package frama-c

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file Pattern.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
(**************************************************************************)
(*                                                                        *)
(*  This file is part of WP plug-in of Frama-C.                           *)
(*                                                                        *)
(*  Copyright (C) 2007-2024                                               *)
(*    CEA (Commissariat a l'energie atomique et aux energies              *)
(*         alternatives)                                                  *)
(*                                                                        *)
(*  you can redistribute it and/or modify it under the terms of the GNU   *)
(*  Lesser General Public License as published by the Free Software       *)
(*  Foundation, version 2.1.                                              *)
(*                                                                        *)
(*  It is distributed in the hope that it will be useful,                 *)
(*  but WITHOUT ANY WARRANTY; without even the implied warranty of        *)
(*  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *)
(*  GNU Lesser General Public License for more details.                   *)
(*                                                                        *)
(*  See the GNU Lesser General Public License version 2.1                 *)
(*  for more details (enclosed in the file licenses/LGPLv2.1).            *)
(*                                                                        *)
(**************************************************************************)

open Logic_typing
open Logic_ptree

(* -------------------------------------------------------------------------- *)
(* --- Pattern Engine                                                     --- *)
(* -------------------------------------------------------------------------- *)

type 'a loc = { loc : location ; value : 'a }

type pvar = string loc
type ast = node loc
and node =
  | Any
  | Pany of ast list
  | Pvar of pvar
  | Named of pvar * ast
  | Range of int * int
  | Int of Integer.t
  | Bool of bool
  | String of string
  | Not of ast
  | Assoc of assoc * ast list
  | Binop of ast * binop * ast
  | Call of string * ast list * bool (* trailing .. *)
  | Times of Integer.t * ast
  | List of ast list
  | Field of ast * string
  | Get of ast * ast
  | Set of ast * ast * ast
and assoc = [ `Add | `Mul | `Concat | `Band | `Bor | `Bxor | `And | `Or ]
and binop = [ `Div | `Mod | `Repeat | `Eq | `Lt | `Le | `Ne | `Lsl | `Lsr ]

let self p =
  let pattern,self = match p.value with
    | Named(x,_) | Pvar x -> p , x
    | _ ->
      let x = { loc = p.loc ; value= "\\target" } in
      { loc = p.loc ; value = Named(x,p) } , x
  in
  pattern , { loc = p.loc ; value = Pvar self }

let unroll op = function
  | { value = Assoc(f,xs) } when f = op -> xs
  | e -> [e]

let assoc op a b =
  {
    loc = fst a.loc, snd b.loc ;
    value = Assoc(op,unroll op a @ unroll op b) ;
  }

let concat ~loc es =
  let es = List.map (unroll `Concat) es in
  { loc ; value = Assoc(`Concat, List.concat es) }

module Vmap = Map.Make(String)

type context = {
  typing : typing_context ;
  mutable value : bool ;
  mutable pvars : pvar Vmap.t ;
}

type pattern = ast
type value = ast

(* -------------------------------------------------------------------------- *)
(* --- Node Parsing                                                       --- *)
(* -------------------------------------------------------------------------- *)

let context typing = { typing ; value = false ; pvars = Vmap.empty }

let pint ctxt ~loc a =
  try int_of_string a
  with _ -> ctxt.typing.error loc "Invalid int %S" a

let pinteger ctxt ~loc a =
  try Integer.of_string a
  with _ -> ctxt.typing.error loc "Invalid integer %S" a

let pvar ctxt ~loc x =
  try Vmap.find x ctxt.pvars with Not_found ->
    if ctxt.value then
      ctxt.typing.error loc "Unknown pattern variable '%s'" x
    else
      let pv = { loc ; value = x } in
      ctxt.pvars <- Vmap.add x pv ctxt.pvars ; pv

let pbound ctxt p =
  let loc = p.lexpr_loc in
  match p.lexpr_node with
  | PLconstant (IntConstant a) -> pint ctxt ~loc a
  | _ -> ctxt.typing.error loc "Invalid bound (int expected)"

let rec ptrail rps = function
  | [] -> List.rev rps,false
  | [{ lexpr_node = PLrange(None,None) }] -> List.rev rps,true
  | p::ps -> ptrail (p::rps) ps

let rec parse ctxt p =
  let loc = p.lexpr_loc in
  match p.lexpr_node with
  | PLvar "_" when not ctxt.value -> { loc ; value = Any }
  | PLvar x -> { loc ; value = Pvar (pvar ctxt ~loc x) }
  | PLnamed(x,p) ->
    let pv = pvar ctxt ~loc x in
    let pn = parse ctxt p in
    { loc ; value = Named(pv,pn) }
  | PLtrue -> { loc ; value = Bool true }
  | PLfalse -> { loc ; value = Bool false }
  | PLconstant (IntConstant n) ->
    { loc ; value = Int (pinteger ctxt ~loc n) }
  | PLconstant (StringConstant s) ->
    { loc ; value = String s }
  | PLrange(Some a,Some b) when not ctxt.value ->
    { loc ; value = Range(pbound ctxt a,pbound ctxt b) }
  | PLapp("\\any",[],ps) when not ctxt.value ->
    { loc ; value = Pany (List.map (parse ctxt) ps) }
  | PLapp("\\concat",[],[]) -> { loc ; value = List [] }
  | PLapp("\\concat",[],ps) -> concat ~loc @@ List.map (parse ctxt) ps
  | PLapp("\\repeat",[],[p;q]) -> parse_binop ctxt ~loc `Repeat p q
  | PLapp(lf,[],ps) ->
    let ps,trail = if ctxt.value then ps,false else ptrail [] ps in
    { loc ; value = Call(lf,List.map (parse ctxt) ps,trail) }
  | PLunop(Uminus,a) ->
    let a = parse ctxt a in
    { loc = a.loc ; value = Times(Integer.minus_one,a) }
  | PLunop(Ubw_not,a) ->
    let a = parse ctxt a in
    { loc = a.loc ; value = Call("lf:lnot",[a],false) }
  | PLnot a ->
    let a = parse ctxt a in
    { loc = a.loc ; value = Not a }
  | PLbinop(a,Bmul,b) ->
    let a = parse ctxt a in
    let b = parse ctxt b in
    begin
      match a.value with
      | Int k -> { loc ; value = Times(k,b) }
      | _ -> assoc `Mul a b
    end
  | PLbinop(a,Bsub,b) ->
    let a = parse ctxt a in
    let b = parse ctxt b in
    let b = { loc = b.loc ; value = Times(Integer.minus_one,b) } in
    assoc `Add a b
  | PLbinop(a,Badd,b) -> assoc `Add (parse ctxt a) (parse ctxt b)
  | PLbinop(a,Bbw_or,b) -> assoc `Bor (parse ctxt a) (parse ctxt b)
  | PLbinop(a,Bbw_and,b) -> assoc `Band (parse ctxt a) (parse ctxt b)
  | PLbinop(a,Bbw_xor,b) -> assoc `Bxor (parse ctxt a) (parse ctxt b)
  | PLbinop(a,Bdiv,b) -> parse_binop ctxt ~loc `Div a b
  | PLbinop(a,Bmod,b) -> parse_binop ctxt ~loc `Mod a b
  | PLbinop(a,Blshift,b) -> parse_binop ctxt ~loc `Lsl a b
  | PLbinop(a,Brshift,b) -> parse_binop ctxt ~loc `Lsr a b
  | PLrel(a,Lt,b) -> parse_binop ctxt ~loc `Lt a b
  | PLrel(a,Le,b) -> parse_binop ctxt ~loc `Le a b
  | PLrel(a,Gt,b) -> parse_binop ctxt ~loc `Lt b a
  | PLrel(a,Ge,b) -> parse_binop ctxt ~loc `Le b a
  | PLrel(a,Eq,b) -> parse_binop ctxt ~loc `Eq a b
  | PLrel(a,Neq,b) -> parse_binop ctxt ~loc `Ne a b
  | PLand(a,b) -> assoc `And (parse ctxt a) (parse ctxt b)
  | PLor(a,b) -> assoc `Or (parse ctxt a) (parse ctxt b)
  | PLempty -> { loc ; value = List [] }
  | PLlist ps -> { loc ; value = List (List.map (parse ctxt) ps) }
  | PLrepeat(p,n) -> parse_binop ctxt ~loc `Repeat p n
  | PLdot(a,fd) -> { loc ; value = Field(parse ctxt a,fd) }
  | PLarrget(a,b) ->
    begin
      match b.lexpr_node with
      | PLarrget(k,v) ->
        { loc ; value = Set(parse ctxt a,parse ctxt k,parse ctxt v) }
      | _ ->
        { loc ; value = Get(parse ctxt a,parse ctxt b) }
    end
  | _ ->
    ctxt.typing.error loc
      (if ctxt.value then "Invalid value" else "Invalid pattern")

and parse_binop ctxt ~loc (op:binop) a b =
  { loc ; value = Binop(parse ctxt a,op,parse ctxt b) }

let pa_pattern ctxt p = ctxt.value <- false ; parse ctxt p
let pa_value ctxt p = ctxt.value <- true ; parse ctxt p

(* -------------------------------------------------------------------------- *)
(* --- Pretty                                                             --- *)
(* -------------------------------------------------------------------------- *)

let rec pp fmt (a : ast) =
  match a.value with
  | Any ->  Format.pp_print_string fmt "_"
  | Pvar x -> Format.pp_print_string fmt x.value
  | Named (x,v) -> Format.fprintf fmt "%s:%a" x.value pp v
  | Range(a,b) -> Format.fprintf fmt "(%d..%d)" a b
  | Int n -> Integer.pretty fmt n
  | Bool b -> Format.pp_print_string fmt (if b then "\\true" else "\\false")
  | String s -> Format.fprintf fmt "%S" s
  | Assoc(`Band,[]) -> Format.pp_print_string fmt "-1"
  | Assoc(`Mul,[]) -> Format.pp_print_string fmt "1"
  | Assoc((`Add|`Bor|`Bxor),[]) -> Format.pp_print_string fmt "0"
  | Assoc(`And,[]) -> Format.pp_print_string fmt "\\true"
  | Assoc(`Or,[]) -> Format.pp_print_string fmt "\\false"
  | Assoc(`Concat,[]) -> Format.pp_print_string fmt "[| |]"
  | Not a -> Format.fprintf fmt "!(%a)" pp a
  | Assoc(op,v::vs) ->
    let op = match op with
      | `Add -> "+"
      | `Mul -> "*"
      | `Concat | `Bxor -> "^"
      | `Band -> "&"
      | `Bor -> "|"
      | `And -> "&&"
      | `Or -> "||"
    in
    Format.fprintf fmt "@[<hov 2>(%a" pp v ;
    List.iter (Format.fprintf fmt "@ %s %a" op pp) vs ;
    Format.fprintf fmt ")@]"
  | Binop(a,op,b) ->
    let op = match op with
      | `Div -> "/"
      | `Mod -> "%"
      | `Eq -> "=="
      | `Ne -> "!="
      | `Lt -> "<"
      | `Le -> "<="
      | `Repeat -> "*^"
      | `Lsl -> "<<"
      | `Lsr -> ">>"
    in Format.fprintf fmt "@[<hov 2>(%a@ %s %a)@]" pp a op pp b
  | Times(k,v) -> Format.fprintf fmt "%a*%a" Integer.pretty k pp v
  | Get(a,k) -> Format.fprintf fmt "@[<hov 2>%a[@,%a]@]" pp a pp k
  | Set(a,k,v) -> Format.fprintf fmt "@[<hov 2>%a[@,%a@ -> %a]@]" pp a pp k pp v
  | List [] -> Format.pp_print_string fmt "[| |]"
  | List (v::vs) ->
    Format.fprintf fmt "@[<hov 2>[| %a" pp v ;
    List.iter (Format.fprintf fmt " ;@ %a" pp) vs ;
    Format.fprintf fmt " |]@]"
  | Field(v,id) -> Format.fprintf fmt "%a.%s" pp v id
  | Call(id,[],true) -> Format.fprintf fmt "%s((..))" id
  | Call(id,[],false) -> Format.fprintf fmt "%s()" id
  | Call(id,v::vs,trail) ->
    Format.fprintf fmt "@[<hov 2>%s(%a" id pp v ;
    List.iter (Format.fprintf fmt ",@ %a" pp) vs ;
    if trail then Format.fprintf fmt ",@ (..)" ;
    Format.fprintf fmt ")@]"
  | Pany [] -> Format.pp_print_string fmt "\\never"
  | Pany (v::vs) ->
    Format.fprintf fmt "@[<hov 2>\\any(%a" pp v ;
    List.iter (Format.fprintf fmt ",@ %a" pp) vs ;
    Format.fprintf fmt ")@]"

let pp_value = pp
let pp_pattern = pp

(* -------------------------------------------------------------------------- *)
(* --- Pattern Matching                                                   --- *)
(* -------------------------------------------------------------------------- *)

type sigma = Tactical.selection Vmap.t

let pp_sigma fmt s =
  begin
    Format.fprintf fmt "@[<hv 0>[@[<hv 2>" ;
    Vmap.iter
      (fun x e ->
         Format.fprintf fmt "@ @[<hov 2>%s -> %a@] ;" x Tactical.pp_selection e
      ) s ;
    Format.fprintf fmt "@]@ ]@]" ;
  end

type penv = {
  mutable sigma : sigma ;
  mutable marked : Lang.F.Tset.t ;
  select : Lang.F.term -> Tactical.selection ;
}

let merge env (x : pvar) e =
  try
    let s = Vmap.find x.value env.sigma in
    let v = Tactical.selected s in
    if not (Lang.F.equal v e) then
      raise Not_found
  with Not_found ->
    env.sigma <- Vmap.add x.value (env.select e) env.sigma

let rec is_any (p : pattern) =
  match p.value with
  | Any | Pvar _ -> true
  | Named(_,q) -> is_any q
  | _ -> false

let rec pmatch env (p : pattern) e =
  match p.value , Lang.F.repr e with
  | Any , _ -> ()
  | Pvar x , _ -> merge env x e
  | Named(x,p) , _ -> merge env x e ; pmatch env p e
  | Range(a,b) , Kint n ->
    begin
      match Integer.to_int_opt n with
      | Some v when a <= v && v <= b -> ()
      | _ -> raise Not_found
    end
  | Bool true , True -> ()
  | Bool false , False -> ()
  | Int v1, Kint v2 when Z.equal v1 v2 -> ()
  | Not p , Not e -> pmatch env p e
  | Assoc(`Or,ps) , Or es -> pac env Lang.F.e_or [] ps es
  | Assoc(`And,ps) , And es -> pac env Lang.F.e_and [] ps es
  | Assoc(`Add,ps) , Add es -> pac env Lang.F.e_sum [] ps es
  | Assoc(`Mul,ps) , Mul es -> pac env Lang.F.e_prod [] ps es
  | Assoc(`Bor,ps) , Fun(lf,es) when lf == Cint.f_lor ->
    pac env (Lang.F.e_fun lf) [] ps es
  | Assoc(`Band,ps) , Fun(lf,es) when lf == Cint.f_land ->
    pac env (Lang.F.e_fun lf) [] ps es
  | Assoc(`Bxor,ps) , Fun(lf,es) when lf == Cint.f_lxor ->
    pac env (Lang.F.e_fun lf) [] ps es
  | Assoc(`Concat,ts) , Fun(lf, es) when lf == Vlist.f_concat ->
    pac env (Lang.F.e_fun lf) [] ts es
  | Binop(p,`Div,q) , Div(a,b) -> pbinop env p q a b
  | Binop(p,`Mod,q) , Mod(a,b) -> pbinop env p q a b
  | Binop(p,`Eq,q) , Eq(a,b) -> pbinop env p q a b
  | Binop(p,`Ne,q) , Neq(a,b) -> pbinop env p q a b
  | Binop(p,`Lt,q) , Lt(a,b) -> pbinop env p q a b
  | Binop(p,`Le,q) , Leq(a,b) -> pbinop env p q a b
  | Binop(p,`Lsl,q) , Fun(lf,[a;b]) when lf == Cint.f_lsl -> pbinop env p q a b
  | Binop(p,`Lsr,q) , Fun(lf,[a;b]) when lf == Cint.f_lsr -> pbinop env p q a b
  | Times(b,p) , Times(a,e) ->
    let q,r = Integer.c_div_rem a b in
    if Integer.is_zero r then pmatch env p (Lang.F.e_times q e)
    else raise Not_found
  | Get(pa,pk) , Aget(a,k) ->
    pmatch env pa a ; pmatch env pk k
  | Set(pa,pk,pv) , Aset(a,k,v) ->
    pmatch env pa a ; pmatch env pk k ; pmatch env pv v
  | Field(pv,fid) , Rget(v,fd) when Lang.name_of_field fd = fid ->
    pmatch env pv v
  | Call(fid,ps,trail) , Fun(lf,es) when Lang.name_of_lfun lf = fid ->
    begin
      match Lang.Fun.category lf with
      | Operator op ->
        if op.associative then
          let rps = if trail then [{ loc = p.loc ; value = Any }] else [] in
          if op.commutative then
            pac env (Lang.F.e_fun lf) rps ps es
          else
            passoc env (Lang.F.e_fun lf) rps ps [] es
        else
          pargs env ps trail es
      | _ -> pargs env ps trail es
    end
  | Binop(pl,`Repeat,pn) , Fun(lf,[l;n]) when lf == Vlist.f_repeat ->
    pmatch env pl l ; pmatch env pn n
  | List _vs , _ -> ()
  | Pany ps , _ ->
    let ok = List.exists (fun p -> ptry env p e) ps in
    if not ok then raise Not_found
  | _ -> raise Not_found

and pbinop env p q a b = pmatch env p a ; pmatch env q b

(* Associative matching :
   - rps are (reversed) any-patterns to be matched with (reversed) rvs values
   - invariant is (rev rps @ ps) being matched with (rev rvs @ vs) *)
and passoc env op rps ps rvs vs =
  match ps with
  | [] -> pany env op (List.rev rps) (List.rev_append rvs vs)
  | p::ps ->
    if is_any p then passoc env op (p::rps) ps rvs vs
    else
      match vs with
      | [] -> raise Not_found
      | v::vs ->
        if ptry env p v then
          begin
            pany env op (List.rev rps) (List.rev rvs) ;
            passoc env op [] ps [] vs
          end
        else
          passoc env op rps ps (v::rvs) vs

(* AC matching:
   - rps are (reversed) any-patterns
   - invariant is (rev rs @ ps) being matched with es *)
and pac env op rps ps es =
  match ps with
  | p::ps ->
    if is_any p then pac env op (p::rps) ps es
    else
      let ep = List.find (ptry env p) es in
      let es = List.filter (fun e -> not @@ Lang.F.equal ep e) es in
      pac env op rps ps es
  | [] -> pany env op (List.rev rps) es

(* Match with backtracking *)
and ptry env p e =
  let s0 = env.sigma in
  try pmatch env p e ; true
  with Not_found -> env.sigma <- s0 ; false

(* Matching any-patterns rs with es *)
and pany env op rs es =
  match rs , es with
  | [] , [] -> ()
  | [] , _ | _ , [] -> raise Not_found
  | [r] , _ -> pmatch env r (op es)
  | r::rs , e::es -> pmatch env r e ; pany env op rs es

(* Pairwise matching *)
and pargs env ps trail es =
  match ps , es with
  | [] , [] -> ()
  | [] , _ when trail -> ()
  | p::ps , e::es -> pmatch env p e ; pargs env ps trail es
  | _ -> raise Not_found

(* Deep matching with marking *)
let rec pchildren env p e =
  let rs = ref [] in
  Lang.F.lc_iter (fun e -> rs := e :: !rs) e ;
  List.exists (pchild env p) (List.rev !rs)

and pchild env p e =
  if Lang.F.lc_closed e then
    not (Lang.F.Tset.mem e env.marked) &&
    begin
      env.marked <- Lang.F.Tset.add e env.marked ;
      ptry env p e || pchildren env p e
    end
  else
    pchildren env p e

let rec plist f =
  function [] -> None | x::xs ->
  match f x with
  | Some _ as result -> result
  | None -> plist f xs

(* -------------------------------------------------------------------------- *)
(* --- Pattern Lookup                                                     --- *)
(* -------------------------------------------------------------------------- *)

type lookup = {
  head: bool ;
  goal: bool ;
  hyps: bool ;
  split: bool ;
  pattern: pattern ;
}

let pclause { head ; pattern ; split } clause sigma prop =
  let tprop = Lang.F.e_prop prop in
  let select t =
    if t == tprop then Tactical.Clause clause else Tactical.Inside(clause,t) in
  let env = { sigma ; select ; marked = Lang.F.Tset.empty } in
  let pcond t =
    if ptry env pattern t || (not head && pchildren env pattern t)
    then Some env.sigma else None
  in
  match Lang.F.repr tprop with
  | And ts when split -> plist pcond ts
  | _ -> pcond tprop

(* --- Step Ordering --- *)

let queue = Queue.create ()

let order (s : Conditions.step) : int =
  match s.condition with
  | Have _ -> 0
  | When _ -> 1
  | Branch _ -> 2
  | Core _ -> 3
  | Init _ -> 4
  | Type _ -> 5
  | Either _ -> 6
  | State _ -> 7
  | Probe _ -> 8

let priority sa sb = order sa - order sb

let push (step : Conditions.step) =
  match step.condition with
  | Have _ | When _ | Core _ | Init _ | Type _ | State _ | Probe _ -> ()
  | Branch(_,sa,sb) -> Queue.push sa queue ; Queue.push sb queue
  | Either cs -> List.iter (fun s -> Queue.push s queue) cs

(* --- Step Matching --- *)

let pstep ctxt sigma (step : Conditions.step) =
  let term = Conditions.head step in
  let clause = Tactical.Step step in
  pclause ctxt clause sigma term

(* --- Sequence Matching --- *)

let rec psequence ctxt sigma (seq : Conditions.sequence) =
  let steps = List.sort priority (Conditions.list seq) in
  match plist (pstep ctxt sigma) steps with
  | Some _ as result ->
    Queue.clear queue ; result
  | None ->
    List.iter push steps ;
    if Queue.is_empty queue then None else
      psequence ctxt sigma (Queue.pop queue)

(* --- Hypotheses Matching --- *)

let phyps ctxt sigma (seq : Conditions.sequent) =
  if not ctxt.hyps then None else
    psequence ctxt sigma (fst seq)

let pgoal ctxt sigma (seq : Conditions.sequent) =
  if not ctxt.goal then None else
    let goal = snd seq in
    let clause = Tactical.Goal goal in
    pclause ctxt clause sigma goal

let empty = Vmap.empty

let psequent ctxt sigma (seq : Conditions.sequent) =
  Conditions.index seq ;
  match pgoal ctxt sigma seq with
  | Some _ as result -> result
  | None -> phyps ctxt sigma seq

(* -------------------------------------------------------------------------- *)
(* --- Composing Values                                                   --- *)
(* -------------------------------------------------------------------------- *)

let () = Lang.on_lfun
    begin fun lf ->
      let id = "lf:" ^ Lang.name_of_lfun lf in
      Tactical.add_computer id (Lang.F.e_fun lf)
    end

let () = Lang.on_field
    begin fun fd ->
      let id = "fd:" ^ Lang.name_of_field fd in
      Tactical.add_computer id (fun es -> Lang.F.e_getfield (List.hd es) fd)
    end

let error ~loc msg =
  Wp_parameters.logwith (fun _evt -> raise Not_found) ~source:(fst loc) msg

let getvar env (x : string loc) : Tactical.selection =
  try Vmap.find x.value env
  with Not_found ->
    error ~loc:x.loc "Pattern variable '%s' not bound" x.value

let rec select (env : sigma) (a : value) =
  let loc = a.loc in
  let cc = select env in
  match a.value with
  | Any ->  error ~loc "Pattern _ is not a value"
  | Pany _ ->  error ~loc "Pattern \\any(..) is not a value"
  | String s -> error ~loc "String %S is not a value" s
  | Pvar x -> getvar env x
  | Named (_,v) -> cc v
  | Range(a,b) -> Tactical.range a b
  | Int n -> Tactical.cint n
  | Bool b -> Tactical.compose (if b then "wp:true" else "wp:false") []
  | Not a -> Tactical.compose "wp:not" [cc a]
  | Assoc(op,vs) ->
    let op = match op with
      | `Add -> "wp:add"
      | `Mul -> "wp:mul"
      | `Concat -> "wp:concat"
      | `And -> "wp:and"
      | `Or -> "wp:or"
      | `Bor -> "lf:lor"
      | `Band -> "lf:land"
      | `Bxor -> "lf:lxor"
    in Tactical.compose op (List.map (cc) vs)
  | Binop(a,op,b) ->
    let op = match op with
      | `Div -> "wp:div"
      | `Mod -> "wp:mod"
      | `Eq -> "wp:eq"
      | `Ne -> "wp:neq"
      | `Lt -> "wp:lt"
      | `Le -> "wp:leq"
      | `Repeat -> "wp:repeat"
      | `Lsl -> "lf:lsl"
      | `Lsr -> "lf:lsr"
    in compose env ~loc op [a;b]
  | Times(k,v) -> Tactical.compose "wp:mul" [Tactical.cint k;cc v]
  | Get(a,k) -> Tactical.compose "wp:get" [cc a;cc k]
  | Set(a,k,v) -> Tactical.compose "wp:set" [cc a;cc k;cc v]
  | List vs -> Tactical.compose "wp:list" (List.map cc vs)
  | Field(v,id) -> compose env ~loc ("fd:" ^ id) [v]
  | Call(id,vs,_) -> compose env ~loc ("lf:" ^ id) vs

and compose env ~loc id vs =
  match Tactical.compose id (List.map (select env) vs) with
  | Tactical.Empty -> error ~loc "Computer %S not found" id
  | result -> result

let bool (a : value) =
  match a.value with
  | Bool b -> b
  | _ -> error ~loc:a.loc "Not a boolean value (%a)" pp a

let string (a : value) =
  match a.value with
  | String s -> s
  | _ -> error ~loc:a.loc "Not a string value (%a)" pp a

(* -------------------------------------------------------------------------- *)
(* --- Typechecking                                                       --- *)
(* -------------------------------------------------------------------------- *)

type vtype =
  | Tnone | Tany | Numerical | Boolean | String
  | List of vtype
  | Array of vtype * vtype
  | Type of Lang.F.tau

let vint = Type Qed.Logic.Int
let vbool = Type Qed.Logic.Bool
let vlist = List Tany

let list = function
  | Type t -> Type (Vlist.alist t)
  | Tnone -> Tnone
  | v -> List v

let array vk ve =
  match vk , ve with
  | Type tk, Type te -> Type (Qed.Logic.Array(tk,te))
  | Tnone , _ | _ , Tnone -> Tnone
  | _ -> Array(vk,ve)

let rec vmerge va vb =
  if va == vb then vb else
    match va, vb with
    | Tany , v | v, Tany -> v
    (* numerical *)
    | Numerical, Numerical -> Numerical
    | Numerical, Type (Int | Real) -> vb
    | Type (Int | Real), Numerical -> va
    | Type Int , Type Real -> vb
    | Type Real , Type Int -> va
    (* boolean *)
    | Boolean, Boolean -> Boolean
    | Boolean, Type (Bool | Prop) -> vb
    | Type (Bool | Prop) , Boolean -> va
    | Type Bool , Type Prop -> vb
    | Type Prop , Type Bool -> va
    (* list *)
    | List u , List v -> list (vmerge u v)
    | (List m, Type t) | (Type t , List m) ->
      begin
        match Vlist.elist t with
        | None -> Tnone
        | Some te -> list (vmerge m (Type te))
      end
    (* arrays *)
    | Array(vk,ve) , Array(uk,ue) ->
      array (vmerge vk uk) (vmerge ve ue)
    | (Array(vk,ve) , Type(Array(tk,te)))
    | (Type(Array(tk,te)) , Array(vk,ve)) ->
      array (vmerge vk (Type tk)) (vmerge ve (Type te))
    (* types *)
    | Type ta , Type tb -> if Lang.F.Tau.equal ta tb then vb else Tnone
    | _ -> Tnone

let rec vpretty fmt = function
  | Tnone -> Format.fprintf fmt "\\none"
  | Tany -> Format.fprintf fmt "\\any"
  | List v -> Format.fprintf fmt "\\list(%a)" vpretty v
  | Array(vk,ve) -> Format.fprintf fmt "%a[%a]" vpretty vk vpretty ve
  | String -> Format.fprintf fmt "string"
  | Numerical -> Format.fprintf fmt "number"
  | Boolean -> Format.fprintf fmt "boolean"
  | Type t -> Lang.F.Tau.pretty fmt t

type env = vtype Vmap.t ref
let env () = ref Vmap.empty

let tc_merge ~loc va vb =
  let v = vmerge va vb in
  if v = Tnone then
    Wp_parameters.error ~source:(fst loc) "Invalid type %a (expected %a)"
      vpretty va vpretty vb ; v

let tc_var env ~loc vt x =
  let vx = try Vmap.find x !env with Not_found -> Tany in
  let vy = tc_merge ~loc vt vx in
  if vx != vy then env := Vmap.add x vy !env ; vy

let rec typecheck env vt (a : ast) =
  let loc = a.loc in
  match a.value with
  | Any -> vt
  | Pany ps -> List.fold_left (typecheck env) vt ps
  | Pvar x -> tc_var env ~loc vt x.value
  | Named(x,v) -> tc_var env ~loc (typecheck env vt v) x.value
  | Range(a,b) ->
    if a > b then Wp_parameters.error ~source:(fst loc)
        "Invalid range %d..%d" a b ;
    tc_merge ~loc vt (Type Qed.Logic.Int)
  | Int _ -> tc_merge ~loc vt vint
  | Bool _ -> tc_merge ~loc vt vbool
  | String _ -> tc_merge ~loc vt String
  | Not a -> typecheck env (tc_merge ~loc vbool vt) a
  | Assoc((`And|`Or),vs) ->
    List.fold_left (typecheck env) (tc_merge ~loc vbool vt) vs
  | Assoc((`Bor|`Band|`Bxor),vs) ->
    List.fold_left (typecheck env) (tc_merge ~loc vint vt) vs
  | Assoc((`Add|`Mul),vs) ->
    List.fold_left (typecheck env) (tc_merge ~loc Numerical vt) vs
  | Assoc(`Concat,vs) ->
    List.fold_left (typecheck env) (tc_merge ~loc vlist vt) vs
  | Binop(a,(`Eq | `Ne),b) ->
    let va = typecheck env Tany a in
    let vb = typecheck env Tany b in
    ignore @@ tc_merge ~loc va vb ;
    tc_merge ~loc vt Boolean
  | Binop(a,(`Lt | `Le),b) ->
    let va = typecheck env Numerical a in
    let vb = typecheck env Numerical b in
    ignore @@ tc_merge ~loc va vb ;
    tc_merge ~loc vt Boolean
  | Binop(a,`Div,b) ->
    let vn = tc_merge ~loc Numerical vt in
    let va = typecheck env vn a in
    let vb = typecheck env vn b in
    tc_merge ~loc va vb
  | Binop(a,(`Mod|`Lsl|`Lsr),b) ->
    ignore @@ typecheck env vint a ;
    ignore @@ typecheck env vint b ;
    tc_merge ~loc vt vint
  | Binop(a,`Repeat,b) ->
    ignore @@ typecheck env vint b ;
    typecheck env (tc_merge ~loc vlist vt) a
  | Times(_,v) -> typecheck env (tc_merge ~loc Numerical vt) v
  | List vs ->
    let ve = List.fold_left (typecheck env) Tany vs in
    tc_merge ~loc vt (List ve)
  | Get(a,k) ->
    let vk = typecheck env Tany k in
    begin
      match typecheck env (Array(vk,vt)) a with
      | Array(_,ve) -> ve
      | Type(Array(_,te)) -> Type te
      | va -> Wp_parameters.error ~source:(fst a.loc)
                "Not an array type (%a)" vpretty va ; vt
    end
  | Set(a,k,v) ->
    let vk = typecheck env Tany k in
    let ve = typecheck env vt v in
    typecheck env (array vk ve) a
  | Field(v,fid) ->
    begin
      match typecheck env Tany v with
      | Type(Record fds) ->
        begin
          try
            let (_,ft) =
              List.find (fun (fd,_) -> Lang.name_of_field fd = fid) fds in
            tc_merge ~loc vt (Type ft)
          with Not_found -> vt
        end
      | Tany -> vt
      | vr -> Wp_parameters.error ~source:(fst v.loc)
                "Not a record type (%a)" vpretty vr ; vt
    end
  | Call(_f,vs,_) ->
    List.iter (fun v -> ignore @@ typecheck env Tany v) vs ; vt

let typecheck_vtau env ?tau v =
  ignore @@ typecheck env (match tau with None -> Tany | Some t -> Type t) v

let typecheck_value = typecheck_vtau
let typecheck_pattern = typecheck_vtau

let typecheck_lookup env p =
  ignore @@ typecheck env (if p.head then Boolean else Tany) p.pattern

(* -------------------------------------------------------------------------- *)
OCaml

Innovation. Community. Security.