None -> fatal pos "The pattern [%a] does not match [%a]." term q term g_term in let id_val = id_val.(0) in let pat = bind id lift_not_canonical q_refs in let pat_l = Bindlib.subst pat id_val in let sigma = match find_subst (vars,l) id_val with | Some(sigma) -> sigma | None -> fatal pos "The value of [%a], [%a], in [%a] does not match [%a]." var id term id_val term q term l in let (t,l,r) = Bindlib.msubst bound sigma in (* Rewrite in id. *) let id_bind = bind_pattern l id_val in let id_val = Bindlib.subst id_bind r in let (x, id_x) = Bindlib.unbind id_bind in (* The new RHS of the pattern is obtained by rewriting in [id_val]. *) let r_val = Bindlib.subst pat id_val in let pred_bind_l = bind_pattern pat_l g_term in let new_term = Bindlib.subst pred_bind_l r_val in let l_x = Bindlib.subst pat id_x in let pred_bind = bind x lift (Bindlib.subst pred_bind_l l_x) in (pred_bind, new_term, t, l, r) in (* Construct the predicate (context). *) let pred = mk_Abst(mk_Appl(mk_Symb cfg.symb_T, a), pred_bind) in (* Construct the new goal and its type. *) let goal_type = mk_Appl(mk_Symb cfg.symb_P, new_term) in let goal_term = LibMeta.make p g_ctxt goal_type in (* Build the final term produced by the tactic. *) let eqind = mk_Symb cfg.symb_eqind in let result = add_args eqind [a; l; r; t; pred; goal_term] in (* Debugging data to the log. *) if Logger.log_enabled () then begin log_rewr "Rewriting with:"; log_rewr " goal = [%a]" term g_type; log_rewr " equality proof = [%a]" term t; log_rewr " equality LHS = [%a]" term l; log_rewr " equality RHS = [%a]" term r; log_rewr " pred = [%a]" term pred; log_rewr " new goal = [%a]" term goal_type; log_rewr " produced term = [%a]" term result; end; (* Return the proof-term. *) result
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>