package frama-c

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file RefUsage.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
(**************************************************************************)
(*                                                                        *)
(*  This file is part of WP plug-in of Frama-C.                           *)
(*                                                                        *)
(*  Copyright (C) 2007-2024                                               *)
(*    CEA (Commissariat a l'energie atomique et aux energies              *)
(*         alternatives)                                                  *)
(*                                                                        *)
(*  you can redistribute it and/or modify it under the terms of the GNU   *)
(*  Lesser General Public License as published by the Free Software       *)
(*  Foundation, version 2.1.                                              *)
(*                                                                        *)
(*  It is distributed in the hope that it will be useful,                 *)
(*  but WITHOUT ANY WARRANTY; without even the implied warranty of        *)
(*  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *)
(*  GNU Lesser General Public License for more details.                   *)
(*                                                                        *)
(*  See the GNU Lesser General Public License version 2.1                 *)
(*  for more details (enclosed in the file licenses/LGPLv2.1).            *)
(*                                                                        *)
(**************************************************************************)

(* ---------------------------------------------------------------------- *)
(* --- Variable Analysis                                              --- *)
(* ---------------------------------------------------------------------- *)

open Ctypes
open Cil_types
open Cil_datatype

(* ---------------------------------------------------------------------- *)
(* --- Varinfo Accesses                                               --- *)
(* ---------------------------------------------------------------------- *)

(** By lattice order of usage *)
type access =
  | NoAccess (** Never used *)
  | ByRef   (** Only used as ["*x"],   equals to [load(shift(load(&x),0))] *)
  | ByArray (** Only used as ["x[_]"], equals to [load(shift(load(&x),_))] *)
  | ByValue (** Only used as ["x"],    equals to [load(&x)] *)
  | ByAddr  (** Widely used, potentially up to ["&x"] *)

module Access :
sig
  type t = access
  val is_bot : t -> bool
  val cup : t -> t -> t
  val pretty : varinfo -> Format.formatter -> t -> unit
end =
struct
  type t = access
  let is_bot = function NoAccess -> true | _ -> false
  let pretty x fmt = function
    | NoAccess -> Format.fprintf fmt "-%a" Varinfo.pretty x
    | ByRef -> Format.fprintf fmt "*%a" Varinfo.pretty x
    | ByArray -> Format.fprintf fmt "%a[]" Varinfo.pretty x
    | ByValue -> Format.fprintf fmt "%a" Varinfo.pretty x
    | ByAddr -> Format.fprintf fmt "&%a" Varinfo.pretty x

  let rank = function
    | NoAccess -> 0
    | ByRef -> 1
    | ByArray -> 2
    | ByValue -> 3
    | ByAddr -> 4

  let cup a b = if rank a < rank b then b else a
end

(* ---------------------------------------------------------------------- *)
(* --- Expressions & Memory Model                                     --- *)
(* ---------------------------------------------------------------------- *)

module E :
sig
  type t
  val bot : t
  val is_bot : t -> bool
  val cup : t -> t -> t
  val cup_differ : t -> t -> t * bool
  (* val leq : t -> t -> bool *) (* unused for now *)
  val lcup : t list -> t
  val fcup : ('a -> t) -> 'a list -> t
  val get : varinfo -> t -> access
  val access : varinfo -> access -> t -> t

  val partition_formals_vs_others : t -> t*t

  val pretty : Format.formatter -> t -> unit

  val iter: (varinfo -> access -> unit) -> t -> unit
end =
struct

  module Xmap = Qed.Mergemap.Make(Varinfo)

  type t = access Xmap.t

  let pretty fmt m =
    begin
      Format.fprintf fmt "@[<hov 2>{" ;
      Xmap.iter
        (fun x e ->
           if e <> NoAccess then
             ( Format.pp_print_space fmt () ; Access.pretty x fmt e )
        ) m ;
      Format.fprintf fmt " }@]" ;
    end

  let bot = Xmap.empty
  let is_bot = Xmap.is_empty
  let cup = Xmap.union (fun _ -> Access.cup)
  let cup_differ e1 e2 =
    let r = cup e1 e2 in
    let is_modified = not (r==e1) in
    (* Format.printf "cup_differ %a %a = %a,%b@."
                     pretty e1 pretty e2 pretty r is_modified; *)
    r, is_modified
  (* unused for now *)
  (* let leq = Xmap.subset (fun _ -> Access.leq) *)

  (* unused for now *)
  let rec lcup = function [] -> bot |[x] -> x |x::xs -> cup x (lcup xs)
  let rec fcup f = function
      [] -> bot | [x] -> f x | x::xs -> cup (f x) (fcup f xs)

  let get vi e = try Xmap.find vi e with Not_found -> NoAccess
  let access vi u e =
    if Access.is_bot u then e
    else Xmap.insert (fun _ u old -> Access.cup old u) vi u e

  let partition_formals_vs_others e =
    Xmap.partition (fun vi _a -> vi.vformal) e

  let iter = Xmap.iter

end

type value = E.t
type model =
  | E of value (* E *)
  | Loc_var of varinfo  (* &x *)
  | Loc_shift of varinfo * value (* &x.[...] *)
  | Val_var of varinfo  (* x *)
  | Val_comp of varinfo * value (* x.f[_].g... *)
  | Val_shift of varinfo * value (* (x + E) *)

[@@@ warning "-32" ]
let pp_model fmt = function
  | E v -> E.pretty fmt v
  | Loc_var x -> Format.fprintf fmt "&%a" Varinfo.pretty x
  | Loc_shift(x,v) -> Format.fprintf fmt "&%a.(%a)" Varinfo.pretty x E.pretty v
  | Val_var x -> Varinfo.pretty fmt x
  | Val_comp(x,v) -> Format.fprintf fmt "%a.(%a)" Varinfo.pretty x E.pretty v
  | Val_shift(x,v) -> Format.fprintf fmt "%a+(%a)" Varinfo.pretty x E.pretty v
[@@@ warning "+32" ]

let nothing = E E.bot
let v_model v = if E.is_bot v then nothing else E v

let vcup (a:value) (b:value) : model = v_model (E.cup a b)

let share_vcup (m:model) ~old (b:value) : model =
  (* requires m = E(old) *)
  (* ensures \result == vcup old b *)
  let e = E.cup old b in if e == old then m else v_model e

(* let lcup xs = m_value (E.lcup xs) *) (* unused for now *)
(* let fcup f xs = m_value (E.fcup f xs) *) (* unused for now *)

let e_value = function
  | Loc_var x -> E.access x ByAddr E.bot
  | Loc_shift(x,e) -> E.access x ByAddr e
  | Val_var x -> E.access x ByValue E.bot
  | Val_comp(x,e) | Val_shift(x,e) -> E.access x ByValue e
  | E e -> e

let m_value = function
  | E _ as m -> m
  | m -> E (e_value m)

let m_vcup =
  let m_vcup m = vcup (e_value m) in
  function
  | E old as m -> (* better sharing than vcup (e_value m) b *)
    share_vcup m ~old
  | _ as m -> m_vcup m

let m_fcup f =
  let m_fcup f = E.fcup (fun x -> e_value (f x)) in
  function  (* better sharing than E.fcup (fun x -> e_value (f x)) *)
  | [] -> nothing
  | [x] -> m_value (f x)
  | x::xs -> m_vcup (f x) (m_fcup f xs)

let cval x = Val_var x
let cvar x = Loc_var x
let shift (m:model) (k:value) =
  let share ~old mk e = (* for a better sharing between maps *)
    if e == old then m else mk e
  in
  match m with
  | Loc_var x -> Loc_shift(x,k)
  | Loc_shift(x,e) -> share ~old:e (fun k -> Loc_shift(x,k)) (E.cup e k)
  | Val_var x -> Val_shift(x,k)
  | Val_comp(x,e) -> share ~old:e (fun k -> Val_comp(x,k)) (E.cup e k)
  | Val_shift(x,e) -> share ~old:e (fun k -> Val_shift(x,k)) (E.cup e k)
  | E old -> share_vcup m ~old k

let field = function
  | Val_var x -> Val_comp(x,E.bot)
  | (Val_comp _ | Val_shift _) as m -> m
  | m -> shift m E.bot

let load = function
  | Loc_var x -> Val_var x (* E.access x ByValue E.bot *)
  | Loc_shift(x,e) ->
    if Cil.isArithmeticOrPointerType x.vtype then
      E (E.access x ByAddr e)
    else
      E (E.access x ByValue e)
  | Val_var x -> E (E.access x ByRef E.bot)
  | Val_comp(x,e) -> E (E.access x ByRef e)
  | Val_shift(x,e) -> E (E.access x ByArray e)
  | E _ as m -> m

(* for \\valid, \\separated, \\block_length: no variable escape,
   excepts for shifts *)
let unescape = function (* better than e_value (load m) *)
  | Loc_var x -> E.access x ByValue E.bot
  | Loc_shift(x,e) -> E.access x ByValue e
  | Val_var x -> E.access x ByRef E.bot
  | Val_comp(x,e) -> E.access x ByRef e
  | Val_shift(x,e) -> E.access x ByArray e
  | E e -> e

(* ---------------------------------------------------------------------- *)
(* --- Casts                                                          --- *)
(* ---------------------------------------------------------------------- *)

type cast =
  | Identity
  | Convert
  | Cast

let cast cv m = match cv with
  | Identity -> m
  | Convert | Cast -> m_value m

let cast_obj tgt src =
  match tgt , src with
  | (C_int _ | C_float _) , (C_int _ | C_float _) -> Convert
  | C_pointer tr , C_pointer te ->
    let obj_r = Ctypes.object_of tr in
    let obj_e = Ctypes.object_of te in
    if Ctypes.compare obj_r obj_e = 0
    then Identity
    else Cast
  | _ -> if Ctypes.equal tgt src then Identity else Cast

let cast_ctyp tgt src =
  cast_obj (Ctypes.object_of tgt) (Ctypes.object_of src)
let cast_ltyp tgt src =
  match Logic_utils.unroll_type ~unroll_typedef:false src with
  | Ctype src -> cast_ctyp tgt src
  | _ -> Cast

(* ---------------------------------------------------------------------- *)
(* --- Environment                                                    --- *)
(* ---------------------------------------------------------------------- *)

module KFmap = Qed.Mergemap.Make(Kernel_function)
module KFset = Qed.Mergeset.Make(Kernel_function)
module LVmap = Qed.Mergemap.Make(Logic_var)
module LFset = Qed.Mergeset.Make(Logic_info)

type global_ctx = {

  mutable code : value ;
  (** Variable accesses from C code and code annotations *)

  mutable spec_formals : value ;
  (** Accesses of formal variables from function specs *)

  mutable spec_globals : value ;
  (** Accesses of global variables from function specs *)

  mutable cphi : (model list list) KFmap.t ;
  (** A map to a list (since a same kf can be called more than ones)
      to a list of models for each arg_exp of the call to the kf. *)

  mutable lphi : LFset.t ;
  (** Logical function/predicate used directly and indirectly by
      specs/annots of a C function *)
}
let mk_global_ctx () =
  { code = E.bot ; spec_formals = E.bot ; spec_globals = E.bot ;
    cphi = KFmap.empty ; lphi = LFset.empty }

(* Temporary local context *)
type local_ctx = {

  mutable tlet : model LVmap.t; (* for \\let var bound to a term *)
  mutable plet : value LVmap.t; (* for \\let var bound to a predicate *)
  mutable spec : value; (* for formals and globals of of spec,
                           before partitioning the result *)
}
let mk_local_ctx () = { tlet=LVmap.empty ; plet=LVmap.empty ; spec=E.bot }

type ctx = { local:local_ctx ; global:global_ctx }
let mk_ctx () = { global = mk_global_ctx () ; local = mk_local_ctx () }

(* ---------------------------------------------------------------------- *)
(* --- Tlet                                                           --- *)
(* ---------------------------------------------------------------------- *)

(* For \\let binding a predicate *)
let get_tlet (env:local_ctx) (lv:logic_var) =
  try LVmap.find lv env.tlet with Not_found -> assert (false) (* nothing *)

let add_tlet (env:local_ctx) (lv:logic_var) (m:model) =
  env.tlet <- LVmap.insert (fun _ _ _old -> assert false) lv m env.tlet

let rem_tlet (env:local_ctx) (lv:logic_var) =
  env.tlet <- LVmap.remove lv env.tlet

(* ---------------------------------------------------------------------- *)
(* --- Plet                                                           --- *)
(* ---------------------------------------------------------------------- *)

(* For \\let binding a predicate *)
let get_plet (env:local_ctx) (lv:logic_var) =
  try LVmap.find lv env.plet
  with Not_found -> e_value (get_tlet env lv)

let add_plet (env:local_ctx) (lv:logic_var) (e:value) =
  env.plet <- LVmap.insert (fun _ _ _old -> assert false) lv e env.plet

let rem_plet (env:local_ctx) (lv:logic_var) =
  env.plet <- LVmap.remove lv env.plet

(* ---------------------------------------------------------------------- *)
(* --- Compilation of C-Expressions                                   --- *)
(* ---------------------------------------------------------------------- *)

let rec vexpr (e:Cil_types.exp) : value = e_value (expr e)

and mexpr (e:Cil_types.exp) : model = (* better sharing than E (vexpr e) *)
  m_value (expr e)

and expr (e:Cil_types.exp) : model = match e.enode with

  (* Logics *)
  | Const _
  | SizeOf _ | SizeOfE _ | SizeOfStr _  | AlignOf _ | AlignOfE _ -> nothing

  (* Unary *)
  | UnOp((Neg|BNot|LNot),e,_) -> mexpr e

  (* Binary *)
  | BinOp( (MinusPP|PlusA|MinusA|Mult|Div|Mod
           |Shiftlt|Shiftrt|BAnd|BXor|BOr|LAnd|LOr
           |Lt|Gt|Le|Ge|Eq|Ne), a,b,_ ) -> m_vcup (expr a) (vexpr b)

  (* Shifts *)
  | BinOp((PlusPI|MinusPI),a,b,_) -> shift (expr a) (vexpr b)

  (* Casts *)
  | CastE(ty_tgt,e) -> cast (cast_ctyp ty_tgt (Cil.typeOf e)) (expr e)

  (* Address *)
  | AddrOf lval -> lvalue lval
  | StartOf lval -> startof (lvalue lval) (Cil.typeOfLval lval)

  (* Load *)
  | Lval lval -> load (lvalue lval)

and lvalue (h,ofs) = offset (host h) ofs
and host = function
  | Var x -> cvar x
  | Mem e -> expr e

and offset (m:model) = function
  | NoOffset -> m
  | Field(_,ofs) -> offset (field m) ofs
  | Index(e,ofs) -> offset (shift m (vexpr e)) ofs

and startof (m:model) typ =
  if Cil.isArrayType typ then shift m E.bot else m

(* ---------------------------------------------------------------------- *)
(* --- Compilation of ACSL-Terms                                      --- *)
(* ---------------------------------------------------------------------- *)

let rec vterm (env:ctx) (t:term) : value = e_value (term env t)

and mterm (env:ctx) (t:term) : model =
  m_value (term env t) (* better sharing than E (vterm env e) *)

and termopt (env:ctx) = function None -> nothing | Some t -> term env t

(* --- Expr --- *)
and term (env:ctx) (t:term) : model = match t.term_node with

  (* Logics *)
  | TConst _
  | TSizeOf _ | TSizeOfE _ | TSizeOfStr _ | TAlignOf _ | TAlignOfE _
  | Ttypeof _ | Ttype _ -> nothing

  (* Unary *)
  | TUnOp((Neg|BNot|LNot),t) -> mterm env t

  (* Binary *)
  | TBinOp( (MinusPP|PlusA|MinusA|Mult|Div|Mod
            |Shiftlt|Shiftrt|BAnd|BXor|BOr|LAnd|LOr
            |Lt|Gt|Le|Ge|Eq|Ne), a,b )  -> m_vcup (term env a) (vterm env b)

  (* Shifts *)
  | TBinOp((PlusPI|MinusPI),a,b) -> shift (term env a) (vterm env b)

  (* Casts *)
  | TCast (false, Ctype ty_tgt,t) -> cast (cast_ltyp ty_tgt t.term_type) (term env t)
  | TCast (true, _lt,t) -> term env t
  | TCast (false, _, _) -> assert false


  (* Term L-Values *)
  | TLval tlv -> term_lval env tlv
  | TAddrOf tlv | TStartOf tlv -> addr_lval env tlv
  | TUpdate(s,ofs,t) ->
    let v = term env s in
    let k = term_indices env E.bot ofs in
    let e = vterm env t in
    m_vcup (m_vcup v k) e

  (* Operators *)
  | Tat(t,_) -> term env t
  | Tunion ts | Tinter ts | TDataCons(_,ts) -> m_fcup (term env) ts
  | Tif(e,a,b) -> m_fcup (term env) [e;a;b]
  | Trange(a,b) -> m_fcup (termopt env) [a;b]
  | Toffset(_,t) | Tbase_addr(_,t) -> mterm env t
  | Tnull | Tempty_set -> nothing

  (* Binders *)
  | Tlambda(_xs,b) -> mterm env b
  | Tcomprehension(t,_xs,None) -> mterm env t
  | Tcomprehension(t,_xs,Some p) -> m_vcup (term env t) (pred env p)
  | Tlet({l_var_info; l_body = LBterm def},t) ->
    let m_def = term env def in
    add_tlet env.local l_var_info m_def;
    let m = term env t in
    rem_tlet env.local l_var_info;
    m
  | Tlet(_,_t) ->
    Wp_parameters.not_yet_implemented "unknown \\let construct"

  (* No escape *)
  | Tblock_length(_, t) ->
    E (unescape ((term env) t))

  (* Call *)
  | Tapp({l_var_info=({lv_origin=None; lv_kind=LVLocal} as lvar)},[],[]) ->
    (* var bound by a \\let *)
    get_tlet env.local lvar
  | Tapp(phi,_,ts) -> v_model (v_lphi env phi ts)

(* --- Lvalues --- *)
and term_lval env (h,ofs) = match h with
  | TResult _ | TVar{lv_name="\\exit_status"} -> nothing
  | TVar( {lv_origin=None ; lv_kind=LVLocal} as lvar) ->
    (* var bound by a \\let *)
    load (term_offset env (get_tlet env.local lvar) ofs)
  | TVar( {lv_origin=None} ) -> (* logic variable *)   nothing
  | TVar( {lv_origin=Some x} ) -> load (term_offset env (Loc_var x) ofs)
  | TMem t -> load (term_offset env (load (term env t)) ofs)

and term_indices env v = function
  | TNoOffset -> v
  | TModel(_,ofs) | TField(_,ofs) -> term_indices env v ofs
  | TIndex(e,ofs) -> term_indices env (E.cup v (vterm env e)) ofs

and term_offset env (l:model) = function
  | TNoOffset -> l
  | TField(_,ofs) -> term_offset env (field l) ofs
  | TIndex(e,ofs) -> term_offset env (shift l (vterm env e)) ofs
  | TModel _ -> Wp_parameters.not_yet_implemented "Model fields"

and addr_lval env (h,ofs) = match h with
  | TResult _ -> Wp_parameters.abort ~current:true "Address of \\result"
  | TVar{lv_name="\\exit_status"} ->
    Wp_parameters.abort ~current:true "Address of \\exit_status"
  | TMem t -> term_offset env (term env t) ofs
  | TVar( {lv_origin=Some x} ) -> term_offset env (Loc_var x) ofs
  | TVar( {lv_origin=None} as x ) ->
    Wp_parameters.abort ~current:true
      "Address of logic variable (%a)" Logic_var.pretty x

(* --- Predicates --- *)
and pred (env:ctx) p : value = match p.pred_content with
  | Pfalse | Ptrue ->  E.bot

  (* Unary *)
  | Pat(p,_)
  | Pnot p -> (pred env) p

  (* Binary *)
  | Pand(p1,p2) | Por(p1,p2) | Pxor(p1,p2) | Piff(p1,p2)
  | Pimplies(p1,p2) -> E.fcup (pred env) [p1; p2]
  | Pif (t,p1,p2) -> E.cup ((vterm env) t) (E.fcup (pred env) [p1; p2])
  | Prel(_,t1,t2) -> E.fcup (vterm env) [t1; t2]

  (* Binders *)
  | Pforall(_,p) | Pexists(_,p) -> (pred env) p
  | Plet({l_var_info; l_body = LBterm def},p) ->
    let m_def = term env def in
    add_tlet env.local l_var_info m_def;
    let e = pred env p in
    rem_tlet env.local l_var_info; e
  | Plet({l_var_info; l_body = LBpred def},p) ->
    let e_def = pred env def in
    add_plet env.local l_var_info e_def;
    let e = pred env p in
    rem_plet env.local l_var_info; e
  | Plet(_,_t) ->
    Wp_parameters.not_yet_implemented "unknown \\let construct"

  (* Call *)
  | Papp({l_var_info=({lv_origin=None; lv_kind=LVLocal} as lvar)},[],[]) ->
    (* var bound by a \\let *)
    get_plet env.local lvar
  | Papp(phi,_,ts) -> v_lphi env phi ts

  (* No escape *)
  | Pinitialized(_, t) | Pdangling(_,t)
  | Pallocable(_, t) | Pfreeable(_, t)
  | Pvalid(_,t) | Pvalid_read (_,t)
  | Pobject_pointer (_,t) | Pvalid_function t ->
    unescape ((term env) t)
  | Pseparated ts ->
    E.fcup (fun t -> unescape ((term env) t)) ts
  | Pfresh(_, _, t1, t2) ->
    E.fcup (fun t -> unescape ((term env) t)) [t1;t2]

(* --- Call to Logical functions/Predicates --- *)
and v_lphi (env:ctx) (lphi:logic_info) ts : value =
  let not_yet_implemented s =
    Wp_parameters.not_yet_implemented "unknown construct with %s" s
  in
  match lphi.l_var_info.lv_kind with
  | LVC -> not_yet_implemented "LVC"
  | LVFormal -> not_yet_implemented "LVFormal"
  | LVQuant -> not_yet_implemented "LVQuant"
  | LVLocal -> not_yet_implemented "LVLocal"
  | LVGlobal ->
    let v_body = (* get the accesses the globals *)
      if not (LFset.mem lphi env.global.lphi) then begin
        env.global.lphi <- LFset.add lphi env.global.lphi;
        v_body env lphi.l_body
      end
      else E.bot
    and v_param =
      E.fcup (vterm env) ts (* usage of the parameter of the application *)
    in E.cup v_param v_body
and v_body (env:ctx) = (* locals of the logical function are removed *)
  let vglob v = snd (E.partition_formals_vs_others v) in
  function
  | LBnone -> E.bot
  | LBreads(its) -> E.fcup (fun it -> vglob ((vterm env) it.it_content)) its
  | LBterm(t) -> vglob (vterm env t)
  | LBpred(p) -> vglob (pred env p)
  | LBinductive(inds) -> E.fcup (fun (_,_,_,p) -> vglob (pred env p)) inds

(* ---------------------------------------------------------------------- *)
(* --- Compilation of C Function                                      --- *)
(* ---------------------------------------------------------------------- *)

let cinit vi init =
  let update_code_env a v = E.cup a v in
  let einit (m:model) a exp =
    update_code_env a (E.cup (e_value m) (vexpr exp))
  in
  let rec aux (m: model) a = function
    | SingleInit (exp) ->  einit m a exp
    | CompoundInit(_,loi) ->
      List.fold_left (fun a (ofs,init) -> aux (offset m ofs) a init)
        a loi
  in aux (cval vi) E.bot init

let cfun_code env kf = (* Visits term/pred of code annotations and C exp *)
  let update_code_env v = env.global.code <- E.cup env.global.code v in
  let do_term t = update_code_env (vterm env t) in
  let do_pred p = update_code_env (pred env p) in
  let do_code =
    let do_arg arg =      (* normalizing model: taking out access map *)
      match expr arg with (* in order to put it code_env *)
      | (Loc_var _ | Val_var _) as m -> m
      | (Loc_shift(_,e) | Val_shift(_,e)) as m when E.is_bot e -> m
      | Loc_shift(x,e) -> update_code_env e; Loc_shift(x,E.bot)
      | Val_shift(x,e) -> update_code_env e; Val_shift(x,E.bot)
      | Val_comp(x,e) -> update_code_env e; Val_comp(x,E.bot)
      | m when m == nothing -> m
      | E e -> update_code_env e ; nothing
    in
    let do_args kf args =
      env.global.cphi <- KFmap.insert (fun _ u old -> u @ old)
          kf [(List.map do_arg args)] env.global.cphi in
    let do_exp exp = update_code_env (vexpr exp) in
    let do_lval lval = update_code_env (e_value (load (lvalue lval))) in
    let do_lval_opt = function
      | None -> ()
      | Some lval -> do_lval lval in

    function
    | Block _ | Break _ | Continue _ | Goto _
    | Loop _ | UnspecifiedSequence _ | TryFinally _
    | Return (None,_)
    | Instr(Asm _)
    | Instr(Skip _)
    | Instr(Code_annot _)
      -> ()

    | Throw _ | TryCatch _ | TryExcept _ ->
      Wp_parameters.warning "RefUsage: throw/try-catch not implemented"

    | Instr(Set(lval,exp,_)) -> do_lval lval ; do_exp exp
    | Instr(Call(lval_opt,fun_exp,args_list,_)) ->
      begin
        do_lval_opt lval_opt ;
        match Kernel_function.get_called fun_exp with
        | None -> List.iter do_exp (fun_exp::args_list)
        | Some called_kf -> do_args called_kf args_list
      end
    | Instr(Local_init (v,AssignInit i,_)) -> update_code_env (cinit v i)
    | Instr(Local_init (v,ConsInit (f,args,kind),_)) ->
      let kf = Globals.Functions.get f in
      (match kind with
       | Constructor -> do_args kf (Cil.mkAddrOfVi v :: args)
       | Plain_func ->
         update_code_env (e_value (cval v));
         do_args kf args)
    | Return(Some exp,_)
    | If (exp,_,_,_)
    | Switch (exp,_,_,_) -> do_exp exp
  in
  let visitor = object
    inherit Visitor.frama_c_inplace as super
    method! vstmt stmt = do_code stmt.skind; super#vstmt stmt
    (* vpredicate and vterm are called from vcode_annot *)
    method !vpredicate p = do_pred p ; Cil.SkipChildren
    method !vterm t = do_term t ; Cil.SkipChildren
    (* speed up: skip non interesting subtrees *)
    method! vloop_pragma _ =  Cil.SkipChildren (* no need *)
    method! vvdec _ = Cil.SkipChildren (* done via stmt *)
    method! vexpr _ = Cil.SkipChildren (* done via stmt *)
    method! vlval _ = Cil.SkipChildren (* done via stmt *)
    method! vattr _ = Cil.SkipChildren (* done via stmt *)
    method! vinst _ =  Cil.SkipChildren (* done via stmt *)
  end
  in
  try
    let definition = Kernel_function.get_definition kf in
    ignore (Cil.visitCilFunction (visitor:>Cil.cilVisitor) definition)
  with Not_found -> ()

let cfun_spec env kf =
  let update_spec_env v = env.local.spec <- E.cup env.local.spec v ;
    Cil.SkipChildren
  in
  let visitor = object
    inherit Cil.nopCilVisitor
    method !vpredicate p = update_spec_env (pred env p)
    method !vterm t = update_spec_env (vterm env t)
  end in
  AssignsCompleteness.compute kf ;
  let spec = Annotations.funspec kf in
  ignore (Cil.visitCilFunspec (visitor:>Cil.cilVisitor) spec) ;
  (* Partitioning the accesses of the spec for formals vs globals *)
  let formals,globals = E.partition_formals_vs_others env.local.spec in
  env.global.spec_formals <- formals ;
  env.global.spec_globals <- globals

let cfun kf =
  let env = mk_ctx () in
  begin
    if Kernel_function.is_definition kf then cfun_code env kf ;
    cfun_spec env kf
  end ;
  env.global

let cvarinit vi initinfo env =
  match initinfo.init with
  | None -> env
  | Some init -> E.cup env (cinit vi init)

(* ---------------------------------------------------------------------- *)
(* --- Compilation                                                    --- *)
(* ---------------------------------------------------------------------- *)

let mk_context () = KFmap.empty

let param a m = match a with
  | NoAccess | ByAddr -> E.bot (* should never arise *)
  | ByValue -> e_value m
  | ByRef -> e_value (load m)
  | ByArray -> e_value (load (shift m E.bot))

let update_call_env (env:global_ctx) v =
  let r,differ = E.cup_differ env.code v in
  env.code <- r ; differ

let call_kf (env:global_ctx) (formals:access list) (models:model list) (reached:bool) =
  let unmodified = ref reached in
  let rec call xs ms = match xs, ms with
    | x::xs , m::ms ->
      let actual = param x m in
      if update_call_env env actual then unmodified := false;
      call xs ms
    | _ -> ()
  in call formals models;
  !unmodified

type callee = KFset.t
type callees = callee KFmap.t

type fp_t = { mutable todo: unit KFmap.t ; mutable redo: unit KFmap.t }

let compute_usage () =
  Wp_parameters.feedback ~ontty:`Transient "Collecting variable usage" ;
  (* initial state from variable initializers *)
  let u_init = Globals.Vars.fold cvarinit E.bot in
  (* Usage in lemmas *)
  let u_lemmas =
    LogicUsage.fold_lemmas
      (fun l -> E.cup (pred (mk_ctx()) l.lem_predicate.tp_statement)) E.bot
  in
  (* initial state by kf *)
  let usage = Globals.Functions.fold (fun kf env ->
      KFmap.insert (fun _ _u _old -> assert false) kf (cfun kf) env)
      (mk_context ())
  in
  (* inverse table of function calls *)
  let callees =
    KFmap.fold (fun kf v (a:callees) ->
        KFmap.fold (fun called_kf _ (a:callees) ->
            KFmap.insert (fun _ v (old:callee) -> KFset.union old v)
              called_kf (KFset.add kf KFset.empty) a)
          v.cphi a)
      usage KFmap.empty
  in
  (* extract kf map to be fixed (the callers). *)
  let callers = KFmap.mapq
      (fun _kf v -> if KFmap.is_empty v.cphi then None else Some v) usage
  in
  (* extract it as a working list to be fixed *)
  let todo = KFmap.map (fun _ -> ()) callers in
  (* the todo map is used to intersect the callers map *)
  let kf_fp state_fp kf env _ =
    let kf_calls called_kf calls (reached:bool) =
      let called =
        try KFmap.find called_kf usage with Not_found -> assert false
      in
      (* update from accesses of globals of the called spec *)
      let reached =
        if update_call_env env called.spec_globals then false else reached
      in
      (* update from accesses of formals of the called spec for each calls*)
      let specs_formals = called.spec_formals in
      let params = Kernel_function.get_formals called_kf in
      let formals = List.map (fun vi -> E.get vi specs_formals) params in
      let kf_call reached call = call_kf env formals call reached in
      List.fold_left kf_call reached calls
    in
    state_fp.todo <- KFmap.remove kf state_fp.todo ;
    let cphi = env.cphi in
    let reached = KFmap.fold kf_calls cphi true in
    if not reached then begin
      let callers = try KFmap.find kf callees with Not_found -> KFset.empty
      in
      KFset.iter (fun kf_caller ->
          try ignore (KFmap.find kf_caller todo)
          (* kf_caller is still into the current remaining working list *)
          with Not_found ->
            (* kf_caller must be added to the next working list. *)
            state_fp.redo <- KFmap.add kf_caller () state_fp.redo) callers
    end;
    (* the intersect result is not used *)
    None
  in
  let rec fixpoint todo =
    if not (KFmap.is_empty todo) then
      let state_fp = {redo=KFmap.empty; todo} in
      ignore (KFmap.interf (kf_fp state_fp) callers todo);
      fixpoint state_fp.todo
  in fixpoint todo ;
  let u_init = E.cup u_init u_lemmas in
  (* TODO[LC]: prendre en compte la compilation des fonctions logiques et predicats ; Cf. add_lphi *)
  let usage =
    KFmap.map
      (fun ctx ->
         E.lcup [ u_lemmas ; ctx.code ; ctx.spec_globals ; ctx.spec_formals])
      usage
  in u_init, usage

(* ---------------------------------------------------------------------- *)
(* --- Projectified Analysis Result                                   --- *)
(* ---------------------------------------------------------------------- *)

module D = Datatype.Make
    (struct
      type t = E.t * E.t KFmap.t
      include Datatype.Serializable_undefined
      let reprs = [E.bot,KFmap.empty]
      let name = "RefUsage.usage"
    end)

module S = State_builder.Option_ref(D)
    (struct
      let name = "RefUsage.Analysis"
      let dependencies = [ Ast.self ]
    end)

(* compute_usage is called once per project *)
let usage () = S.memo compute_usage
let is_computed () = S.is_computed ()

(* ---------------------------------------------------------------------- *)
(* --- Nullable variables                                             --- *)
(* ---------------------------------------------------------------------- *)

module Nullable =
struct
  let attribute_name = "wp_nullable"

  let is_nullable vi =
    vi.vformal && Cil.hasAttribute attribute_name vi.vattr

  let make_nullable vi =
    vi.vattr <- Cil.addAttribute (AttrAnnot attribute_name) vi.vattr

  module Nullable_extension =
  struct
    let type_term ctxt loc e =
      match ctxt.Logic_typing.type_term ctxt ctxt.pre_state e with
      | { term_node = TLval (TVar { lv_origin = Some vi }, TNoOffset) } as term
        when Cil.isPointerType vi.vtype && vi.vformal ->
        make_nullable vi ; term
      | t -> ctxt.error loc "Not a formal pointer: %a" Cil_printer.pp_term t

    let typer ctxt loc l =
      Ext_terms (List.map (type_term ctxt loc) l)
  end

  let () =
    Acsl_extension.register_behavior ~plugin:"wp"
      "nullable_args" Nullable_extension.typer false

  module HasNullable =
    State_builder.Option_ref(Datatype.Bool)
      (struct
        let name = "Wp.RefUsage.HasNullable"
        let dependencies = [Ast.self]
      end)

  let compute_nullable () =
    let module F = Globals.Functions in
    F.fold (fun f b ->
        b || List.fold_left (fun b v -> b || is_nullable v) b (F.get_params f)
      ) false

  let has_nullable () = HasNullable.memo compute_nullable
end

(* ---------------------------------------------------------------------- *)
(* --- API                                                            --- *)
(* ---------------------------------------------------------------------- *)

let iter ?kf ?(init=false) f =
  let u_init, usage = usage () in
  let kf_access = match kf with
    | None -> E.bot
    | Some kf ->
      (try KFmap.find kf usage
       with Not_found -> E.bot)
  in
  let access = if init then E.cup kf_access u_init else kf_access in
  E.iter f access

let get ?kf ?(init=false) vi =
  let u_init, usage = usage () in
  let kf_access = match kf with
    | None -> NoAccess
    | Some kf ->
      (try E.get vi (KFmap.find kf usage)
       with Not_found -> NoAccess)
  in
  if init then Access.cup kf_access (E.get vi u_init) else kf_access

let compute () = ignore (usage ())

let is_nullable = Nullable.is_nullable
let has_nullable = Nullable.has_nullable

let print x m fmt = Access.pretty x fmt m

let dump () =
  Log.print_on_output
    begin fun fmt ->
      Format.fprintf fmt ".................................................@\n" ;
      Format.fprintf fmt "... Ref Usage@\n" ;
      Format.fprintf fmt ".................................................@\n" ;

      let a_init, a_usage = usage ()
      in Format.fprintf fmt "@[<hv 0>Init:@ %a@]@." E.pretty a_init ;
      KFmap.iter (fun kf m ->
          (* Do not dump results for frama-c builtins *)
          if not (Cil_builtins.has_fc_builtin_attr (Kernel_function.get_vi kf)) then
            Format.fprintf fmt "@[<hv 0>Function %a:@ %a@]@."
              Kernel_function.pretty kf E.pretty m ;
        ) a_usage;
      Format.fprintf fmt ".................................................@\n" ;
    end
OCaml

Innovation. Community. Security.