package frama-c

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file LogicUsage.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
(**************************************************************************)
(*                                                                        *)
(*  This file is part of WP plug-in of Frama-C.                           *)
(*                                                                        *)
(*  Copyright (C) 2007-2024                                               *)
(*    CEA (Commissariat a l'energie atomique et aux energies              *)
(*         alternatives)                                                  *)
(*                                                                        *)
(*  you can redistribute it and/or modify it under the terms of the GNU   *)
(*  Lesser General Public License as published by the Free Software       *)
(*  Foundation, version 2.1.                                              *)
(*                                                                        *)
(*  It is distributed in the hope that it will be useful,                 *)
(*  but WITHOUT ANY WARRANTY; without even the implied warranty of        *)
(*  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *)
(*  GNU Lesser General Public License for more details.                   *)
(*                                                                        *)
(*  See the GNU Lesser General Public License version 2.1                 *)
(*  for more details (enclosed in the file licenses/LGPLv2.1).            *)
(*                                                                        *)
(**************************************************************************)

(* -------------------------------------------------------------------------- *)
(* --- Dependencies of Logic Definitions                                  --- *)
(* -------------------------------------------------------------------------- *)

open Cil
open Cil_types
open Cil_datatype
open Clabels
open Visitor

(* -------------------------------------------------------------------------- *)
(* --- Name Utilities                                                     --- *)
(* -------------------------------------------------------------------------- *)

let trim name =
  let rec first s k n =
    if k < n && s.[k]='_' then first s (succ k) n else k in
  let rec last s k =
    if k >= 0 && s.[k]='_' then last s (pred k) else k in
  let n = String.length name in
  if n > 0 then
    if ( name.[0]='_' || name.[n-1]='_' ) then
      let p = first name 0 n in
      let q = last name (pred n) in
      if p <= q then
        let name = String.sub name p (q+1-p) in
        match name.[0] with
        | '0' .. '9' -> "_" ^ name
        | _ -> name
      else "_"
    else name
  else "_"

(* -------------------------------------------------------------------------- *)
(* --- Definition Blocks                                                  --- *)
(* -------------------------------------------------------------------------- *)

type logic_lemma = {
  lem_loc : location ;
  lem_name : string ;
  lem_types : string list ;
  lem_labels : logic_label list ;
  lem_predicate : toplevel_predicate ;
  lem_depends : logic_lemma list ;
  (* global lemmas declared before in AST order (in reverse order) *)
  lem_attrs : attributes ;
}

type axiomatic = {
  ax_name : string ;
  ax_position : Filepath.position ;
  ax_property : Property.t ;
  mutable ax_types : logic_type_info list ;
  mutable ax_logics : logic_info list ;
  mutable ax_lemmas : logic_lemma list ;
  mutable ax_reads : Varinfo.Set.t ; (* read-only *)
}

type logic_section =
  | Toplevel of int
  | Axiomatic of axiomatic

let is_global_axiomatic ax =
  ax.ax_types = [] &&
  ax.ax_logics = [] &&
  ax.ax_lemmas <> []

module SMap = Datatype.String.Map
module TMap = Logic_type_info.Map
module LMap = Logic_info.Map
module LSet = Logic_info.Set

(* -------------------------------------------------------------------------- *)
(* --- Usage and Dependencies                                             --- *)
(* -------------------------------------------------------------------------- *)

type inductive_case = {
  ind_logic : logic_info ;
  ind_case : string ;
  mutable ind_call : LabelSet.t LabelMap.t ;
}

type database = {
  mutable cases : inductive_case list LMap.t ;
  mutable clash : LSet.t SMap.t ;
  mutable names : string LMap.t ;
  mutable types : logic_section TMap.t ;
  mutable logics : logic_section LMap.t ;
  mutable lemmas : (logic_lemma * logic_section) SMap.t ;
  mutable recursives : LSet.t ;
  mutable axiomatics : axiomatic SMap.t ;
  mutable proofcontext : logic_lemma list ;
}

let empty_database () = {
  cases = LMap.empty ;
  names = LMap.empty ;
  clash = SMap.empty ;
  types = TMap.empty ;
  logics = LMap.empty ;
  lemmas = SMap.empty ;
  recursives = LSet.empty ;
  axiomatics = SMap.empty ;
  proofcontext = [] ;
}

module DatabaseType = Datatype.Make
    (struct
      type t = database
      include Datatype.Serializable_undefined
      let reprs = [empty_database ()]
      let name = "Wp.LogicUsage.DatabaseType"
    end)

module Database = State_builder.Ref(DatabaseType)
    (struct
      let name = "Wp.LogicUsage.Database"
      let dependencies = [Ast.self;Annotations.code_annot_state]
      let default = empty_database
    end)

let pp_logic fmt l = Printer.pp_logic_var fmt l.l_var_info

(* -------------------------------------------------------------------------- *)
(* --- Overloading                                                        --- *)
(* -------------------------------------------------------------------------- *)

let basename x = trim x.vorig_name

let compute_logicname l =
  let d = Database.get () in
  try LMap.find l d.names
  with Not_found ->
    let base = l.l_var_info.lv_name in
    let over =
      try SMap.find base d.clash
      with Not_found -> LSet.empty (*TODO: Undetected usage -> overloading issue *)
    in
    match LSet.elements over with
    | [] | [_] -> d.names <- LMap.add l base d.names ; base
    | symbols ->
      let rec register k = function
        | l::ls ->
          let name = Printf.sprintf "%s_%d_" base k in
          d.names <- LMap.add l name d.names ;
          register (succ k) ls
        | [] -> ()
      in register 1 symbols ; LMap.find l d.names

let is_overloaded l =
  let d = Database.get () in
  try LSet.cardinal (SMap.find l.l_var_info.lv_name d.clash) > 1
  with Not_found -> false

let pp_profile fmt l =
  Format.fprintf fmt "%s" l.l_var_info.lv_name ;
  match l.l_profile with
  | [] -> ()
  | x::xs ->
    Format.fprintf fmt "@[<hov 1>(%a" Printer.pp_logic_type x.lv_type ;
    List.iter
      (fun y -> Format.fprintf fmt ",@,%a"
          Printer.pp_logic_type y.lv_type)
      xs ;
    Format.fprintf fmt ")@]"

(* -------------------------------------------------------------------------- *)
(* --- Utilities                                                          --- *)
(* -------------------------------------------------------------------------- *)

let ip_lemma l =
  Property.ip_lemma {
    il_name = l.lem_name; il_labels = l.lem_labels;
    il_args = l.lem_types; il_loc = l.lem_loc;
    il_attrs = l.lem_attrs;
    il_pred = l.lem_predicate;
  }

let lemma_of_global ~context = function
  | Dlemma(name,labels,types,pred,attrs,loc) ->
    {
      lem_loc = loc ;
      lem_name = name ;
      lem_types = types ;
      lem_labels = labels ;
      lem_predicate = pred ;
      lem_depends = context ;
      lem_attrs = attrs ;
    }
  | _ -> assert false

let populate a ~context = function
  | Dfun_or_pred(l,_) -> a.ax_logics <- l :: a.ax_logics
  | Dtype(t,_) -> a.ax_types <- t :: a.ax_types
  | Dlemma _ as g -> a.ax_lemmas <- lemma_of_global ~context g :: a.ax_lemmas
  | _ -> ()

let ip_of_axiomatic g =
  match Property.ip_of_global_annotation_single g with
  | None -> assert false
  | Some ip -> ip

let axiomatic_of_global ~context = function
  | Daxiomatic(name,globals,_,loc) as g ->
    let a = {
      ax_name = name ;
      ax_position = fst loc ;
      ax_property = ip_of_axiomatic g ;
      ax_reads = Varinfo.Set.empty ;
      ax_types = [] ; ax_lemmas = [] ; ax_logics = [] ;
    } in
    List.iter (populate a ~context) globals ;
    a.ax_types <- List.rev a.ax_types ;
    a.ax_logics <- List.rev a.ax_logics ;
    a.ax_lemmas <- List.rev a.ax_lemmas ;
    a
  | _ -> assert false

let register_logic d section l =
  let name = l.l_var_info.lv_name in
  let over =
    try LSet.add l (SMap.find name d.clash)
    with Not_found -> LSet.singleton l in
  begin
    d.clash <- SMap.add name over d.clash ;
    d.logics <- LMap.add l section d.logics ;
  end

let register_lemma d section l =
  begin
    d.lemmas <- SMap.add l.lem_name (l,section) d.lemmas ;
  end

let register_type d section t =
  begin
    d.types <- TMap.add t section d.types ;
  end

let register_axiomatic d a =
  begin
    d.axiomatics <- SMap.add a.ax_name a d.axiomatics ;
  end

let register_cases l inds =
  let d = Database.get () in
  d.cases <- LMap.add l inds d.cases

(* -------------------------------------------------------------------------- *)
(* --- Adding a label called in an inductive case                         --- *)
(* -------------------------------------------------------------------------- *)

(* calls : LabelSet.t LabelMap.t
   Given an inductive phi{...A...}
   In case H{...B...}, have a call to phi{...B...}
   Then: ( A \in calls[B] ).
*)

let add_call calls l_a l_b =
  let a = Clabels.of_logic l_a in
  let b = Clabels.of_logic l_b in
  let s =
    try LabelSet.add a (LabelMap.find b calls)
    with Not_found -> LabelSet.singleton a
  in
  LabelMap.add b s calls

(* -------------------------------------------------------------------------- *)
(* --- Visitor                                                            --- *)
(* -------------------------------------------------------------------------- *)

class visitor =
  object(self)

    inherit Visitor.frama_c_inplace

    val database = Database.get ()
    val mutable caller : logic_info option = None
    val mutable axiomatic : axiomatic option = None
    val mutable inductive : inductive_case option = None
    val mutable toplevel = 0

    method private section =
      match axiomatic with
      | None -> Toplevel toplevel
      | Some a -> Axiomatic a

    method private do_var x =
      match axiomatic with
      | None -> ()
      | Some a -> a.ax_reads <- Varinfo.Set.add x a.ax_reads

    method private do_lvar x =
      try self#do_call (Logic_env.find_logic_cons x) []
      with Not_found -> ()

    method private do_call l labels =
      match inductive with
      | Some case ->
        if Logic_info.equal l case.ind_logic then
          case.ind_call <- List.fold_left2 add_call case.ind_call l.l_labels labels
      | None ->
        match caller with
        | None -> ()
        | Some f ->
          if Logic_info.equal f l then
            database.recursives <- LSet.add f database.recursives

    method private do_case l (case,_labels,_types,pnamed) =
      begin
        let indcase = {
          ind_logic = l ;
          ind_case = case ;
          ind_call = LabelMap.empty ;
        } in
        inductive <- Some indcase ;
        ignore (visitFramacPredicate (self :> frama_c_visitor) pnamed) ;
        inductive <- None ; indcase
      end

    (* --- LVALUES --- *)

    method! vlval = function
      | (Var x,_) -> self#do_var x ; DoChildren
      | _ -> DoChildren

    method! vterm_lval = function
      | (TVar { lv_origin=Some x } , _ ) -> self#do_var x ; DoChildren
      | (TVar x , _ ) -> self#do_lvar x ; DoChildren
      | _ -> DoChildren

    (* --- TERMS --- *)

    method! vterm_node = function
      | Tapp(l,labels,_) -> self#do_call l labels ; DoChildren
      | _ -> DoChildren

    (* --- PREDICATE --- *)

    method! vpredicate_node = function
      | Papp(l,labels,_) -> self#do_call l labels ; DoChildren
      | _ -> DoChildren

    method! vannotation global =
      match global with

      (* --- AXIOMATICS --- *)

      | Daxiomatic _ ->
        begin
          let pf = database.proofcontext in
          let ax = axiomatic_of_global ~context:pf global in
          register_axiomatic database ax ;
          axiomatic <- Some ax ;
          DoChildrenPost
            (fun g ->
               if not (is_global_axiomatic ax) then
                 database.proofcontext <- pf ;
               axiomatic <- None ;
               toplevel <- succ toplevel ;
               g)
        end

      (* --- LOGIC INFO --- *)

      | Dtype_annot(l,_)
      | Dinvariant(l,_)
      | Dfun_or_pred(l,_) ->
        begin
          register_logic database self#section l ;
          match l.l_body with
          | LBnone when axiomatic = None -> SkipChildren

          | LBnone | LBreads _ | LBterm _ | LBpred _ ->
            caller <- Some l ;
            DoChildrenPost (fun g -> caller <- None ; g)

          | LBinductive cases ->
            register_cases l (List.map (self#do_case l) cases) ;
            SkipChildren
        end

      (* --- LEMMAS --- *)

      | Dlemma _ ->
        let lem = lemma_of_global ~context:database.proofcontext global in
        register_lemma database self#section lem ;
        if Logic_utils.use_predicate lem.lem_predicate.tp_kind then
          database.proofcontext <- lem :: database.proofcontext ;
        SkipChildren

      | Dtype(t,_) ->
        register_type database self#section t ;
        SkipChildren

      (* --- OTHERS --- *)

      | Dvolatile _
      | Dmodel_annot _
      | Dextended _
        -> SkipChildren

    method! vfunc _ = Cil.SkipChildren

  end

let compute () =
  Wp_parameters.feedback ~ontty:`Transient "Collecting axiomatic usage" ;
  Visitor.visitFramacFile (new visitor) (Ast.get ())

(* -------------------------------------------------------------------------- *)
(* --- External API                                                       --- *)
(* -------------------------------------------------------------------------- *)

let (compute,_) =
  State_builder.apply_once "LogicUsage.compute"
    [Ast.self;Annotations.code_annot_state] compute

let is_recursive l =
  compute () ;
  let d = Database.get () in
  LSet.mem l d.recursives

let get_induction_labels l case =
  compute () ;
  try
    let d = Database.get () in
    let cases = LMap.find l d.cases in
    try (List.find (fun i -> i.ind_case = case) cases).ind_call
    with Not_found ->
      Wp_parameters.fatal "No case '%s' for inductive '%s'"
        case l.l_var_info.lv_name
  with Not_found ->
    Wp_parameters.fatal "Non-inductive '%s'" l.l_var_info.lv_name

let axiomatic a =
  compute () ;
  try
    let d = Database.get () in
    SMap.find a d.axiomatics
  with Not_found ->
    Wp_parameters.fatal "Axiomatic '%s' undefined" a

let section_of_type t =
  compute () ;
  try
    let d = Database.get () in
    TMap.find t d.types
  with Not_found ->
    Wp_parameters.fatal "Logic type '%s' undefined" t.lt_name

let section_of_logic l =
  compute () ;
  try
    let d = Database.get () in
    LMap.find l d.logics
  with Not_found ->
    Wp_parameters.fatal "Logic '%a' undefined" pp_logic l

let get_lemma l =
  compute () ;
  try
    let d = Database.get () in
    SMap.find l d.lemmas
  with Not_found ->
    Wp_parameters.fatal "Lemma '%s' undefined" l

let iter_lemmas f =
  compute () ;
  let d = Database.get () in
  SMap.iter (fun _name (lem,_) -> f lem) d.lemmas

let fold_lemmas f =
  compute () ;
  let d = Database.get () in
  SMap.fold (fun _name (lem,_) -> f lem) d.lemmas

let logic_lemma l = fst (get_lemma l)

let section_of_lemma l = snd (get_lemma l)

let proof_context () =
  (* No need for compute: if no lemma, database is empty ! *)
  let d = Database.get () in
  d.proofcontext

(* -------------------------------------------------------------------------- *)
(* --- Dump API                                                           --- *)
(* -------------------------------------------------------------------------- *)

let pp_type fmt t = Format.fprintf fmt " * type '%s'@\n" t.lt_name

let pp_sig fmt kind l =
  begin
    Format.fprintf fmt " * %s '%s'@\n" kind (compute_logicname l) ;
    if is_overloaded l then
      Format.fprintf fmt "   profile %a@\n" pp_profile l ;
    if is_recursive l then
      Format.fprintf fmt "   recursive@\n" ;
  end

let pp_decl fmt d l =
  begin
    try
      let cases = LMap.find l d.cases in
      pp_sig fmt "inductive" l ;
      List.iter
        (fun ind ->
           Format.fprintf fmt "   @[case %s:" ind.ind_case ;
           LabelMap.iter
             (fun l s ->
                Format.fprintf fmt "@ @[<hov 2>{%a:" Clabels.pretty l ;
                LabelSet.iter (fun l -> Format.fprintf fmt "@ %a"
                                  Clabels.pretty l) s ;
                Format.fprintf fmt "}@]"
             ) ind.ind_call ;
           Format.fprintf fmt "@]@\n"
        ) cases ;
    with Not_found ->
      let kind = if l.l_type = None then "predicate" else "function" in
      pp_sig fmt kind l ;
  end

let pp_lemma fmt l =
  Format.fprintf fmt " * %a '%s'@\n"
    Cil_printer.pp_lemma_kind l.lem_predicate.tp_kind l.lem_name

let get_name l = compute () ; compute_logicname l

let pp_section fmt = function
  | Toplevel 0 -> Format.fprintf fmt "Toplevel"
  | Toplevel n -> Format.fprintf fmt "Toplevel(%d)" n
  | Axiomatic a -> Format.fprintf fmt "Axiomatic '%s'" a.ax_name

let dump () =
  compute () ;
  Log.print_on_output
    begin fun fmt ->
      let d = Database.get () in
      SMap.iter
        (fun _ a ->
           Format.fprintf fmt "Axiomatic %s {@\n" a.ax_name ;
           List.iter (pp_type fmt) a.ax_types ;
           List.iter (pp_decl fmt d) a.ax_logics ;
           List.iter (pp_lemma fmt) a.ax_lemmas ;
           Format.fprintf fmt "}@\n"
        ) d.axiomatics ;
      TMap.iter
        (fun t s ->
           Format.fprintf fmt " * type '%s' in %a@\n"
             t.lt_name pp_section s)
        d.types ;
      LMap.iter
        (fun l s ->
           Format.fprintf fmt " * logic '%a' in %a@\n"
             pp_logic l pp_section s)
        d.logics ;
      SMap.iter
        (fun l (lem,s) ->
           Format.fprintf fmt " * %a '%s' in %a@\n"
             Cil_printer.pp_lemma_kind lem.lem_predicate.tp_kind
             l pp_section s)
        d.lemmas ;
      Format.fprintf fmt "-------------------------------------------------@." ;
    end
OCaml

Innovation. Community. Security.