Source file term.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
open Hcons
open Logic
module Make
(ADT : Logic.Data)
(Field : Logic.Field)
(Fun : Logic.Function) =
struct
type tau = (Field.t,ADT.t) Logic.datatype
type path = int list
module Tau = Kind.MakeTau(Field)(ADT)
module POOL = Pool.Make
(struct
type t = tau
let dummy = Prop
let equal = Kind.eq_tau Field.equal ADT.equal
let compare = Kind.compare_tau Field.compare ADT.compare
end)
open POOL
type var = POOL.var
module VID = struct type t = var let id x = x.vid end
module Vars = Idxset.Make(VID)
module Vmap = Idxmap.Make(VID)
type term = {
id : int ;
hash : int ;
size : int ;
vars : Vars.t ;
bind : Bvars.t ;
sort : sort ;
repr : repr ;
tau : tau option;
}
and repr = (Field.t,ADT.t,Fun.t,var,term,term) term_repr
let pretty_debug : (_ -> term -> unit) ref = ref (fun _ _ -> ())
type lc_term = term
type 'a expression = (Field.t,ADT.t,Fun.t,var,lc_term,'a) term_repr
module E =
struct
type t = term
let id t = t.id
end
module Tset = Idxset.Make(E)
module Tmap = Idxmap.Make(E)
module ADT = ADT
module Field = Field
module Fun = Fun
module Var : Variable with type t = var =
struct
type t = var
let hash x = x.vid
let equal = (==)
let compare = POOL.compare
let pretty = POOL.pretty
let debug x = Printf.sprintf "%s_%d" x.vbase x.vid
let basename x = x.vbase
let sort x = Kind.of_tau x.vtau
let dummy = POOL.dummy
end
let tau_of_var x = x.vtau
let sort_of_var x = Kind.of_tau x.vtau
let base_of_var x = x.vbase
type pool = POOL.pool
let pool = POOL.create
let add_var pool x = POOL.add pool x
let add_vars pool xs = Vars.iter (POOL.add pool) xs
let add_term pool t = Vars.iter (POOL.add pool) t.vars
let fresh pool ?basename tau =
let base = match basename with
| Some base -> base | None -> Tau.basename tau
in POOL.fresh pool base tau
let alpha pool x = POOL.alpha pool x
let rec basename t = match t.repr with
| Kint _ -> "x"
| Kreal _ -> "r"
| Aset(a,_,_) -> basename a
| Acst _ -> "a"
| _ -> Kind.basename t.sort
let repr e = e.repr
let hash e = e.hash
let id e = e.id
let hash_subterms = function
| False -> 0
| True -> 0
| Kint n -> Z.hash n
| Kreal x -> hash_pair (Z.hash x.Q.num) (Z.hash x.Q.den)
| Times(n,t) -> Z.hash n * t.hash
| Add xs | Mul xs | And xs | Or xs -> hash_list hash 0 xs
| Div(x,y) | Mod(x,y) | Eq(x,y) | Neq(x,y) | Leq(x,y) | Lt(x,y)
| Aget(x,y) -> hash_pair x.hash y.hash
| Acst(_,v) -> v.hash
| Not e -> succ e.hash
| Imply(hs,p) -> hash_list hash p.hash hs
| If(e,a,b) | Aset(e,a,b) -> hash_triple e.hash a.hash b.hash
| Fun(f,xs) -> hash_list hash (Fun.hash f) xs
| Rdef fxs ->
hash_list (fun (f,x) -> hash_pair (Field.hash f) x.hash) 0 fxs
| Rget(e,f) -> hash_pair e.hash (Field.hash f)
| Fvar x -> Var.hash x
| Bvar(k,_) -> k
| Bind(Forall,_,e) -> 1 + 31 * e.hash
| Bind(Exists,_,e) -> 2 + 31 * e.hash
| Bind(Lambda,_,e) -> 3 + 31 * e.hash
| Apply(a,xs) -> hash_list hash a.hash xs
let hash_head = function
| False -> 0
| True -> 1
| Kint _ -> 2
| Kreal _ -> 3
| Times _ -> 4
| Add _ -> 5
| Mul _ -> 6
| And _ -> 7
| Or _ -> 8
| Div _ -> 9
| Mod _ -> 10
| Eq _ -> 11
| Neq _ -> 12
| Leq _ -> 13
| Lt _ -> 14
| Not _ -> 15
| Imply _ -> 16
| If _ -> 17
| Fun _ -> 18
| Fvar _ -> 19
| Bvar _ -> 20
| Bind _ -> 21
| Apply _ -> 22
| Aset _ -> 23
| Aget _ -> 24
| Acst _ -> 25
| Rdef _ -> 26
| Rget _ -> 27
let hash_repr t = hash_head t + 31 * hash_subterms t
let equal_repr a b =
match a,b with
| True , True -> true
| False , False -> true
| Kint n , Kint m -> Z.equal n m
| Kreal x , Kreal y -> Q.equal x y
| Times(n,x) , Times(m,y) -> x==y && Z.equal n m
| Add xs , Add ys
| Mul xs , Mul ys
| And xs , And ys
| Or xs , Or ys -> eq_list xs ys
| Div(x,y) , Div(x',y')
| Mod(x,y) , Mod(x',y')
| Eq(x,y) , Eq(x',y')
| Neq(x,y) , Neq(x',y')
| Leq(x,y) , Leq(x',y')
| Lt(x,y) , Lt(x',y')
| Aget(x,y) , Aget(x',y') -> x==x' && y==y'
| Not a , Not b -> a==b
| Imply(hs,p) , Imply(hs',q) -> p==q && eq_list hs hs'
| If(e,a,b) , If(e',a',b')
| Aset(e,a,b) , Aset(e',a',b') -> e==e' && a==a' && b==b'
| Fun(f,xs) , Fun(g,ys) -> Fun.equal f g && eq_list xs ys
| Fvar x , Fvar y -> Var.equal x y
| Bvar(k,t) , Bvar(k',t') -> k = k' && Tau.equal t t'
| Bind(q,t,e) , Bind(q',t',e') -> q=q' && Tau.equal t t' && e==e'
| Acst(t,v) , Acst(t',v') -> Tau.equal t t' && v==v'
| Apply(x,ys) , Apply(x',ys') -> x==x' && eq_list ys ys'
| Rget(x,f) , Rget(x',g) -> x==x' && Field.equal f g
| Rdef fxs , Rdef gys ->
equal_list (fun (f,x) (g,y) -> x==y && Field.equal f g) fxs gys
| _ ->
assert (hash_head a <> hash_head b) ; false
let equal_tau t1 t2 =
match t1, t2 with
| None, None -> true
| None, Some _ | Some _ , None -> false
| Some (Bool|Prop) , Some(Bool|Prop) -> true
| Some t1, Some t2 -> Tau.equal t1 t2
let sort x = x.sort
let vars x = x.vars
let bvars x = x.bind
let vars_repr = function
| True | False | Kint _ | Kreal _ -> Vars.empty
| Times(_,x) | Not x | Rget(x,_) | Acst(_,x) -> x.vars
| Add xs | Mul xs | And xs | Or xs | Fun(_,xs) ->
Hcons.fold_list Vars.union (fun x -> x.vars) Vars.empty xs
| Div(x,y) | Mod(x,y) | Eq(x,y) | Neq(x,y) | Leq(x,y) | Lt(x,y) | Aget(x,y) ->
Vars.union x.vars y.vars
| Imply(xs,a) | Apply(a,xs) ->
Hcons.fold_list Vars.union vars a.vars xs
| If(e,a,b) | Aset(e,a,b) -> Vars.union e.vars (Vars.union a.vars b.vars)
| Fvar x -> Vars.singleton x
| Bvar _ -> Vars.empty
| Bind(_,_,e) -> e.vars
| Rdef fxs -> List.fold_left (fun s (_,x) -> Vars.union s x.vars) Vars.empty fxs
let bind_repr = function
| True | False | Kint _ | Kreal _ -> Bvars.empty
| Times(_,x) | Not x | Rget(x,_) | Acst(_,x) -> x.bind
| Add xs | Mul xs | And xs | Or xs | Fun(_,xs) ->
Hcons.fold_list Bvars.union (fun x -> x.bind) Bvars.empty xs
| Div(x,y) | Mod(x,y) | Eq(x,y) | Neq(x,y) | Leq(x,y) | Lt(x,y) | Aget(x,y) ->
Bvars.union x.bind y.bind
| Imply(xs,a) | Apply(a,xs) ->
Hcons.fold_list Bvars.union bvars a.bind xs
| If(e,a,b) | Aset(e,a,b) -> Bvars.union e.bind (Bvars.union a.bind b.bind)
| Bvar(k,_) -> Bvars.singleton k
| Fvar _ -> Bvars.empty
| Bind(_,_,e) -> Bvars.bind e.bind
| Rdef fxs -> List.fold_left (fun s (_,x) -> Bvars.union s x.bind) Bvars.empty fxs
let sort_repr = function
| True | False -> Sbool
| Kint _ -> Sint
| Kreal _ -> Sreal
| Times(_,x) -> Kind.merge Sint x.sort
| Add xs | Mul xs -> Kind.merge_list sort Sint xs
| And xs | Or xs -> Kind.merge_list sort Sbool xs
| Imply(hs,p) -> Kind.merge_list sort p.sort hs
| Not x -> x.sort
| Fun(f,_) -> Fun.sort f
| Aget(m,_) -> Kind.image m.sort
| Aset(m,_,_) -> m.sort
| Acst(_,v) -> Sarray v.sort
| Rget(_,f) -> Field.sort f
| Rdef _ -> Sdata
| Div(x,y) | Mod(x,y) -> Kind.merge x.sort y.sort
| Leq _ | Lt _ -> Sbool
| Apply(x,_) -> x.sort
| If(_,a,b) -> Kind.merge a.sort b.sort
| Fvar x -> Kind.of_tau x.vtau
| Bvar(_,t) -> Kind.of_tau t
| Bind((Forall|Exists),_,_) -> Sprop
| Bind(Lambda,_,e) -> e.sort
| Eq(a,b) | Neq(a,b) ->
match a.sort , b.sort with
| Sprop , _ | _ , Sprop -> Sprop
| _ -> Sbool
let rec size_list n w = function
| [] -> n+w
| x::xs -> size_list (succ n) (max w x.size) xs
let rec size_rdef n w = function
| [] -> n+w
| (_,x)::fxs -> size_rdef (succ n) (max w x.size) fxs
let size_repr = function
| True | False | Kint _ -> 0
| Fvar _ | Bvar _ | Kreal _ -> 1
| Times(_,x) -> succ x.size
| Add xs | Mul xs | And xs | Or xs -> size_list 1 0 xs
| Imply(hs,p) -> size_list 1 p.size hs
| Not x -> succ x.size
| Fun(_,xs) -> size_list 1 0 xs
| Aget(a,b) -> 1 + max a.size b.size
| Aset(a,b,c) -> 1 + max a.size (max b.size c.size)
| Acst(_,v) -> succ v.size
| Rget(a,_) -> succ a.size
| Rdef fxs -> 1 + size_rdef 0 0 fxs
| Div(x,y) | Mod(x,y) -> 2 + max x.size y.size
| Eq(x,y) | Neq(x,y) | Lt(x,y) | Leq(x,y) -> 1 + max x.size y.size
| Apply(x,xs) -> size_list 1 x.size xs
| If(a,b,c) -> 2 + max a.size (max b.size c.size)
| Bind(_,_,p) -> 3 + p.size
let repr_iter f = function
| True | False | Kint _ | Kreal _ | Fvar _ | Bvar _ -> ()
| Times(_,e) | Not e | Rget(e,_) | Acst(_,e) -> f e
| Add xs | Mul xs | And xs | Or xs -> List.iter f xs
| Mod(x,y) | Div(x,y) | Eq(x,y) | Neq(x,y) | Leq(x,y) | Lt(x,y)
| Aget(x,y) -> f x ; f y
| Rdef fvs -> List.iter (fun (_,v) -> f v) fvs
| If(e,a,b) | Aset(e,a,b) -> f e ; f a ; f b
| Imply(xs,x) -> List.iter f xs ; f x
| Fun(_,xs) -> List.iter f xs
| Apply(x,xs) -> f x ; List.iter f xs
| Bind(_,_,e) -> f e
let pp_bind fmt = function
| Forall -> Format.pp_print_string fmt "Forall"
| Exists -> Format.pp_print_string fmt "Exists"
| Lambda -> Format.pp_print_string fmt "Lambda"
let pp_var fmt x = Format.fprintf fmt "X%03d(%s:%d)" x.vid x.vbase x.vrank
let pp_id fmt x = Format.fprintf fmt " #%03d" x.id
let pp_ids fmt xs = List.iter (pp_id fmt) xs
let pp_field fmt (f,x) = Format.fprintf fmt "@ %a:%a;" Field.pretty f pp_id x
let pp_record fmt fxs = List.iter (pp_field fmt) fxs
let pp_repr fmt = function
| Kint z -> Format.fprintf fmt "constant %s" (Z.to_string z)
| Kreal z -> Format.fprintf fmt "real constant %s" (Q.to_string z)
| True -> Format.pp_print_string fmt "true"
| False -> Format.pp_print_string fmt "false"
| Times(z,x) -> Format.fprintf fmt "times %s%a" (Z.to_string z) pp_id x
| Add xs -> Format.fprintf fmt "add%a" pp_ids xs
| Mul xs -> Format.fprintf fmt "mul%a" pp_ids xs
| And xs -> Format.fprintf fmt "and%a" pp_ids xs
| Div(a,b) -> Format.fprintf fmt "div%a%a" pp_id a pp_id b
| Mod(a,b) -> Format.fprintf fmt "mod%a%a" pp_id a pp_id b
| Or xs -> Format.fprintf fmt "or%a" pp_ids xs
| If(e,a,b) -> Format.fprintf fmt "if%a%a%a" pp_id e pp_id a pp_id b
| Imply(hs,p) -> Format.fprintf fmt "imply%a =>%a" pp_ids hs pp_id p
| Neq(a,b) -> Format.fprintf fmt "neq%a%a" pp_id a pp_id b
| Eq(a,b) -> Format.fprintf fmt "eq%a%a" pp_id a pp_id b
| Leq(a,b) -> Format.fprintf fmt "leq%a%a" pp_id a pp_id b
| Lt(a,b) -> Format.fprintf fmt "lt%a%a" pp_id a pp_id b
| Not e -> Format.fprintf fmt "not%a" pp_id e
| Fun(f,es) -> Format.fprintf fmt "fun %a%a" Fun.pretty f pp_ids es
| Apply(phi,es) -> Format.fprintf fmt "apply%a%a" pp_id phi pp_ids es
| Fvar x -> Format.fprintf fmt "var %a" pp_var x
| Bvar(k,_) -> Format.fprintf fmt "bvar #%d" k
| Bind(q,t,e) -> Format.fprintf fmt "bind %a %a. %a" pp_bind q Tau.pretty t pp_id e
| Rdef fxs -> Format.fprintf fmt "@[<hov 2>record {%a }@]" pp_record fxs
| Rget(e,f) -> Format.fprintf fmt "field %a.%a" pp_id e Field.pretty f
| Aset(m,k,v) -> Format.fprintf fmt "array%a[%a :=%a ]" pp_id m pp_id k pp_id v
| Aget(m,k) -> Format.fprintf fmt "array%a[%a ]" pp_id m pp_id k
| Acst(t,v) -> Format.fprintf fmt "const[%a ->%a]" Tau.pretty t pp_id v
let pp_rid fmt e = pp_repr fmt e.repr
let rec pp_debug disp fmt e =
if not (Intset.mem e.id !disp) then
begin
Format.fprintf fmt "%a{%a} = %a@."
pp_id e Bvars.pretty e.bind pp_repr e.repr ;
disp := Intset.add e.id !disp ;
pp_children disp fmt e ;
end
and pp_children disp fmt e = repr_iter (pp_debug disp fmt) e.repr
let debug fmt e =
Format.fprintf fmt "%a with:@." pp_id e ;
pp_debug (ref Intset.empty) fmt e
let pretty = debug
type t = term
let equal = (==)
let is_atomic e =
match e.repr with
| True | False | Kint _ | Kreal _ | Fvar _ | Bvar _ -> true
| _ -> false
let is_simple e =
match e.repr with
| True | False | Kint _ | Kreal _ | Fvar _ | Bvar _ | Fun(_,[]) -> true
| _ -> false
let is_closed e = Vars.is_empty e.vars
let is_prop e = match e.sort with
| Sprop | Sbool -> true
| _ -> false
let is_int e = match e.sort with
| Sint -> true
| _ -> false
let is_real e = match e.sort with
| Sreal -> true
| _ -> false
let is_arith e = match e.sort with
| Sreal | Sint -> true
| _ -> false
let cached_not = ref (fun _ -> assert false)
let extern_not = ref (fun _ -> assert false)
let extern_ite = ref (fun _ -> assert false)
let extern_eq = ref (fun _ -> assert false)
let extern_neq = ref (fun _ -> assert false)
let extern_leq = ref (fun _ -> assert false)
let extern_lt = ref (fun _ -> assert false)
let extern_fun = ref (fun _ -> assert false)
module COMPARE =
struct
let fun_rank f =
match Fun.category f with
| Function -> 3
| Injection -> 2
| Constructor -> 1
| Operator _ -> 0
let cmp_size a b = Stdlib.compare a.size b.size
let rank_bind = function Forall -> 0 | Exists -> 1 | Lambda -> 2
let cmp_bind p q = rank_bind p - rank_bind q
let cmp_field phi (f,x) (g,y) =
let cmp = Field.compare f g in
if cmp <> 0 then cmp else phi x y
let cmp_struct phi a b =
match a.repr , b.repr with
| True , True -> 0
| True , _ -> (-1)
| _ , True -> 1
| False , False -> 0
| False , _ -> (-1)
| _ , False -> 1
| Kint a , Kint b -> Z.compare a b
| Kint _ , _ -> (-1)
| _ , Kint _ -> 1
| Kreal a , Kreal b -> Q.compare a b
| Kreal _ , _ -> (-1)
| _ , Kreal _ -> 1
| Fvar x , Fvar y -> Var.compare x y
| Fvar _ , _ -> (-1)
| _ , Fvar _ -> 1
| Bvar(k1,_) , Bvar(k2,_) -> k1 - k2
| Bvar _ , _ -> (-1)
| _ , Bvar _ -> 1
| Eq(a1,b1) , Eq(a2,b2)
| Neq(a1,b1) , Neq(a2,b2)
| Lt(a1,b1) , Lt(a2,b2)
| Leq(a1,b1) , Leq(a2,b2)
| Div(a1,b1) , Div(a2,b2)
| Mod(a1,b1) , Mod(a2,b2) ->
let cmp = cmp_size a b in
if cmp <> 0 then cmp else
let cmp = phi a1 a2 in
if cmp <> 0 then cmp else phi b1 b2
| Fun(f,xs) , Fun(g,ys) ->
let cmp = fun_rank f - fun_rank g in
if cmp <> 0 then cmp else
let cmp = cmp_size a b in
if cmp <> 0 then cmp else
let cmp = Fun.compare f g in
if cmp <> 0 then cmp else
Hcons.compare_list phi xs ys
| Fun (_,[]) , _ -> (-1)
| _ , Fun (_,[]) -> 1
| Eq _ , _ -> (-1)
| _ , Eq _ -> 1
| Neq _ , _ -> (-1)
| _ , Neq _ -> 1
| Lt _ , _ -> (-1)
| _ , Lt _ -> 1
| Leq _ , _ -> (-1)
| _ , Leq _ -> 1
| Fun _ , _ -> (-1)
| _ , Fun _ -> 1
| Times(a1,x) , Times(a2,y) ->
let cmp = cmp_size a b in
if cmp <> 0 then cmp else
let cmp = Z.compare a1 a2 in
if cmp <> 0 then cmp else phi x y
| Times _ , _ -> (-1)
| _ , Times _ -> 1
| Not x , Not y ->
let cmp = cmp_size a b in
if cmp <> 0 then cmp else
phi x y
| Not _ , _ -> (-1)
| _ , Not _ -> 1
| Imply(h1,p1) , Imply(h2,p2) ->
let cmp = cmp_size a b in
if cmp <> 0 then cmp else
Hcons.compare_list phi (p1::h1) (p2::h2)
| Imply _ , _ -> (-1)
| _ , Imply _ -> 1
| Add xs , Add ys
| Mul xs , Mul ys
| And xs , And ys
| Or xs , Or ys ->
let cmp = cmp_size a b in
if cmp <> 0 then cmp else
Hcons.compare_list phi xs ys
| Add _ , _ -> (-1)
| _ , Add _ -> 1
| Mul _ , _ -> (-1)
| _ , Mul _ -> 1
| And _ , _ -> (-1)
| _ , And _ -> 1
| Or _ , _ -> (-1)
| _ , Or _ -> 1
| Div _ , _ -> (-1)
| _ , Div _ -> 1
| Mod _ , _ -> (-1)
| _ , Mod _ -> 1
| If(a1,b1,c1) , If(a2,b2,c2) ->
let cmp = cmp_size a b in
if cmp <> 0 then cmp else
let cmp = phi a1 a2 in
if cmp <> 0 then cmp else
let cmp = phi b1 b2 in
if cmp <> 0 then cmp else phi c1 c2
| If _ , _ -> (-1)
| _ , If _ -> 1
| Acst(t1,v1) , Acst(t2,v2) ->
let cmp = Tau.compare t1 t2 in
if cmp<>0 then cmp else phi v1 v2
| Acst _ , _ -> (-1)
| _ , Acst _ -> 1
| Aget(a1,b1) , Aget(a2,b2) ->
let cmp = cmp_size a b in
if cmp <> 0 then cmp else
let cmp = phi a1 a2 in
if cmp <> 0 then cmp else phi b1 b2
| Aget _ , _ -> (-1)
| _ , Aget _ -> 1
| Aset(a1,k1,v1) , Aset(a2,k2,v2) ->
let cmp = cmp_size a b in
if cmp <> 0 then cmp else
let cmp = phi a1 a2 in
if cmp <> 0 then cmp else
let cmp = phi k1 k2 in
if cmp <> 0 then cmp else phi v1 v2
| Aset _ , _ -> (-1)
| _ , Aset _ -> 1
| Rget(r1,f1) , Rget(r2,f2) ->
let cmp = cmp_size a b in
if cmp <> 0 then cmp else
let cmp = phi r1 r2 in
if cmp <> 0 then cmp else Field.compare f1 f2
| Rget _ , _ -> (-1)
| _ , Rget _ -> 1
| Rdef fxs , Rdef gys ->
let cmp = cmp_size a b in
if cmp <> 0 then cmp else
Hcons.compare_list (cmp_field phi) fxs gys
| Rdef _ , _ -> (-1)
| _ , Rdef _ -> 1
| Apply(a,xs) , Apply(b,ys) ->
let cmp = cmp_size a b in
if cmp <> 0 then cmp else
Hcons.compare_list phi (a::xs) (b::ys)
| Apply _ , _ -> (-1)
| _ , Apply _ -> 1
| Bind(q1,t1,p1) , Bind(q2,t2,p2) ->
let cmp = cmp_size a b in
if cmp <> 0 then cmp else
let cmp = cmp_bind q1 q2 in
if cmp <> 0 then cmp else
let cmp = phi p1 p2 in
if cmp <> 0 then cmp else
Tau.compare t1 t2
let rec compare a b =
if a == b then 0 else
let cmp = cmp_struct compare a b in
if cmp <> 0 then cmp else
Option.compare Tau.compare a.tau b.tau
end
let weigth e = e.size
let atom_min a b = if 0 < COMPARE.compare a b then b else a
let compare a b =
if a == b then 0
else
let a' = if is_prop a then !extern_not a else a in
let b' = if is_prop b then !extern_not b else b in
if a == b' || a' == b
then COMPARE.compare a b
else COMPARE.compare (atom_min a a') (atom_min b b')
exception Absorbant
let compare_raising_absorbant a b =
if a == b then 0
else
let negate ~abs e =
let ne = !extern_not e in
if abs == ne then raise Absorbant ; ne in
let a' = if is_prop a then negate ~abs:b a else a in
let b' = if is_prop b then negate ~abs:a b else b in
if a == b' || a' == b
then COMPARE.compare a b
else COMPARE.compare (atom_min a a') (atom_min b b')
module W = Weak.Make
(struct
type t = term
let hash t = t.hash
let equal t1 t2 =
equal_tau t1.tau t2.tau &&
equal_repr t1.repr t2.repr
end)
module BUILTIN = Map.Make(Fun)
module FIELD = Map.Make(Field)
type cmp = EQ | NEQ | LT | LEQ
type operation =
| NOT of term
| CMP of cmp * term * term
| FUN of Fun.t * term list * tau option
module C = Cache.Unary
(struct
type t = operation
let hash_op = function
| EQ -> 2 | NEQ -> 3 | LT -> 5 | LEQ -> 7
let hash = function
| NOT p -> 5 * p.hash
| CMP(c,a,b) -> hash_op c * Hcons.hash_pair a.hash b.hash
| FUN(f,es,_) -> Hcons.hash_list hash (Fun.hash f) es
let equal a b = match a,b with
| NOT p,NOT q -> p==q
| CMP(c,a,b),CMP(c',a',b') -> c=c' && a==a' && b==b'
| FUN(f,xs,t) , FUN(g,ys,t') -> Fun.equal f g && Hcons.equal_list (==) xs ys
&& Option.equal Tau.equal t t'
| _ -> false
end)
module STRUCTURAL = struct type t = term let compare = COMPARE.compare end
module STmap = Map.Make(STRUCTURAL)
module STset = Set.Make(STRUCTURAL)
type state = {
mutable kid : int ;
weak : W.t ;
cache : term C.cache ;
mutable builtins_fun : (term list -> tau option -> term) BUILTIN.t ;
mutable builtins_get : (term list -> term list -> term) BUILTIN.t ;
mutable builtins_eq : (term -> term -> term) BUILTIN.t ;
mutable builtins_leq : (term -> term -> term) BUILTIN.t ;
mutable builtins_fld : (term list -> term) FIELD.t BUILTIN.t ;
}
let empty () = {
kid = 0 ;
weak = W.create 32993 ;
cache = C.create ~size:0x1000 ;
builtins_fun = BUILTIN.empty ;
builtins_get = BUILTIN.empty ;
builtins_eq = BUILTIN.empty ;
builtins_leq = BUILTIN.empty ;
builtins_fld = BUILTIN.empty ;
}
let state = ref (empty ())
let get_state () = !state
let set_state st = state := st
let release () = C.clear !state.cache
let in_state st f x =
let old = !state in
Stdlib.Fun.protect
~finally:(fun () -> state := old)
(fun () -> state := st; f x)
let clock = ref true
let constants = ref Tset.empty
let constant c = assert !clock ; constants := Tset.add c !constants ; c
let create () =
begin
clock := false ;
let s = empty () in
let add s c = W.add s.weak c ; s.kid <- max s.kid (succ c.id) in
Tset.iter (add s) !constants ; s
end
let clr_state st =
st.kid <- 0 ;
W.clear st.weak;
C.clear st.cache;
st.builtins_fun <- BUILTIN.empty ;
st.builtins_get <- BUILTIN.empty ;
st.builtins_eq <- BUILTIN.empty ;
st.builtins_leq <- BUILTIN.empty ;
st.builtins_fld <- BUILTIN.empty ;
let add s c = W.add s.weak c ; s.kid <- max s.kid (succ c.id) in
Tset.iter (add st) !constants
let insert ?tau r =
let h = hash_repr r in
let e0 = {
id = 0 ;
hash = h ;
repr = r ;
size = 0;
vars = Vars.empty ;
bind = Bvars.empty ;
sort = Sdata ;
tau;
} in
try W.find !state.weak e0
with Not_found ->
let k = !state.kid in
!state.kid <- succ k ;
assert (k <> -1) ;
let e = {
id = k ;
hash = h ;
repr = r ;
vars = vars_repr r ;
bind = bind_repr r ;
sort = sort_repr r ;
size = size_repr r ;
tau;
}
in W.add !state.weak e ; e
let e_false = constant (insert False)
let e_true = constant (insert True)
let e_zero = constant (insert (Kint Z.zero))
let e_one = constant (insert (Kint Z.one))
let e_int n = insert (Kint (Z.of_int n))
let e_float r = insert (Kreal (Q.of_float r))
let e_zint z = insert (Kint z)
let e_real x = insert (Kreal x)
let e_var x = insert(Fvar x)
let c_bvar k t = insert(Bvar(k,t))
let c_div x y = insert (Div(x,y))
let c_mod x y = insert (Mod(x,y))
let c_leq x y = insert (Leq(x,y))
let c_lt x y = insert (Lt (x,y))
let insert_eq x y = insert (Eq (x,y))
let insert_neq x y = insert (Neq(x,y))
let sym c x y = if compare x y < 0 then c y x else c x y
let compare_field (f,x) (g,y) =
let cmp = Field.compare f g in
if cmp = 0 then compare x y else cmp
let c_eq = sym insert_eq
let c_neq = sym insert_neq
let c_fun f xs tau = insert ?tau (Fun(f,xs))
let c_add = function
| [] -> e_zero
| [x] -> x
| xs -> insert(Add(List.sort compare xs))
let c_mul = function
| [] -> e_one
| [x] -> x
| xs -> insert(Mul(List.sort compare xs))
let c_times z t = insert(Times(z,t))
let c_and = function
| [] -> e_true
| [x] -> x
| xs -> insert(And(xs))
let c_or = function
| [] -> e_false
| [x] -> x
| xs -> insert(Or(xs))
let c_imply hs p = match hs with
| [] -> p
| hs -> insert(Imply(hs,p))
let c_not x = insert(Not x)
let c_if e a b = insert(If(e,a,b))
let c_apply a es = if es=[] then a else insert(Apply(a,es))
let c_bind q t e =
if Bvars.closed e.bind then e else
insert(Bind(q,t,e))
let c_const t v = insert(Acst(t,v))
let c_get m k = insert(Aget(m,k))
let c_set m k v = insert(Aset(m,k,v))
let c_getfield m f = insert(Rget(m,f))
let c_record fxs =
match fxs with
| [] -> insert(Rdef fxs)
| fx::gys ->
try
let base (f,v) =
match v.repr with
| Rget(r,g) when Field.equal f g -> r
| _ -> raise Exit
in
let r = base fx in
List.iter (fun gy -> if base gy != r then raise Exit) gys ; r
with Exit ->
insert(Rdef (List.sort compare_field fxs))
[@@@ warning "-32"]
let insert _ = assert false
[@@@ warning "+32"]
let is_primitive e =
match e.repr with
| True | False | Kint _ | Kreal _ -> true
| _ -> false
let builtin_fun ?tau f es =
try (BUILTIN.find f !state.builtins_fun) es tau
with Not_found -> c_fun f es tau
let simplify_eq e a b =
match e.repr with
| Fun(f,_) -> BUILTIN.find f !state.builtins_eq a b
| _ -> raise Not_found
let simplify_leq e a b =
match e.repr with
| Fun(f,_) -> BUILTIN.find f !state.builtins_leq a b
| _ -> raise Not_found
let builtin_eq a b =
try simplify_eq a a b with Not_found -> simplify_eq b a b
let builtin_leq a b =
try simplify_leq a a b with Not_found -> simplify_leq b a b
let builtin_cmp cmp a b =
try
match cmp with
| EQ -> builtin_eq a b
| LEQ -> builtin_leq a b
| NEQ -> !extern_not (builtin_eq a b)
| LT -> !extern_not (builtin_leq b a)
with Not_found ->
match cmp with
| EQ -> c_eq a b
| NEQ -> c_neq a b
| LT -> c_lt a b
| LEQ -> c_leq a b
let dispatch = function
| NOT p -> !cached_not p.repr
| CMP(cmp,a,b) -> builtin_cmp cmp a b
| FUN(f,es,tau) -> builtin_fun ?tau f es
let operation op = C.compute !state.cache dispatch op
let distribute_if_over_operation force op x y f a b =
match a.repr, b.repr with
| If(ac,a1,a2), If(bc,b1,b2) when ac == bc
-> !extern_ite ac (f a1 b1) (f a2 b2)
| If(ac,a1,a2), _ when force || ((is_primitive a1 || is_primitive a2) && is_primitive b)
-> !extern_ite ac (f a1 b) (f a2 b)
| _, If(bc,b1,b2) when force || ((is_primitive b1 || is_primitive b2) && is_primitive a)
-> !extern_ite bc (f a b1) (f a b2)
| If(ac,a1,a2), If(_,b1,b2) when (is_primitive a1 && is_primitive a2) && (is_primitive b1 || is_primitive b2)
-> !extern_ite ac (f a1 b) (f a2 b)
| If(_,a1,a2), If(bc,b1,b2) when (is_primitive a1 || is_primitive a2) && (is_primitive b1 && is_primitive b2)
-> !extern_ite bc (f a b1) (f a b2)
| _ -> op x y
let distribute f tau = function
| x::[] as xs ->
begin
match x.repr with
| If(c,a,b) -> !extern_ite c (!extern_fun f [a] tau) (!extern_fun f [b] tau)
| _ -> operation (FUN(f,xs,tau))
end
| a::b::[] as xs ->
distribute_if_over_operation false
(fun f xs -> operation (FUN(f,xs,tau))) f xs
(fun a b -> !extern_fun f [a;b] tau) a b
| xs -> operation (FUN(f,xs,tau))
let c_builtin_fun f xs tau = distribute f tau xs
let c_builtin_eq a b = distribute_if_over_operation true (fun a b -> operation (CMP(EQ ,a,b))) a b !extern_eq a b
let c_builtin_neq a b = distribute_if_over_operation true (fun a b -> operation (CMP(NEQ,a,b))) a b !extern_neq a b
let c_builtin_lt a b = distribute_if_over_operation true (fun a b -> operation (CMP(LT ,a,b))) a b !extern_lt a b
let c_builtin_leq a b = distribute_if_over_operation true (fun a b -> operation (CMP(LEQ,a,b))) a b !extern_leq a b
let prepare_builtin ~force f m =
release () ;
if BUILTIN.mem f m && not force then
let msg = Printf.sprintf
"Builtin already registered for '%s'" (Fun.debug f) in
raise (Failure msg)
let set_builtin' ?(force=false) f p =
begin
prepare_builtin ~force f !state.builtins_fun ;
!state.builtins_fun <- BUILTIN.add f p !state.builtins_fun ;
end
let set_builtin ?force f p = set_builtin' ?force f (fun es _ -> p es)
let set_builtin_get ?(force=false) f p =
begin
prepare_builtin ~force f !state.builtins_get ;
!state.builtins_get <- BUILTIN.add f p !state.builtins_get ;
end
let set_builtin_eq ?(force=false) f p =
begin
prepare_builtin ~force f !state.builtins_eq ;
!state.builtins_eq <- BUILTIN.add f p !state.builtins_eq ;
end
let set_builtin_leq ?(force=false) f p =
begin
prepare_builtin ~force f !state.builtins_leq ;
!state.builtins_leq <- BUILTIN.add f p !state.builtins_leq ;
end
let set_builtin_map ?force f phi =
set_builtin' ?force f (fun es tau -> c_fun f (phi es) tau)
let set_builtin_field ?(force=false) f fd p =
begin
let fmap =
try BUILTIN.find f !state.builtins_fld
with Not_found -> FIELD.empty in
begin
if not force && FIELD.mem fd fmap then
let msg = Printf.sprintf
"Builtin already registered for '(%s …).%s'"
(Fun.debug f) (Field.debug fd) in
raise (Failure msg)
end ;
let fmap = FIELD.add fd p fmap in
!state.builtins_fld <- BUILTIN.add f fmap !state.builtins_fld
end
let rec e_not p =
match p.repr with
| True -> e_false
| False -> e_true
| Lt(x,y) -> !extern_leq y x
| Leq(x,y) -> !extern_lt y x
| Eq(x,y) -> c_neq x y
| Neq(x,y) -> c_eq x y
| Not x -> x
| (And _ | Or _ | Imply _) -> operation (NOT p)
| Bind(Forall,t,p) -> c_bind Exists t (e_not p)
| Bind(Exists,t,p) -> c_bind Forall t (e_not p)
| _ -> c_not p
let () = extern_not := e_not
let rec op_revassoc phi xs = function
| [] -> xs
| e::es ->
match e.repr with
| Fun(f,ts) when Fun.equal f phi ->
op_revassoc phi (op_revassoc f xs ts) es
| _ -> op_revassoc phi (e::xs) es
let rec op_idempotent = function
| [] -> []
| [_] as l -> l
| x::( (y::_) as w ) -> if x==y then op_idempotent w else x :: op_idempotent w
let op_invertible ~ac xs ys =
if ac then
let modified = ref false in
let rxs = ref [] in
let rys = ref [] in
let rec walk xs ys =
match xs , ys with
| x::txs , y::tys ->
let cmp = compare x y in
if cmp < 0 then (rxs := x :: !rxs ; walk txs ys) else
if cmp > 0 then (rys := y :: !rys ; walk xs tys) else
( modified := true ; walk txs tys )
| _ ->
begin
rxs := List.rev_append !rxs xs ;
rys := List.rev_append !rys ys ;
end
in walk xs ys ; !modified , !rxs , !rys
else
let rec simpl modified turn xs ys = match xs , ys with
| x::xs , y::ys when x==y -> simpl true turn xs ys
| _ ->
let xs = List.rev xs in
let ys = List.rev ys in
if turn
then simpl modified false xs ys
else modified,xs,ys
in simpl false true xs ys
let rec element tau = function
| E_none -> assert false
| E_int k -> e_int k
| E_true -> e_true
| E_false -> e_false
| E_fun (f,l) -> c_fun f (List.map (element tau) l) tau
let rec is_element e x = match e , x.repr with
| E_int k , Kint z -> Z.equal (Z.of_int k) z
| E_true , True -> true
| E_false , False -> false
| E_fun (f,fl) , Fun(g,gl) ->
Fun.equal f g &&
List.length fl = List.length gl &&
List.for_all2 is_element fl gl
| _ -> false
let isnot_element e x = not (is_element e x)
let is_neutral f e =
match Fun.category f with
| Operator op -> is_element op.neutral e
| _ -> false
let is_absorbant f e =
match Fun.category f with
| Operator op -> is_element op.absorbant e
| _ -> false
let op_fun f op xs tau =
let xs =
if op.associative then
let xs = op_revassoc f [] xs in
if op.commutative
then List.sort compare xs
else List.rev xs
else
if op.commutative
then List.sort compare xs
else xs
in
if op.absorbant <> E_none &&
List.exists (is_element op.absorbant) xs
then element tau op.absorbant
else
let xs =
if op.neutral <> E_none
then List.filter (isnot_element op.neutral) xs
else xs in
let xs = if op.idempotent then op_idempotent xs else xs in
match xs with
| [] when op.neutral <> E_none -> element tau op.neutral
| [x] when op.associative -> x
| _ -> c_builtin_fun f xs tau
let e_fungen f xs tau =
match Fun.category f with
| Logic.Operator op -> op_fun f op xs tau
| _ -> c_builtin_fun f xs tau
let () = extern_fun := e_fungen
type sign = Null | Negative | Positive
let sign z =
if Z.lt z Z.zero then Negative else
if Z.lt Z.zero z then Positive else
Null
let rec i_ground f c xs = function
| {repr=Kint n}::ts -> i_ground f (f c n) xs ts
| x::ts -> i_ground f c (x::xs) ts
| [] -> c , xs
let rec r_ground f c xs = function
| {repr=Kreal z}::ts -> r_ground f (f c z) xs ts
| {repr=Kint n}::ts -> r_ground f (f c (Q.of_bigint n)) xs ts
| x::ts -> r_ground f c (x::xs) ts
| [] -> c , xs
let q_times k z =
if Z.equal k Z.one then z else
if Z.equal k Z.zero then Q.zero else
Q.(make (Z.mul k z.num) z.den)
let rec times z e =
if Z.equal z Z.one then e else
if Z.equal z Z.zero then e_zint Z.zero else
match e.repr with
| Kint z' -> e_zint (Z.mul z z')
| Kreal r -> e_real (q_times z r)
| Times(z',t) -> times (Z.mul z z') t
| _ -> c_times z e
let r_affine_rel fz fe c xs ys =
let a , xs = r_ground Q.add (Q.of_bigint c) [] xs in
let b , ys = r_ground Q.add Q.zero [] ys in
let c = Q.sub a b in
match xs , ys with
| [] , [] -> if fz c Q.zero then e_true else e_false
| [] , _ -> fe (e_real c) (c_add ys)
| _ , [] -> fe (c_add xs) (e_real (Q.neg c))
| _ ->
let s = Q.sign c in
if s < 0 then fe (c_add xs) (c_add (e_real (Q.neg c) :: ys)) else
if s > 0 then fe (c_add (e_real c :: xs)) (c_add ys) else
fe (c_add xs) (c_add ys)
let i_affine_rel fc fe c xs ys =
match xs , ys with
| [] , [] -> if fc c Z.zero then e_true else e_false
| [] , _ -> fe (e_zint c) (c_add ys)
| _ , [] -> fe (c_add xs) (e_zint (Z.neg c))
| _ ->
match sign c with
| Null -> fe (c_add xs) (c_add ys)
| Negative -> fe (c_add xs) (c_add (e_zint (Z.neg c) :: ys))
| Positive -> fe (c_add (e_zint c :: xs)) (c_add ys)
let i_affine_leq c xs ys =
if Z.equal c Z.one
then i_affine_rel Z.lt c_builtin_lt Z.zero xs ys
else i_affine_rel Z.leq c_builtin_leq c xs ys
let i_affine_lt c xs ys =
if not (Z.equal c Z.zero)
then i_affine_rel Z.leq c_builtin_leq (Z.succ c) xs ys
else i_affine_rel Z.lt c_builtin_lt c xs ys
type i_form = Z.t * term list
type ratio = POS of i_form * Z.t | NEG of i_form * Z.t | NONE
let i_form = function
| { repr = Kint c } -> c,[]
| { repr = Add es } ->
( match es with
| x::xs ->
( match x with
| { repr = Kint c } -> c , xs
| _ -> Z.zero , es )
| [] -> Z.zero,[] )
| e -> Z.zero,[e]
let i_ratio = function
| [{ repr=Div(a,b) }] ->
(match b.repr with
| Kint k ->
(match sign k with
| Positive -> POS(i_form a,k)
| Negative -> NEG(i_form a,Z.neg k)
| Null -> NONE)
| _ -> NONE)
| _ -> NONE
let i_opp xs = List.map (times Z.minus_one) xs
let i_times k xs = List.map (times k) xs
let i_pos0 = function c,[] -> Z.(leq zero c) | _ -> false
let i_pos1 = function c,[] -> Z.(lt zero c) | _ -> false
let i_neg0 = function c,[] -> Z.(leq c zero) | _ -> false
let i_neg1 = function c,[] -> Z.(lt c zero) | _ -> false
let rec i_ratio_max a k b =
if i_pos0 a || i_pos0 b then
let x,xs = a in
let y,ys = b in
i_affine_ratio_lt Z.(sub x (mul k (succ y))) xs (i_times k ys)
else
if i_neg0 a || i_neg1 b then
let x,xs = a in
let y,ys = b in
i_affine_ratio_leq Z.(sub x (mul k y)) xs (i_times k ys)
else
raise Not_found
and i_ratio_min b a k =
if i_pos0 a || i_pos1 b then
let x,xs = a in
let y,ys = b in
i_affine_ratio_leq Z.(sub (mul k y) x) (i_times k ys) xs
else
if i_neg0 a || i_neg0 b then
let x,xs = a in
let y,ys = b in
i_affine_ratio_lt Z.(sub (mul k (pred y)) x) (i_times k ys) xs
else
raise Not_found
and i_affine_ratio_leq c xs ys =
try match i_ratio xs , i_ratio ys with
| POS(a,k) , NONE ->
i_ratio_max a k (Z.neg c,ys)
| NEG(a,k) , NONE ->
i_ratio_min (c,i_opp ys) a k
| NONE , POS(a,k) ->
i_ratio_min (c,xs) a k
| NONE , NEG(a,k) ->
i_ratio_max a k (Z.neg c,i_opp xs)
| _ ->
i_affine_leq c xs ys
with Not_found ->
i_affine_leq c xs ys
and i_affine_ratio_lt c xs ys =
try match i_ratio xs , i_ratio ys with
| POS(a,k) , NONE ->
i_ratio_max a k (Z.pred (Z.neg c),ys)
| NEG(a,k) , NONE ->
i_ratio_min (Z.succ c,i_opp ys) a k
| NONE , POS(a,k) ->
i_ratio_min (Z.succ c,xs) a k
| NONE , NEG(a,k) ->
i_ratio_max a k (Z.pred (Z.neg c),i_opp xs)
| _ ->
i_affine_lt c xs ys
with Not_found ->
i_affine_lt c xs ys
let is_affine xs ys =
not (List.exists is_real xs || List.exists is_real ys)
let affine_eq c xs ys =
if is_affine xs ys
then i_affine_rel Z.equal c_builtin_eq c xs ys
else r_affine_rel Q.equal c_builtin_eq c xs ys
let affine_neq c xs ys =
if is_affine xs ys
then i_affine_rel (fun x y -> not (Z.equal x y)) c_builtin_neq c xs ys
else r_affine_rel (fun x y -> not (Q.equal x y)) c_builtin_neq c xs ys
let affine_leq c xs ys =
if is_affine xs ys
then i_affine_ratio_leq c xs ys
else r_affine_rel Q.leq c_builtin_leq c xs ys
let affine_lt c xs ys =
if is_affine xs ys
then i_affine_ratio_lt c xs ys
else r_affine_rel Q.lt c_builtin_lt c xs ys
let affine_cmp = function
| EQ -> affine_eq
| LT -> affine_lt
| NEQ -> affine_neq
| LEQ -> affine_leq
let rec unfold_affine acc k = function
| [] -> acc
| t::others -> unfold_affine (unfold_affine1 acc k t) k others
and unfold_affine1 acc k t =
match t.repr with
| Times(n,t) -> unfold_affine1 acc (Z.mul k n) t
| Kint z -> if z == Z.zero then acc else (Z.mul k z , e_one) :: acc
| Add ts -> unfold_affine acc k ts
| Kreal r when Q.(equal r zero) -> acc
| Kreal r -> (Z.one , e_real (q_times k r)) :: acc
| _ -> (k,t) :: acc
let compare_monoms (_,t1) (_,t2) = Stdlib.compare t1.id t2.id
let fold_monom ts k t =
if Z.equal Z.zero k then ts else
if Z.equal Z.one k then t::ts else
times k t :: ts
let rec fold_affine f a = function
| (n1,t1)::(n2,t2)::kts when t1 == t2 ->
fold_affine f a ((Z.add n1 n2,t1)::kts)
| (k,t)::kts ->
begin match t.repr , kts with
| Kreal z , ( k' , { repr = Kreal z' } ) :: kts' ->
let q = Q.add (q_times k z) (q_times k' z') in
fold_affine f a ((Z.one,e_real q) :: kts')
| _ -> fold_affine f (f a k t) kts
end
| [] -> a
let affine a : term Logic.affine =
let kts = unfold_affine1 [] Z.one a in
let xs,cs = List.partition (fun (_,base) -> base.id = e_one.id) kts in
List.fold_left (fun z (k,_) -> Z.add z k) Z.zero cs , xs
let addition ts =
let kts = unfold_affine [] Z.one ts in
let kts = List.sort compare_monoms kts in
c_add (fold_affine fold_monom [] kts)
let substraction a b =
let kts = unfold_affine1 [] Z.one a in
let kts = unfold_affine1 kts Z.minus_one b in
let kts = List.sort compare_monoms kts in
c_add (fold_affine fold_monom [] kts)
let is_affine e = match e.repr with
| Kint _ | Kreal _ | Times _ | Add _ -> true
| _ -> false
let fold_coef g xs k t = fold_monom xs (Z.div k g) t
let rec coef_monoms c = function
| [] -> c , Z.one
| (n,e)::w ->
if e == e_one then coef_monoms (Z.add c n) w else
let rec coef_gcd c p = function
| [] -> c , p
| (n,e)::w ->
if e == e_one
then coef_gcd (Z.add c n) p w
else coef_gcd c Z.(gcd p (abs n)) w
in coef_gcd c (Z.abs n) w
let rec partition_monoms phi xs ys = function
| [] -> xs,ys
| (k,t) :: kts ->
if t == e_one
then partition_monoms phi xs ys kts
else
if Z.leq Z.zero k
then partition_monoms phi (phi xs k t) ys kts
else partition_monoms phi xs (phi ys (Z.neg k) t) kts
let collect_monoms xs k t = if Z.(equal k zero) then xs else (k,t)::xs
let relation rel cmp x y =
if is_affine x || is_affine y then
let kts = unfold_affine1 (unfold_affine1 [] Z.one x) Z.minus_one y in
let kts = List.sort compare_monoms kts in
let kts = fold_affine collect_monoms [] kts in
let k,g = coef_monoms Z.zero kts in
if Z.(equal g one) || List.exists (fun (_,e) -> not (is_int e)) kts then
let xs,ys = partition_monoms fold_monom [] [] kts in
affine_cmp cmp k xs ys
else
let k,r = Z.div_rem k g in
if Z.(equal r zero) then
let xs,ys = partition_monoms (fold_coef g) [] [] kts in
affine_cmp cmp k xs ys
else match cmp with
| EQ -> e_false
| NEQ -> e_true
| LT | LEQ ->
let xs,ys = partition_monoms (fold_coef g) [] [] kts in
let cmp = if Z.(lt zero r) then LT else LEQ in
affine_cmp cmp k xs ys
else rel x y
let rec mul_unfold acc = function
| [] -> acc
| t::others ->
match t.repr with
| Times(z,t) -> mul_unfold (e_zint z :: acc) (t::others)
| Mul ts -> mul_unfold (mul_unfold acc ts) others
| _ -> mul_unfold (t::acc) others
let multiplication ts =
let ts = mul_unfold [] ts in
if List.exists is_real ts then
let r,ts = r_ground Q.mul Q.one [] ts in
if Q.equal Q.zero r then e_real Q.zero else
if ts=[] then e_real r else
if Q.equal r Q.one then c_mul ts else c_mul (e_real r :: ts)
else
let s,ts = i_ground Z.mul Z.one [] ts in
if Z.equal Z.zero s then e_zint Z.zero else
if ts=[] then e_zint s else
let t = c_mul ts in
if Z.equal s Z.one then t else c_times s t
let e_times k x =
if Z.equal k Z.one then x else
if Z.equal k Z.zero then e_zero else
let kts = unfold_affine1 [] k x in
let kts = List.sort compare_monoms kts in
c_add (fold_affine fold_monom [] kts)
let e_div a b =
match a.repr , b.repr with
| _ , Kint z when Z.equal z Z.one -> a
| _ , Kint z when Z.equal z Z.minus_one -> times Z.minus_one a
| Times(k,e) , Kint k' when not (Z.equal k' Z.zero) ->
let q,r = Z.div_rem k k' in
if Z.equal r Z.zero
then e_times q e
else c_div a b
| Kint k , Kint k' when not (Z.equal k' Z.zero) -> e_zint (Z.div k k')
| Kreal r , Kint a when not (Z.equal a Z.zero) ->
e_real Q.(make r.num (Z.mul a r.den))
| Kint a , Kreal b when not (Q.equal b Q.zero) ->
e_real Q.(make (Z.mul a b.den) b.num)
| Kreal a , Kreal b when not (Q.equal b Q.zero) ->
e_real (Q.div a b)
| _ -> c_div a b
let e_mod a b =
match a.repr , b.repr with
| _ , Kint z when Z.equal z Z.one -> e_zero
| Times(k,e) , Kint k' when not (Z.equal k' Z.zero) ->
let r = Z.rem k k' in
if Z.equal r Z.zero
then e_zero
else c_mod (e_times r e) b
| Kint k , Kint k' when not (Z.equal k' Z.zero) -> e_zint (Z.rem k k')
| _ -> c_mod a b
let e_lt x y =
if x==y then e_false else relation c_builtin_lt LT x y
let () = extern_lt := e_lt
let e_leq x y =
if x==y then e_true else relation c_builtin_leq LEQ x y
let () = extern_leq := e_leq
let decide e = (e == e_true)
let is_true e = match e.repr with
| True -> Logic.Yes
| False -> Logic.No
| _ -> Logic.Maybe
let is_false e = match e.repr with
| True -> Logic.No
| False -> Logic.Yes
| _ -> Logic.Maybe
let rec fold_and acc xs =
match xs with
| [] -> acc
| x::others ->
match x.repr with
| False -> raise Absorbant
| True -> fold_and acc others
| And xs -> fold_and (fold_and acc xs) others
| _ -> fold_and (x::acc) others
let rec fold_or acc xs =
match xs with
| [] -> acc
| x::others ->
match x.repr with
| True -> raise Absorbant
| False -> fold_or acc others
| Or xs -> fold_or (fold_or acc xs) others
| _ -> fold_or (x::acc) others
let conjunction ts =
try
let ms = fold_and [] ts in
let ms = List.sort_uniq compare_raising_absorbant ms in
c_and ms
with Absorbant -> e_false
let disjunction ts =
try
let ms = fold_or [] ts in
let ms = List.sort_uniq compare_raising_absorbant ms in
c_or ms
with Absorbant -> e_true
module Consequence =
struct
type p = CONJ | DISJ
type t = { mutable modif : bool ; polarity : p }
let mark w = w.modif <- true ; w
let rec gen w hs ts =
match hs with
| [] -> ts
| h :: hws ->
match w.polarity with
| CONJ -> aux w ~absorb:(e_not h) ~filter:h hws ts
| DISJ -> aux w ~absorb:h ~filter:(e_not h) hws ts
and aux w ~absorb ~filter hws ts =
match ts with
| [] -> ts
| t :: tws ->
if absorb == t then raise Absorbant ;
let cmp = compare filter t in
if cmp < 0
then gen w hws ts else
if cmp > 0
then t :: aux (mark w) ~absorb ~filter hws tws
else gen (mark w) hws tws
let filter polarity hs ts =
let w = { modif = false ; polarity } in
let ws = gen w hs ts in
if w.modif then ws else ts
end
let consequence_and = Consequence.(filter CONJ)
let consequence_or = Consequence.(filter DISJ)
let merge hs hs0 = List.sort_uniq compare_raising_absorbant (hs@hs0)
let rec implication hs b = match b.repr with
| Imply(hs0,b0) -> implication_imply hs b hs0 b0
| And bs -> implication_and [] hs b bs
| Or bs -> implication_or [] hs b bs
| _ -> c_imply hs b
and implication_and hs0 hs b0 bs = try
let hs'= merge hs0 hs in
try
match consequence_and hs bs with
| [] -> e_true
| [b] -> implication hs' b
| bs' -> c_imply hs' (if bs'==bs then b0 else c_and bs')
with Absorbant -> implication_false hs'
with Absorbant -> e_true
and implication_or hs0 hs b0 bs = try
let hs'= merge hs0 hs in
match consequence_or hs bs with
| [] -> implication_false hs'
| [b] -> implication hs' b
| bs' -> c_imply hs' (if bs'==bs then b0 else c_or bs')
with Absorbant -> e_true
and implication_imply hs b hs0 b0 = try
match consequence_and hs [b0] with
| [] -> e_true
| _ -> try
match consequence_and hs0 hs with
| [] -> b
| hs ->
match b0.repr with
| And bs -> implication_and hs0 hs b0 bs
| Or bs -> implication_or hs0 hs b0 bs
| _ -> c_imply (merge hs0 hs) b0
with Absorbant -> e_true
with Absorbant ->
try implication_false (merge hs hs0)
with Absorbant -> e_true
and implication_false hs =
e_not (c_and hs)
let rec consequence_aux hs x = match x.repr with
| And xs -> begin try
match consequence_and hs xs with
| [] -> e_true
| [x] -> consequence_aux hs x
| hs -> if hs==xs then x else c_and hs
with Absorbant -> e_false
end
| Or xs -> begin try
match consequence_and hs xs with
| [] -> e_false
| [x] -> consequence_aux hs x
| hs -> if hs==xs then x else c_or hs
with Absorbant -> e_true
end
| Not x -> e_not (consequence_aux hs x)
| Imply (xs, b) -> begin
let b' = consequence_aux hs b in
match b'.repr with
| True -> b'
| _ -> begin try
let xs' = consequence_and hs xs in
match b==b', xs==xs', xs' with
| true, true, _ -> x
| _, false, [] -> b'
| true, false, _ -> c_imply xs' b'
| false, _, _ -> implication xs' b'
with Absorbant -> e_false
end
end
| _ -> x
let consequence h x =
let not_x = e_not x in
match h.repr with
| True -> x
| False -> x
| _ when h == x -> e_true
| _ when h == not_x -> e_false
| And hs -> consequence_aux hs x
| _ -> consequence_aux [h] x
type structural =
| S_diff
| S_injection
| S_invertible
| S_invertible_both
| S_invertible_left
| S_invertible_right
| S_functions
let is_ac f = match Fun.category f with
| Logic.Operator op -> op.associative && op.commutative
| _ -> false
let is_invertible_assoc = function
| { invertible=true ; associative=true } -> true
| _ -> false
let structural f g =
if Fun.equal f g then
match Fun.category f with
| Logic.Operator { invertible=true } -> S_invertible
| Logic.Injection | Logic.Constructor -> S_injection
| Logic.Function | Logic.Operator _ -> S_functions
else
match Fun.category f , Fun.category g with
| Logic.Constructor , Logic.Constructor -> S_diff
| Logic.Operator fop , Logic.Operator gop
when (is_invertible_assoc fop) && (is_invertible_assoc gop) -> S_invertible_both
| Logic.Operator op , _ when is_invertible_assoc op -> S_invertible_left
| _ , Logic.Operator op when is_invertible_assoc op -> S_invertible_right
| _ -> S_functions
let contrary x y = (is_prop x || is_prop y) && (e_not x == y)
let e_all2 phi xs ys =
let n = List.length xs in
let m = List.length ys in
if n <> m then e_false else conjunction (List.map2 phi xs ys)
let e_any2 phi xs ys =
let n = List.length xs in
let m = List.length ys in
if n <> m then e_true else disjunction (List.map2 phi xs ys)
let typeof2 x y = if x.tau = None then y.tau else x.tau
let rec e_eq x y =
if x == y then e_true else relation eq_symb EQ x y
and eq_symb x y =
match x.repr , y.repr with
| Kint z , Kint z' -> if Z.equal z z' then e_true else e_false
| Kreal z , Kreal z' -> if Q.equal z z' then e_true else e_false
| Kint a , Kreal r | Kreal r , Kint a ->
if Q.equal r (Q.of_bigint a) then e_true else e_false
| True , _ -> y
| _ , True -> x
| False , _ -> e_not y
| _ , False -> e_not x
| Fun(f,xs) , Fun(g,ys) ->
begin
match structural f g with
| S_diff -> e_false
| S_injection -> e_all2 e_eq xs ys
| S_functions -> c_builtin_eq x y
| S_invertible -> eq_invertible x y f xs ys
| S_invertible_left -> eq_invertible x y f xs [y]
| S_invertible_right -> eq_invertible x y g [x] ys
| S_invertible_both -> eq_invertible_both x y f g xs ys
end
| Rdef fxs , Rdef gys ->
begin
try e_all2 eq_field fxs gys
with Exit -> e_false
end
| Acst(_,a) , Acst(_,b) -> e_eq a b
| Acst(_,v0) , Aset(m,_,v) -> conjunction [e_eq v v0 ; e_eq x m]
| Aset(m,_,v) , Acst(_,v0) -> conjunction [e_eq v v0 ; e_eq m y]
| _ when contrary x y -> e_false
| Fun _ , _ | _ , Fun _ -> c_builtin_eq x y
| _ -> c_eq x y
and eq_invertible x y f xs ys =
let modified,xs,ys = op_invertible ~ac:(is_ac f) xs ys in
if modified
then
let tr = typeof2 x y in
eq_symb (e_fungen f xs tr) (e_fungen f ys tr)
else c_builtin_eq x y
and eq_invertible_both x y f g xs ys =
let modified,xs',ys' = op_invertible ~ac:(is_ac f) xs [y] in
if modified
then
let tr = typeof2 x y in
eq_symb (e_fungen f xs' tr) (e_fungen f ys' tr)
else eq_invertible x y g [x] ys
and eq_field (f,x) (g,y) =
if Field.equal f g then e_eq x y else raise Exit
let () = extern_eq := e_eq
let rec e_neq x y =
if x == y then e_false else relation neq_symb NEQ x y
and neq_symb x y =
match x.repr , y.repr with
| Kint z , Kint z' -> if Z.equal z z' then e_false else e_true
| Kreal z , Kreal z' -> if Q.equal z z' then e_false else e_true
| Kreal r , Kint a | Kint a , Kreal r ->
if Q.equal r (Q.of_bigint a) then e_false else e_true
| True , _ -> e_not y
| _ , True -> e_not x
| False , _ -> y
| _ , False -> x
| Fun(f,xs) , Fun(g,ys) ->
begin
match structural f g with
| S_diff -> e_true
| S_injection -> e_any2 e_neq xs ys
| S_functions -> c_builtin_neq x y
| S_invertible -> neq_invertible x y f xs ys
| S_invertible_left -> neq_invertible x y f xs [y]
| S_invertible_right -> neq_invertible x y g [x] ys
| S_invertible_both -> neq_invertible_both x y f g xs ys
end
| Rdef fxs , Rdef gys ->
begin
try e_any2 neq_field fxs gys
with Exit -> e_true
end
| Acst(_,a) , Acst(_,b) -> e_neq a b
| Acst(_,v0) , Aset(m,_,v) -> disjunction [e_neq v v0 ; e_neq x m]
| Aset(m,_,v) , Acst(_,v0) -> disjunction [e_neq v v0 ; e_neq m y]
| _ when contrary x y -> e_true
| Fun _ , _ | _ , Fun _ -> c_builtin_neq x y
| _ -> c_neq x y
and neq_invertible x y f xs ys =
let modified,xs,ys = op_invertible ~ac:(is_ac f) xs ys in
if modified
then
let tr = typeof2 x y in
neq_symb (e_fungen f xs tr) (e_fungen f ys tr)
else c_builtin_neq x y
and neq_invertible_both x y f g xs ys =
let modified,xs',ys' = op_invertible ~ac:(is_ac f) xs [y] in
if modified
then
let tr = typeof2 x y in
neq_symb (e_fungen f xs' tr) (e_fungen f ys' tr)
else neq_invertible x y g [x] ys
and neq_field (f,x) (g,y) =
if Field.equal f g then e_neq x y else raise Exit
let () = extern_neq := e_neq
let e_or = function
| [] -> e_false
| [t] -> t
| ts -> disjunction ts
let e_and = function
| [] -> e_true
| [t] -> t
| ts -> conjunction ts
let rec imply1 a b =
match a.repr , b.repr with
| _ , False -> e_not a
| Not p , Not q -> imply1 q p
| _ when a == b -> e_true
| _ when a == e_not b -> b
| _, _ -> implication [a] b
let imply2 hs b =
match b.repr with
| And bs -> implication_and [] hs b bs
| _ -> try
match consequence_and hs [b] with
| [] -> e_true
| _ ->
match b.repr with
| Or bs -> implication_or [] hs b bs
| Imply(hs0,b0) -> implication_imply hs b hs0 b0
| _ -> c_imply hs b
with Absorbant -> implication_false hs
let e_imply hs p =
match p.repr with
| True -> e_true
| _ ->
try
let hs = fold_and [] hs in
let hs = List.sort_uniq compare_raising_absorbant hs in
match hs with
| [] -> p
| [a] -> imply1 a p
| _ -> imply2 hs p
with Absorbant -> e_true
let () = cached_not := function
| And xs -> e_or (List.map e_not xs)
| Or xs -> e_and (List.map e_not xs)
| Imply(hs,p) -> e_and (e_not p :: hs)
| _ -> assert false
let e_if e a b =
match e.repr with
| True -> a
| False -> b
| _ ->
if a == b then a else
match a.repr , b.repr with
| True , _ -> disjunction [e;b]
| _ , False -> conjunction [e;a]
| False , _ -> conjunction [e_not e;b]
| _ , True -> disjunction [e_not e;a]
| _ ->
match e.repr with
| Not e0 -> c_if e0 b a
| Neq(u,v) -> c_if (e_eq u v) b a
| _ -> c_if e a b
let () = extern_ite := e_if
let e_bool = function true -> e_true | false -> e_false
let e_literal v p = if v then p else e_not p
let literal p = match p.repr with
| Neq(a,b) -> false , c_eq a b
| Lt(x,y) -> false , c_leq y x
| Not q -> false , q
| _ -> true , p
let are_equal a b = is_true (e_eq a b)
let eval_eq a b = (e_eq a b == e_true)
let eval_neq a b = (e_eq a b == e_false)
let eval_lt a b = (e_lt a b == e_true)
let eval_leq a b = (e_leq a b == e_true)
let rec e_get m k =
match m.repr with
| Acst(_,v) -> v
| Aset(m0,k0,v0) ->
begin
match are_equal k k0 with
| Yes -> v0
| No -> e_get m0 k
| Maybe -> c_get m k
end
| (Fun _ | Aget _) ->
begin
try
let rec getmatrix m0 ks =
match m0.repr with
| Aget(m0,k) -> getmatrix m0 (k::ks)
| Fun(f,es) -> (BUILTIN.find f !state.builtins_get) es (List.rev ks)
| _ -> raise Not_found
in getmatrix m [k]
with Not_found -> c_get m k
end
| _ -> c_get m k
let rec e_set m k v =
match m.repr with
| Acst(_,v0) ->
begin
match are_equal v v0 with
| Yes -> m
| No | Maybe -> c_set m k v
end
| Aset(m0,k0,_) ->
begin
match are_equal k k0 with
| Yes -> e_set m0 k0 v
| No | Maybe -> c_set m k v
end
| _ -> c_set m k v
let e_const (k:tau) v = c_const k v
let rec get_field m0 f = function
| [] -> c_getfield m0 f
| (g,y)::gys -> if Field.equal f g then y else get_field m0 f gys
let e_getfield m f =
match m.repr with
| Rdef gys -> get_field m f gys
| Fun(lf,es) ->
begin
try FIELD.find f (BUILTIN.find lf !state.builtins_fld) es
with Not_found -> c_getfield m f
end
| _ -> c_getfield m f
let e_record fxs = c_record fxs
type record = (Field.t * term) list
let e_equiv = e_eq
let e_sum = addition
let e_prod = multiplication
let e_opp x = e_times Z.minus_one x
let e_add x y = addition [x;y]
let e_sub x y = substraction x y
let e_mul x y = multiplication [x;y]
let cache () = ref Tmap.empty
let get mu f e =
try Tmap.find e !mu with Not_found ->
let v = f e in mu := Tmap.add e v !mu ; v
let set mu e v = mu := Tmap.add e v !mu
let lc_closed e = Bvars.closed e.bind
let lc_closed_at n e = Bvars.closed_at n e.bind
let lc_vars e = e.bind
let lc_repr e = e
let lc_alpha f e0 =
match e0.repr with
| Kint _ | Kreal _ | Fvar _ | Bvar _ | True | False -> e0
| Not e -> c_not (f e)
| Add xs -> c_add (List.map f xs)
| Mul xs -> c_mul (List.map f xs)
| And xs -> c_and (List.map f xs)
| Or xs -> c_or (List.map f xs)
| Mod(x,y) -> c_mod (f x) (f y)
| Div(x,y) -> c_div (f x) (f y)
| Eq(x,y) -> c_eq (f x) (f y)
| Neq(x,y) -> c_neq (f x) (f y)
| Lt(x,y) -> c_lt (f x) (f y)
| Leq(x,y) -> c_leq (f x) (f y)
| Times(z,t) -> c_times z (f t)
| If(e,a,b) -> c_if (f e) (f a) (f b)
| Imply(hs,p) -> c_imply (List.map f hs) (f p)
| Fun(g,xs) -> c_fun g (List.map f xs) e0.tau
| Acst(t,v) -> c_const t v
| Aget(x,y) -> c_get (f x) (f y)
| Aset(x,y,z) -> c_set (f x) (f y) (f z)
| Rget(x,g) -> c_getfield (f x) g
| Rdef gxs -> c_record (List.map (fun (g,x) -> g, f x) gxs)
| Apply(e,es) -> c_apply (f e) (List.map f es)
| Bind(q,t,e) -> c_bind q t (f e)
let lc_close x (lc : lc_term) : lc_term =
let rec walk mu x lc =
if Vars.mem x lc.vars then
get mu (lc_alpha (walk mu x)) lc
else lc in
let k = Bvars.order lc.bind in
let t = tau_of_var x in
let mu = cache () in
set mu (e_var x) (c_bvar k t) ;
walk mu x lc
let lc_close_xs ?(subset = false) ~reversed xs (lc : lc_term) : lc_term =
let mu = cache () in
begin
if reversed then
let n = Bvars.order lc.bind in
List.iteri (fun i x ->
set mu (e_var x) (c_bvar (n+i) (tau_of_var x))
) xs
else
let n = Bvars.order lc.bind + List.length xs -1 in
List.iteri (fun i x ->
set mu (e_var x) (c_bvar (n-i) (tau_of_var x))
) xs
end;
if subset then
let rec walk mu lc =
if not (Vars.is_empty lc.vars) then
get mu (lc_alpha (walk mu)) lc
else lc in
walk mu lc
else
let xs = List.fold_left (fun xs x -> Vars.add x xs) Vars.empty xs in
let rec walk mu lc =
if Vars.intersect xs lc.vars then
get mu (lc_alpha (walk mu)) lc
else lc in
walk mu lc
let lc_open x (lc : lc_term) : lc_term =
let rec walk mu k lc =
if Bvars.contains k lc.bind then
get mu (lc_alpha (walk mu k)) lc
else lc in
let k = Bvars.order lc.bind in
let t = tau_of_var x in
let mu = cache () in
set mu (c_bvar k t) (e_var x) ;
walk mu k lc
let rebuild f e0 =
match e0.repr with
| Kint _ | Kreal _ | Fvar _ | Bvar _ | True | False -> e0
| Not e -> e_not (f e)
| Add xs -> e_sum (List.map f xs)
| Mul xs -> e_prod (List.map f xs)
| And xs -> e_and (List.map f xs)
| Or xs -> e_or (List.map f xs)
| Mod(x,y) -> e_mod (f x) (f y)
| Div(x,y) -> e_div (f x) (f y)
| Eq(x,y) -> e_eq (f x) (f y)
| Neq(x,y) -> e_neq (f x) (f y)
| Lt(x,y) -> e_lt (f x) (f y)
| Leq(x,y) -> e_leq (f x) (f y)
| Times(z,t) -> e_times z (f t)
| If(e,a,b) -> e_if (f e) (f a) (f b)
| Imply(hs,p) -> e_imply (List.map f hs) (f p)
| Fun(g,xs) -> e_fungen g (List.map f xs) e0.tau
| Acst(t,v) -> e_const t v
| Aget(x,y) -> e_get (f x) (f y)
| Aset(x,y,z) -> e_set (f x) (f y) (f z)
| Rget(x,g) -> e_getfield (f x) g
| Rdef gxs -> e_record (List.map (fun (g,x) -> g, f x) gxs)
| Bind(q,t,a) -> c_bind q t (f a)
| Apply(e,es) -> c_apply (f e) (List.map f es)
type sigma = {
pool : pool ;
mutable filter : (term -> bool) list ;
mutable shared : sfun ;
} and sfun =
| EMPTY
| FUN of (term -> term) * sfun
| MAP of term Tmap.t * sfun
module Subst =
struct
type t = sigma
let create ?pool () = {
pool = POOL.create ?copy:pool () ;
shared = EMPTY ;
filter = [] ;
}
let copy sigma = {
pool = POOL.create ~copy:sigma.pool () ;
shared = sigma.shared ;
filter = sigma.filter ;
}
let validate fn e =
if not (lc_closed e) then
begin
raise (Invalid_argument (fn ^ ": non lc-closed binding"))
end
let cache sigma =
ref begin
match sigma.shared with MAP( m , _ ) -> m | _ -> Tmap.empty
end
let fresh sigma t = fresh sigma.pool t
let call f e =
if lc_closed e then
let v = f e in
validate "Qed.Subst.add_fun" v ; v
else raise Not_found
let rec compute e = function
| EMPTY -> raise Not_found
| FUN(f,EMPTY) -> call f e
| MAP(m,EMPTY) -> Tmap.find e m
| FUN(f,s) -> (try call f e with Not_found -> compute e s)
| MAP(m,s) -> (try Tmap.find e m with Not_found -> compute e s)
let find sigma a = compute a sigma.shared
let filter sigma a =
List.for_all (fun f -> f a) sigma.filter
let add sigma a b =
validate "Qed.Subst.add (domain)" a ;
validate "Qed.Subst.add (codomain)" b ;
sigma.shared <- match sigma.shared with
| MAP(m,s) -> MAP (Tmap.add a b m,s)
| (FUN _ | EMPTY) as s -> MAP (Tmap.add a b Tmap.empty,s)
let add_fun sigma f =
sigma.shared <- FUN(f,sigma.shared)
let add_filter sigma f =
sigma.filter <- f :: sigma.filter
let add_var sigma x = add_var sigma.pool x
let add_term sigma e = add_vars sigma.pool e.vars
let add_vars sigma xs = add_vars sigma.pool xs
end
let sigma = Subst.create
let filter sigma e =
Subst.filter sigma e || not (Bvars.is_empty e.bind)
let bind_qxs qxs e =
let qxs = List.filter (function
| Lambda, _ -> true
| Forall, x | Exists, x -> Vars.mem x e.vars
) qxs in
let rxs = List.map (fun (_q, x) -> x) qxs in
let e = lc_close_xs ~reversed:true rxs e in
List.fold_left (fun e (q, x) -> c_bind q (tau_of_var x) e) e qxs
let rec subst sigma alpha e =
if filter sigma e then
incache (Subst.cache sigma) sigma alpha e
else e
and incache mu sigma alpha e =
if filter sigma e then
get mu (compute mu sigma alpha) e
else e
and compute mu sigma alpha e =
try Subst.find sigma e with Not_found ->
let r =
match e.repr with
| Bvar(k,_) -> Intmap.find k alpha
| Bind _ ->
bind sigma alpha [] e
| Apply(e,es) ->
let phi = incache mu sigma alpha in
apply sigma Intmap.empty (phi e) (List.map phi es)
| _ -> rebuild (incache mu sigma alpha) e
in
(if lc_closed e && lc_closed r then Subst.add sigma e r) ;
r
and bind sigma alpha qs e =
match e.repr with
| Bind(q,t,a) ->
let k = Bvars.order a.bind in
let x = Subst.fresh sigma t in
let alpha = Intmap.add k (e_var x) alpha in
let qs = (q,x) :: qs in
bind sigma alpha qs a
| _ -> bind_qxs qs (subst sigma alpha e)
and apply sigma beta f vs =
match f.repr, vs with
| Bind(_,_,g) , v::vs ->
let k = Bvars.order g.bind in
apply sigma (Intmap.add k v beta) g vs
| _ ->
let f' = if Intmap.is_empty beta then f else subst sigma beta f in
c_apply f' vs
let e_subst sigma e =
Subst.validate "Qed.e_subst (target)" e ;
subst sigma Intmap.empty e
let e_subst_var x v e =
Subst.validate "Qed.e_subst_var (value)" v ;
Subst.validate "Qed.e_subst_var (target)" e ;
let filter e = Vars.mem x e.vars in
if not (filter e) then e else
if Bvars.is_empty v.bind && Bvars.is_empty e.bind then
let rec walk mu e =
if filter e then
get mu (rebuild (walk mu)) e
else e
in
let cache = cache () in
set cache (e_var x) v ;
walk cache e
else
let sigma = Subst.create () in
Subst.add sigma (e_var x) v ;
Subst.add_term sigma v ;
Subst.add_term sigma e ;
Subst.add_filter sigma filter ;
subst sigma Intmap.empty e
let e_apply e es =
let sigma = Subst.create () in
Subst.add_term sigma e ;
List.iter (Subst.add_term sigma) es ;
apply sigma Intmap.empty e es
let rebuild_in_state to_state ?(cache=Tmap.empty) e =
let cache_find m e = Tmap.find e !m in
let cache_bind m e v = m := Tmap.add e v !m ; v in
let m = ref cache in
let rec aux e =
try cache_find m e
with Not_found ->
let r = match e.repr with
| Kint i -> e_zint i
| Kreal r -> e_real r
| Fvar v -> e_var v
| Bvar (v,t) -> c_bvar v t
| True -> e_true
| False -> e_false
| Not e -> e_not (aux e)
| Add xs -> addition (List.map aux xs)
| Mul xs -> multiplication (List.map aux xs)
| And xs -> e_and (List.map aux xs)
| Or xs -> e_or (List.map aux xs)
| Mod(x,y) -> e_mod (aux x) (aux y)
| Div(x,y) -> e_div (aux x) (aux y)
| Eq(x,y) -> e_eq (aux x) (aux y)
| Neq(x,y) -> e_neq (aux x) (aux y)
| Lt(x,y) -> e_lt (aux x) (aux y)
| Leq(x,y) -> e_leq (aux x) (aux y)
| Times(z,t) -> times z (aux t)
| If(e,a,b) -> e_if (aux e) (aux a) (aux b)
| Imply(hs,p) -> e_imply (List.map aux hs) (aux p)
| Fun(g,xs) -> e_fungen g (List.map aux xs) e.tau
| Acst(t,v) -> e_const t (aux v)
| Aget(x,y) -> e_get (aux x) (aux y)
| Aset(x,y,z) -> e_set (aux x) (aux y) (aux z)
| Rget(x,g) -> e_getfield (aux x) g
| Rdef gxs -> e_record (List.map (fun (g,x) -> g, aux x) gxs)
| Apply(e,es) -> c_apply (aux e) (List.map aux es)
| Bind(q,t,e) -> c_bind q t (aux e)
in
cache_bind m e r
in
let r = in_state to_state aux e in
r, !m
let let_intro_case q x a =
let res = ref None in
let found_term t = assert (!res = None);
assert (not (Vars.mem x t.vars));
if not (lc_closed t) then false else
(res := Some t; true)
in
let is_term_ok a b =
match a.repr with
| Fvar w -> assert (Var.equal x w); found_term b
| Add e ->
let is_var t = match t.repr with|Fvar v -> Var.equal x v|_->false in
let rec add_case es = match es with
| [] -> assert false
| t::ts ->
if not (Vars.mem x t.vars) then add_case ts else
if not (is_var t) then false else
if not (List.for_all (fun t -> not (Vars.mem x t.vars)) ts)
then false
else begin
let rec fold_until_es acc ys = match ys with
| [] -> assert false
| _ when ys==es -> acc
| y::ys -> fold_until_es (y::acc) ys
in
let = List.rev_append (fold_until_es [] e) ts in
let reverse = e_sum (b::(List.map e_opp extracted)) in
found_term reverse
end
in add_case e
| _ -> false
in
let is_var_ok u v =
match (Vars.mem x u.vars), (Vars.mem x v.vars) with
| true,false -> is_term_ok u v
| false,true -> is_term_ok v u
| _,_ -> false
in
let is_boolean_var polarity_term = function
| Fvar w when Var.equal x w -> found_term polarity_term
| _ -> false
in
let is_eq e = match e.repr with | Eq(u,v) -> is_var_ok u v
| Not q -> is_boolean_var e_false q.repr
| rep -> is_boolean_var e_true rep in
let is_neq e = match e.repr with | Neq(u,v)-> is_var_ok u v
| Not q -> is_boolean_var e_true q.repr
| rep -> is_boolean_var e_false rep in
match q with
| Lambda -> None
| Forall ->
let rec forall_case e = match e.repr with
| Or b -> List.exists is_neq b
| Imply (hs,b) -> List.exists is_eq hs || is_neq b
| Bind(Forall,_,b) -> forall_case b
| _ -> is_neq e
in ignore(forall_case a); !res
| Exists ->
let rec exists_case e = match e.repr with
| And b -> List.exists is_eq b
| Bind(Exists,_,b) -> exists_case b
| _ -> is_eq e
in ignore(exists_case a); !res
let e_open ~pool ?(forall=true) ?(exists=true) ?(lambda=true) a =
match a.repr with
| Bind _ ->
let filter = function
| Forall -> forall
| Exists -> exists
| Lambda -> lambda in
let rec walk qs a = match a.repr with
| Bind(q,t,b) when filter q ->
let x = fresh pool t in
walk ((q,x)::qs) (lc_open x b)
| _ -> qs , a
in walk [] a
| _ -> [],a
let e_unbind x (lc : lc_term) : term =
assert (not (Vars.mem x lc.vars)); lc_open x lc
let e_bind q x (e : term) =
let do_bind =
match q with Forall | Exists -> Vars.mem x e.vars | Lambda -> true in
if do_bind then
match let_intro_case q x e with
| Some v -> e_subst_var x v e
| _ -> c_bind q (tau_of_var x) (lc_close x e)
else e
let e_close qs a = List.fold_left (fun b (q,x) -> e_bind q x b) a qs
let bind_xs q xs e =
let xs = match q with
| Lambda -> xs
| Forall | Exists -> List.filter (fun x -> Vars.mem x e.vars) xs
in
let rec aux e xs =
let e, xs, changed = List.fold_right (fun x (e, xs', b) ->
match let_intro_case q x e with
| None -> e, x::xs', b
| Some v -> e_subst_var x v e, xs', true
) xs (e, [], false) in
if changed then aux e xs else e, xs
in
let e, xs = aux e xs in
let e = lc_close_xs ~reversed:false xs e in
List.fold_right (fun x e -> c_bind q (tau_of_var x) e) xs e
let e_forall = bind_xs Forall
let e_exists = bind_xs Exists
let e_lambda = bind_xs Lambda
let bind_all q e =
let rec aux e =
let e, changed = Vars.fold (fun x (e, b) ->
match let_intro_case q x e with
| None -> e, b
| Some v -> e_subst_var x v e, true
) e.vars (e, false) in
if changed then aux e else e
in
let e = aux e in
let rxs = List.sort (fun x y -> POOL.compare y x) (Vars.elements e.vars) in
let e = lc_close_xs ~subset:true ~reversed:true rxs e in
List.fold_left (fun e x -> c_bind q (tau_of_var x) e) e rxs
let e_close_forall = bind_all Forall
let e_close_exists = bind_all Exists
let e_close_lambda = bind_all Lambda
let e_repr ?result = function
| Bvar _ | Bind _ -> raise (Invalid_argument "Qed.e_repr")
| True -> e_true
| False -> e_false
| Kint z -> e_zint z
| Kreal r -> e_real r
| Fvar x -> e_var x
| Apply(a,xs) -> e_apply a xs
| Times(k,e) -> e_times k e
| Not e -> e_not e
| Add xs -> e_sum xs
| Mul xs -> e_prod xs
| And xs -> e_and xs
| Or xs -> e_or xs
| Mod(x,y) -> e_mod x y
| Div(x,y) -> e_div x y
| Eq(x,y) -> e_eq x y
| Neq(x,y) -> e_neq x y
| Lt(x,y) -> e_lt x y
| Leq(x,y) -> e_leq x y
| If(e,a,b) -> e_if e a b
| Imply(hs,p) -> e_imply hs p
| Fun(g,xs) -> e_fungen g xs result
| Acst(t,v) -> e_const t v
| Aget(m,k) -> e_get m k
| Aset(m,k,v) -> e_set m k v
| Rget(r,f) -> e_getfield r f
| Rdef fvs -> e_record fvs
let lc_iter f e = repr_iter f e.repr
let f_map ?pool ?forall ?exists ?lambda f e =
match e.repr with
| Apply(a,xs) -> e_apply (f a) (List.map f xs)
| Bind _ ->
let pool = match pool with
| None -> raise (Invalid_argument "Qed.ogic.Term.f_map")
| Some pool -> pool in
let ctx,a = e_open ~pool ?forall ?exists ?lambda e in
e_close ctx (rebuild f a)
| _ -> rebuild f e
let f_iter ?pool ?forall ?exists ?lambda f e =
match e.repr with
| Bind _ ->
let pool = match pool with
| None -> raise (Invalid_argument "Qed.ogic.Term.f_iter")
| Some pool -> pool in
let _,a = e_open ~pool ?forall ?exists ?lambda e in
f a
| _ -> repr_iter f e.repr
let e_fun ?result f xs = e_fungen f xs result
let () = pretty_debug := debug
let record_with fvs =
let bases = ref Tmap.empty in
let best = ref None in
List.iter
(fun (f,v) ->
match v.repr with
| Rget(base,g) when Field.equal f g ->
let count =
try succ (Tmap.find base !bases)
with Not_found -> 1
in
bases := Tmap.add base count !bases ;
( match !best with
| Some(_,c) when c < count -> ()
| _ -> best := Some(base,count) )
| _ -> ()
) fvs ;
match !best with
| None -> None
| Some(base,_) ->
let fothers = List.filter
(fun (f,v) ->
match v.repr with
| Rget( other , g ) ->
other != base || not (Field.equal f g)
| _ -> true)
fvs
in
if fothers = [] then None
else Some ( base , fothers )
module Term =
struct
type t = term
let hash = hash
let equal = equal
let compare = compare
let pretty = pretty
let debug e = Printf.sprintf "E%03d" e.id
end
let rec count k m e =
if not (Tset.mem e !m) then
begin
incr k ;
m := Tset.add e !m ;
lc_iter (count k m) e ;
end
let size e =
let k = ref 0 in count k (ref Tset.empty) e ; !k
let rec scan_subterm m a e =
if a == e then raise Exit ;
if a.size <= e.size && not (Tset.mem e !m) then
begin
m := Tset.add e !m ;
if Vars.subset a.vars e.vars then
lc_iter (scan_subterm m a) e
end
let is_subterm a e =
(a == e) ||
try scan_subterm (ref Tset.empty) a e ; false
with Exit -> true
type mark =
| Unmarked
| FirstMark
| Marked
type marks = {
marked : (term -> bool) ;
shareable : (term -> bool) ;
subterms : (term -> unit) -> term -> unit ;
mutable mark : mark Tmap.t ;
mutable shared : Tset.t ;
mutable roots : term list ;
}
let get_mark m e =
try Tmap.find e m.mark
with Not_found -> Unmarked
let set_mark m e t =
m.mark <- Tmap.add e t m.mark
let rec walk m r e =
if not (is_simple e) then
begin
match get_mark m e with
| Unmarked ->
if m.marked e then
set_mark m e Marked
else
begin
set_mark m e FirstMark ;
m.subterms (walk m r) e ;
end
| FirstMark ->
if m.shareable e && lc_closed_at r e
then m.shared <- Tset.add e m.shared
else m.subterms (walk m r) e ;
set_mark m e Marked
| Marked ->
()
end
let mark m e =
m.roots <- e :: m.roots ;
walk m (Bvars.order e.bind) e
let share m e =
if lc_closed e then
begin
m.roots <- e :: m.roots ;
m.shared <- Tset.add e m.shared ;
m.mark <- Tmap.add e Marked m.mark ;
m.subterms (walk m (Bvars.order e.bind)) e
end
else mark m e
type defs = {
mutable stack : term list ;
mutable defined : Tset.t ;
}
let rec collect shared defs e =
if not (Tset.mem e defs.defined) then
begin
lc_iter (collect shared defs) e ;
if Tset.mem e shared then
defs.stack <- e :: defs.stack ;
defs.defined <- Tset.add e defs.defined ;
end
let none = fun _ -> false
let all = fun _ -> true
let marks ?(shared=none) ?(shareable=all) ?(subterms=lc_iter) () =
{
shareable ; subterms ;
marked = shared ;
shared = Tset.empty ;
mark = Tmap.empty ;
roots = [] ;
}
let defs m =
let defines = { stack=[] ; defined=Tset.empty } in
List.iter (collect m.shared defines) m.roots ;
List.rev defines.stack
let shared ?shared ?shareable ?subterms es =
let m = marks ?shared ?shareable ?subterms () in
List.iter (mark m) es ;
defs m
let tau_of_sort = function
| Sint -> Int
| Sreal -> Real
| Sbool -> Bool
| Sprop | Sdata | Sarray _ -> raise Not_found
let tau_of_arraysort = function
| Sarray s -> tau_of_sort s
| _ -> raise Not_found
let tau_merge a b =
match a,b with
| Bool , Bool -> Bool
| (Bool|Prop) , (Bool|Prop) -> Prop
| Int , Int -> Int
| (Int|Real) , (Int|Real) -> Real
| _ ->
if Tau.equal a b then a else raise Not_found
let rec merge_list t f = function
| [] -> t
| e::es -> merge_list (tau_merge t (f e)) f es
type env = {
field : Field.t -> tau ;
record : Field.t -> tau ;
call : Fun.t -> tau option list -> tau ;
}
let rec typecheck env e =
match e.tau with
| Some tau -> tau
| None ->
match e.sort with
| Sint -> Int
| Sreal -> Real
| Sbool -> Bool
| Sprop -> Prop
| Sdata | Sarray _ ->
match e.repr with
| Bvar (_,ty) -> ty
| Fvar x -> tau_of_var x
| Acst(t,v) -> Array(t,typecheck env v)
| Aset(m,k,v) ->
(try typecheck env m
with Not_found ->
Array(typecheck env k,typecheck env v))
| Fun(f,es) ->
(try tau_of_sort (Fun.sort f)
with Not_found -> env.call f (List.map (typeof env) es))
| Aget(m,_) ->
(try match typecheck env m with
| Array(_,v) -> v
| _ -> raise Not_found
with Not_found -> tau_of_arraysort m.sort)
| Rdef [] -> raise Not_found
| Rdef ((f,_)::_) -> env.record f
| Rget (_,f) ->
(try tau_of_sort (Field.sort f)
with Not_found -> env.field f)
| True | False -> Bool
| Kint _ -> Int
| Kreal _ -> Real
| Times(_,e) -> typecheck env e
| Add es | Mul es -> merge_list Int (typecheck env) es
| Div (a,b) | Mod (a,b) | If(_,a,b) ->
tau_merge (typecheck env a) (typecheck env b)
| Eq _ | Neq _ | Leq _ | Lt _ | And _ | Or _ | Not _ | Imply _ -> Bool
| Bind((Forall|Exists),_,_) -> Prop
| Apply _ | Bind(Lambda,_,_) -> raise Not_found
and typeof env e = try Some (typecheck env e) with Not_found -> None
let undefined _ = raise Not_found
let typeof ?(field=undefined) ?(record=undefined) ?(call=undefined) e =
typecheck { field ; record ; call } e
end