package frama-c

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file LogicSemantics.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
(**************************************************************************)
(*                                                                        *)
(*  This file is part of WP plug-in of Frama-C.                           *)
(*                                                                        *)
(*  Copyright (C) 2007-2024                                               *)
(*    CEA (Commissariat a l'energie atomique et aux energies              *)
(*         alternatives)                                                  *)
(*                                                                        *)
(*  you can redistribute it and/or modify it under the terms of the GNU   *)
(*  Lesser General Public License as published by the Free Software       *)
(*  Foundation, version 2.1.                                              *)
(*                                                                        *)
(*  It is distributed in the hope that it will be useful,                 *)
(*  but WITHOUT ANY WARRANTY; without even the implied warranty of        *)
(*  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *)
(*  GNU Lesser General Public License for more details.                   *)
(*                                                                        *)
(*  See the GNU Lesser General Public License version 2.1                 *)
(*  for more details (enclosed in the file licenses/LGPLv2.1).            *)
(*                                                                        *)
(**************************************************************************)

(* -------------------------------------------------------------------------- *)
(* --- ACSL Translation                                                   --- *)
(* --- LogicSemantics and LogicCompiler are mutually recursive (cycle     --- *)
(* --- closed by "boostrap*" function                                     --- *)
(* -------------------------------------------------------------------------- *)

open Cil_types
open Cil_datatype
open LogicBuiltins
open Clabels
open Ctypes
open Lang
open Lang.F
open Definitions
open Sigs

module Make(M : Sigs.Model) =
struct

  module M = M
  open M

  type loc = M.loc
  type value = loc Sigs.value
  type logic = loc Sigs.logic
  type result = loc Sigs.result
  type region = loc Sigs.region
  type sigma = Sigma.t

  module L = Cvalues.Logic(M)
  module C = LogicCompiler.Make(M)

  (* -------------------------------------------------------------------------- *)
  (* --- Frames                                                             --- *)
  (* -------------------------------------------------------------------------- *)

  type call = C.call
  type frame = C.frame
  let pp_frame = C.pp_frame
  let get_frame = C.get_frame
  let mk_frame = C.mk_frame
  let in_frame = C.in_frame
  let mem_frame = C.mem_frame
  let has_at_frame = C.has_at_frame
  let mem_at_frame = C.mem_at_frame
  let set_at_frame = C.set_at_frame
  let mem_at = C.mem_at
  let env_at = C.env_at
  let local = C.local
  let frame = C.frame
  let call = C.call
  let call_pre = C.call_pre
  let call_post = C.call_post
  let return = C.return
  let result = C.result
  let status = C.status
  let guards = C.guards

  (* -------------------------------------------------------------------------- *)
  (* --- Translation Environment & Recursion                                --- *)
  (* -------------------------------------------------------------------------- *)

  type env = C.env
  let mk_env = C.mk_env
  let move_at = C.move_at
  let current = C.current

  let logic_of_value = function
    | Val e -> Vexp e
    | Loc l -> Vloc l

  let loc_of_term env t =
    match C.logic env t with
    | Vexp e -> M.pointer_loc e
    | Vloc l -> l
    | _ ->
      Warning.error "Non-expected set of locations (%a)" Printer.pp_term t

  let val_of_term env t =
    match C.logic env t with
    | Vexp e -> e
    | Vloc l -> M.pointer_val l
    | Vset s -> Vset.concretize s
    | Lset _ ->
      Warning.error "Non-expected set of values (%a)" Printer.pp_term t

  let set_of_term env t = L.vset (C.logic env t)

  let collection_of_term env t =
    let v = C.logic env t in
    match v with
    | Vexp s when Logic_typing.is_set_type t.term_type ->
      let te = Logic_typing.type_of_set_elem t.term_type in
      Vset [Vset.Set(tau_of_ltype te,s)]
    | w -> w

  let term env t =
    match C.logic env t with
    | Vexp e -> e
    | Vloc l -> M.pointer_val l
    | s -> Vset.concretize (L.vset s)

  (* -------------------------------------------------------------------------- *)
  (* --- Accessing an Offset (sub field-index in a compound)                --- *)
  (* -------------------------------------------------------------------------- *)

  let rec access_offset env (v:logic) = function
    | TNoOffset -> v
    | TModel _ -> Wp_parameters.not_yet_implemented "Model field"
    | TField(f,offset) ->
      let v_f = L.map (fun r -> e_getfield r (cfield f)) v in
      access_offset env v_f offset
    | TIndex(k,offset) ->
      let rk = C.logic env k in
      let v_k = L.apply e_get v rk in
      access_offset env v_k offset

  (* -------------------------------------------------------------------------- *)
  (* --- Updating an Offset (sub field-index in a compound)                 --- *)
  (* -------------------------------------------------------------------------- *)

  let rec update_offset env (r:term) offset (v:term) = match offset with
    | TNoOffset -> v
    | TModel _ -> Wp_parameters.not_yet_implemented "Model field"
    | TField(f,offset) ->
      let fd = cfield f in
      let r_f = e_getfield r fd in
      let r_fv = update_offset env r_f offset v in
      e_setfield r fd r_fv
    | TIndex(k,offset) ->
      let k = val_of_term env k in
      let r_kv = update_offset env (e_get r k) offset v in
      e_set r k r_kv

  (* -------------------------------------------------------------------------- *)
  (* --- Shifting Location of an Offset (pointer shift)                     --- *)
  (* -------------------------------------------------------------------------- *)

  (* typ is logic-type of (load v) *)
  let rec logic_offset env typ (v:logic) = function
    | TNoOffset -> typ , v
    | TModel _ -> Wp_parameters.not_yet_implemented "Model field"
    | TField(f,offset) ->
      logic_offset env f.ftype (L.field v f) offset
    | TIndex(k,offset) ->
      let te = Cil.typeOf_array_elem typ in
      let size = Ctypes.get_array_size (Ctypes.object_of typ) in
      let obj = Ctypes.object_of te in
      let vloc = L.shift v obj ?size (C.logic env k) in
      logic_offset env te vloc offset

  (* -------------------------------------------------------------------------- *)
  (* --- Logic Variable                                                     --- *)
  (* -------------------------------------------------------------------------- *)

  type lv_value =
    | VAL of logic
    | VAR of varinfo

  let logic_var env lv =
    match lv.lv_origin with
    | None -> VAL (C.logic_var env lv)
    | Some x ->
      if x.vformal then match C.formal x with
        | Some v -> VAL (logic_of_value v)
        | None -> VAR x
      else VAR x

  (* -------------------------------------------------------------------------- *)
  (* --- Term L-Values (this means 'loading' the l-value)                   --- *)
  (* -------------------------------------------------------------------------- *)

  let load_loc env typ loc loffset =
    let te,lp = logic_offset env typ (Vloc loc) loffset in
    L.load (C.current env) (Ctypes.object_of te) lp

  let term_lval env (lhost,loffset) =
    match lhost with
    | TResult ty ->
      begin match C.result () with
        | Sigs.R_var x ->
          access_offset env (Vexp (e_var x)) loffset
        | Sigs.R_loc l ->
          load_loc env ty l loffset
      end
    | TMem e ->
      let te = Logic_typing.ctype_of_pointed e.term_type in
      let te , lp = logic_offset env te (C.logic env e) loffset in
      L.load (C.current env) (Ctypes.object_of te) lp
    | TVar{lv_name="\\exit_status"} ->
      assert (loffset = TNoOffset) ; (* int ! *)
      Vexp (e_var (C.status ()))
    | TVar lv ->
      begin
        match logic_var env lv with
        | VAL v -> access_offset env v loffset
        | VAR x -> load_loc env x.vtype (M.cvar x) loffset
      end

  (* -------------------------------------------------------------------------- *)
  (* --- Address of L-Values                                                --- *)
  (* -------------------------------------------------------------------------- *)

  let logic_lval env (lhost,loffset) =
    match lhost with
    | TResult ty ->
      begin match C.result () with
        | R_loc l ->
          logic_offset env ty (Vloc l) loffset
        | R_var _ ->
          Wp_parameters.abort ~current:true "Address of \\result"
      end
    | TMem e ->
      let te = Logic_typing.ctype_of_pointed e.term_type in
      logic_offset env te (C.logic env e) loffset
    | TVar lv ->
      begin
        match logic_var env lv with
        | VAL v ->
          Wp_parameters.abort ~current:true
            "Address of logic value (%a)@." (Cvalues.pp_logic M.pretty) v
        | VAR x ->
          logic_offset env x.vtype (Vloc (M.cvar x)) loffset
      end

  let addr_lval env lv = snd (logic_lval env lv)

  let lval env lv =
    let te,ve = logic_lval env lv in
    match ve with
    | Vexp e -> te , M.pointer_loc e
    | Vloc l -> te , l
    | _ ->
      Wp_parameters.abort ~current:true "Unexpected set (%a)"
        Printer.pp_term_lval lv

  (* -------------------------------------------------------------------------- *)
  (* --- Unary Operators                                                    --- *)
  (* -------------------------------------------------------------------------- *)

  (* Only integral *)
  let term_unop = function
    | Neg -> L.map_opp
    | BNot -> L.map Cint.l_not
    | LNot -> L.map e_not

  (* -------------------------------------------------------------------------- *)
  (* --- Equality                                                           --- *)
  (* -------------------------------------------------------------------------- *)

  type eqsort =
    | EQ_set
    | EQ_loc
    | EQ_plain
    | EQ_float of c_float
    | EQ_array of matrixinfo
    | EQ_comp of compinfo
    | EQ_incomparable

  and matrixinfo = c_object * int option list

  let eqsort_of_type t =
    match Logic_utils.unroll_type ~unroll_typedef:false t with
    | Ltype({lt_name="set"},[_]) -> EQ_set
    | Linteger | Lreal | Lvar _ | Larrow _ | Ltype _ -> EQ_plain
    | Ctype t ->
      match Ctypes.object_of t with
      | C_pointer _ -> EQ_loc
      | C_int _ -> EQ_plain
      | C_float f -> EQ_float f
      | C_comp c -> EQ_comp c
      | C_array a -> EQ_array (Ctypes.array_dimensions a)

  let eqsort_of_comparison a b =
    match eqsort_of_type a.term_type , eqsort_of_type b.term_type with
    | EQ_set , _ | _ , EQ_set -> EQ_set
    | EQ_loc , EQ_loc -> EQ_loc
    | EQ_comp c1 , EQ_comp c2 ->
      if Compinfo.equal c1 c2 then EQ_comp c1 else EQ_incomparable
    | EQ_array(t1,d1) , EQ_array(t2,d2) ->
      if Ctypes.equal t1 t2 then
        match Matrix.merge d1 d2 with
        | Some d -> EQ_array(t1,d)
        | None -> EQ_incomparable
      else EQ_incomparable
    | EQ_plain , EQ_plain -> EQ_plain
    | EQ_float f1 , EQ_float f2 when f1 = f2 -> EQ_float f1
    | _ -> EQ_incomparable

  let use_equal = function
    | `Negative -> Wp_parameters.ExtEqual.get ()
    | `Positive | `NoPolarity -> false

  let term_equal polarity env a b =
    match eqsort_of_comparison a b with

    | EQ_set ->
      let sa = set_of_term env a in
      let sb = set_of_term env b in
      (* TODO: should be parametric in the equality of elements *)
      Vset.equal sa sb

    | EQ_loc ->
      let la = loc_of_term env a in
      let lb = loc_of_term env b in
      M.loc_eq la lb

    | EQ_comp c ->
      let va = val_of_term env a in
      let vb = val_of_term env b in
      if use_equal polarity
      then p_equal va vb
      else Cvalues.equal_comp c va vb

    | EQ_array m ->
      let va = val_of_term env a in
      let vb = val_of_term env b in
      if use_equal polarity
      then p_equal va vb
      else Cvalues.equal_array m va vb

    | EQ_float f ->
      Cfloat.feq f (val_of_term env a) (val_of_term env b)

    | EQ_plain ->
      p_equal (val_of_term env a) (val_of_term env b)

    | EQ_incomparable ->
      (* incomparable terms *)
      Warning.error
        "@[Incomparable terms:@ type %a with@ type %a@]"
        Printer.pp_logic_type a.term_type
        Printer.pp_logic_type b.term_type

  let term_diff polarity env a b =
    p_not (term_equal (Cvalues.negate polarity) env a b)


  let float_of_logic_type lt =
    match Logic_utils.unroll_type lt with
    | Ctype ty ->
      (match Cil.unrollType ty with
       | TFloat(f,_) -> Some (Ctypes.c_float f)
       | _ -> None)
    | _ -> None

  let compare_term env vrel lrel frel a b =
    if Logic_typing.is_pointer_type a.term_type then
      lrel (loc_of_term env a) (loc_of_term env b)
    else match float_of_logic_type a.term_type with
      | Some f -> frel f (val_of_term env a) (val_of_term env b)
      | None -> vrel (val_of_term env a) (val_of_term env b)

  (* -------------------------------------------------------------------------- *)
  (* --- Term Comparison                                                    --- *)
  (* -------------------------------------------------------------------------- *)

  let exp_equal env a b =
    Vexp(e_prop (term_equal `NoPolarity env a b))

  let exp_diff env a b =
    Vexp(e_prop (term_diff `NoPolarity env a b))

  let exp_compare env vrel lrel frel a b =
    Vexp(e_prop (compare_term env vrel lrel frel a b))

  (* -------------------------------------------------------------------------- *)
  (* --- Binary Operators                                                   --- *)
  (* -------------------------------------------------------------------------- *)

  let toreal t v =
    if t then L.map Cmath.real_of_int v else v

  let arith env fint freal a b =
    let va = C.logic env a in
    let vb = C.logic env b in
    let ta = Logic_typing.is_integral_type a.term_type in
    let tb = Logic_typing.is_integral_type b.term_type in
    if ta && tb
    then fint va vb
    else freal (toreal ta va) (toreal tb vb)

  let rec fold_assoc bop acc ts =
    match ts with
    | [] -> acc
    | t::others ->
      match t.term_node with
      | TBinOp(binop,a,b) when bop == binop ->
        fold_assoc bop acc (a::b::others)
      | _  -> fold_assoc bop (t::acc) others

  let term_binop env binop a b =
    match binop with
    | PlusA -> arith env L.apply_add (L.apply F.e_add) a b
    | MinusA -> arith env L.apply_sub (L.apply F.e_sub) a b
    | Mult -> arith env (L.apply e_mul) (L.apply F.e_mul) a b
    | Div -> arith env (L.apply e_div) (L.apply F.e_div) a b
    | Mod -> L.apply e_mod (C.logic env a) (C.logic env b)
    | PlusPI ->
      let va = C.logic env a in
      let vb = C.logic env b in
      let te = Logic_typing.ctype_of_pointed a.term_type in
      L.shift va (Ctypes.object_of te) vb
    | MinusPI ->
      let va = C.logic env a in
      let vb = C.logic env b in
      let te = Logic_typing.ctype_of_pointed a.term_type in
      L.shift va (Ctypes.object_of te) (L.map_opp vb)
    | MinusPP ->
      let te = Logic_typing.ctype_of_pointed a.term_type in
      let la = loc_of_term env a in
      let lb = loc_of_term env b in
      Vexp(M.loc_diff (Ctypes.object_of te) la lb)
    | Shiftlt -> L.apply Cint.l_lsl (C.logic env a) (C.logic env b)
    | Shiftrt -> L.apply Cint.l_lsr (C.logic env a) (C.logic env b)
    | BAnd -> L.apply Cint.l_and (C.logic env a) (C.logic env b)
    | BXor -> L.apply Cint.l_xor (C.logic env a) (C.logic env b)
    | BOr -> L.apply Cint.l_or (C.logic env a) (C.logic env b)
    | LAnd -> Vexp(e_and (List.map (val_of_term env) (fold_assoc LAnd [] [a;b])))
    | LOr  -> Vexp(e_or  (List.map (val_of_term env) (fold_assoc LOr  [] [a;b])))
    | Lt -> exp_compare env p_lt M.loc_lt Cfloat.flt a b
    | Gt -> exp_compare env p_lt M.loc_lt Cfloat.flt b a
    | Le -> exp_compare env p_leq M.loc_leq Cfloat.fle a b
    | Ge -> exp_compare env p_leq M.loc_leq Cfloat.fle b a
    | Eq -> exp_equal env a b
    | Ne -> exp_diff env a b

  (* -------------------------------------------------------------------------- *)
  (* --- Term Cast                                                          --- *)
  (* -------------------------------------------------------------------------- *)

  type cvsort =
    | L_bool
    | L_real
    | L_integer
    | L_cint of c_int
    | L_cfloat of c_float
    | L_pointer of typ
    | L_array of arrayinfo

  let rec cvsort_of_ltype src_ltype =
    match Logic_utils.unroll_type ~unroll_typedef:false src_ltype with
    | Linteger -> L_integer
    | Lreal -> L_real
    | Ctype src_ctype ->
      begin
        match Ctypes.object_of src_ctype with
        | C_int i -> L_cint i
        | C_float f -> L_cfloat f
        | C_pointer te -> L_pointer te
        | C_array a -> L_array a (* into the logic, C array = logic array *)
        | C_comp c when c.cstruct ->
          Warning.error "@[Logic cast from struct (%a) not implemented yet@]"
            Printer.pp_typ src_ctype
        | C_comp _ ->
          Warning.error "@[Logic cast from union (%a) not implemented yet@]"
            Printer.pp_typ src_ctype
      end
    | Ltype _ as b when Logic_const.is_boolean_type b -> L_bool
    | Ltype({lt_name="set"},[elt_ltype]) -> (* lifting or set of elements ? *)
      cvsort_of_ltype elt_ltype
    | (Ltype _ | Lvar _ | Larrow _) as typ ->
      Warning.error "@[Logic cast from (%a) not implemented yet@]"
        Printer.pp_logic_type typ

  (** cast to a C type *)
  let term_cast_to_ctype env dst_ctype t =
    let cast_ptr ty t0 =
      let value = C.logic env t in
      let o_src = Ctypes.object_of t0 in
      let o_dst = Ctypes.object_of ty in
      if Ctypes.compare o_src o_dst = 0
      then value
      else L.map_loc (M.cast { pre=o_src ; post=o_dst }) value
    in
    match Ctypes.object_of dst_ctype , cvsort_of_ltype t.term_type with
    (* Cast to C integers from ...*)
    | C_int _ , L_bool ->
      L.map Cvalues.bool_val (C.logic env t)
    | C_int i , L_cint i0 ->
      let v = C.logic env t in
      if (Ctypes.sub_c_int i0 i) then v
      else L.map (Cint.convert i) v
    | C_int i , L_integer ->
      L.map (Cint.convert i) (C.logic env t)
    | C_int i , L_pointer _ ->
      L.map_l2t (M.int_of_loc i) (C.logic env t)
    | C_int i , L_real ->
      L.map (Cint.of_real i) (C.logic env t)
    | C_int i , L_cfloat f ->
      L.map (fun v -> Cint.of_real i (Cfloat.real_of_float f v)) (C.logic env t)
    | C_int _, L_array _ ->
      Warning.error "@[Logic cast to sized integer (%a) from (%a) not implemented yet@]"
        Printer.pp_typ dst_ctype Printer.pp_logic_type t.term_type
    (* Cast to C float from ... *)
    | C_float f , L_real ->
      L.map (Cfloat.float_of_real f) (C.logic env t)
    | C_float ft,  L_cfloat ff ->
      let map v = if Ctypes.equal_float ff ft then v else Cfloat.float_of_real ft (Cfloat.real_of_float ff v) in
      L.map map (C.logic env t)
    | C_float f , (L_cint _ | L_integer) ->
      L.map (Cfloat.float_of_int f) (C.logic env t)
    | C_float _, (L_bool|L_pointer _|L_array _) ->
      Warning.error "@[Logic cast to float (%a) from (%a) not implemented yet@]"
        Printer.pp_typ dst_ctype Printer.pp_logic_type t.term_type
    (* Cast to C pointer from ...  *)
    | C_pointer ty , (L_integer | L_cint _) ->
      let obj = Ctypes.object_of ty in
      L.map_t2l (M.loc_of_int obj) (C.logic env t)
    | C_pointer ty , L_pointer t0 ->
      cast_ptr ty t0
    | C_pointer _, (L_bool|L_real|L_cfloat _|L_array _) ->
      Warning.error "@[Logic cast to pointer (%a) from (%a) not implemented yet@]"
        Printer.pp_typ dst_ctype Printer.pp_logic_type t.term_type
    (* Cast to C array from ... *)
    | C_array _, L_pointer t0 ->
      (* cast to an array `(T[])(p)` is equivalent
         to a deref of a cast to a pointer `*(T( * )[])(p)` *)
      let cast = cast_ptr dst_ctype t0 in
      L.load (C.current env) (Ctypes.object_of dst_ctype) cast
    | C_array dst_arr_info, L_array src_arr_info
      when Ctypes.AinfoComparable.equal dst_arr_info src_arr_info ->
      (* cast from/to the same type *)
      C.logic env t
    | C_array {arr_flat=Some _}, (L_integer|L_cint _|L_bool|L_real|L_cfloat _|L_array _) ->
      Warning.error "@[Logic cast to sized array (%a) from (%a) not implemented yet@]"
        Printer.pp_typ dst_ctype Printer.pp_logic_type t.term_type
    | C_array {arr_flat=None}, (L_integer|L_cint _|L_bool|L_real|L_cfloat _|L_array _) ->
      Warning.error "@[Logic cast to unsized array (%a) from (%a) not implemented yet@]"
        Printer.pp_typ dst_ctype Printer.pp_logic_type t.term_type
    (* Cast to C compound from ... *)
    | C_comp c, (L_integer|L_cint _|L_bool|L_real|L_cfloat _|L_array _|L_pointer _) when c.cstruct ->
      Warning.error "@[Logic cast to struct (%a) from (%a) not implemented yet@]"
        Printer.pp_typ dst_ctype Printer.pp_logic_type t.term_type
    | C_comp _, (L_integer|L_cint _|L_bool|L_real|L_cfloat _|L_array _|L_pointer _) ->
      Warning.error "@[Logic cast to union (%a) from (%a) not implemented yet@]"
        Printer.pp_typ dst_ctype Printer.pp_logic_type t.term_type

  let term_cast_to_real env t =
    let src_ltype = Logic_utils.unroll_type ~unroll_typedef:false t.term_type in
    match cvsort_of_ltype src_ltype with
    | L_cint _ ->
      L.map (fun x -> Cmath.real_of_int (Cint.to_integer x)) (C.logic env t)
    | L_integer ->
      L.map Cmath.real_of_int (C.logic env t)
    | L_cfloat f ->
      L.map (Cfloat.real_of_float f) (C.logic env t)
    | L_real -> C.logic env t
    | L_bool|L_pointer _|L_array _ ->
      Warning.error "@[Logic cast from (%a) to (%a) not implemented yet@]"
        Printer.pp_logic_type src_ltype Printer.pp_logic_type Lreal

  let term_cast_to_integer env t =
    let src_ltype = Logic_utils.unroll_type ~unroll_typedef:false t.term_type in
    match cvsort_of_ltype src_ltype with
    | L_real ->
      L.map Cmath.int_of_real (C.logic env t)
    | L_cint _ ->
      L.map Cint.to_integer (C.logic env t)
    | L_integer -> C.logic env t
    | L_cfloat f ->
      L.map
        (fun x -> Cmath.int_of_real (Cfloat.real_of_float f x))
        (C.logic env t)
    | L_bool ->
      L.map Cmath.bool_of_int (C.logic env t)
    | L_pointer _|L_array _ ->
      Warning.error "@[Logic cast from (%a) to (%a) not implemented yet@]"
        Printer.pp_logic_type src_ltype Printer.pp_logic_type Linteger

  let term_cast_to_boolean env t =
    let src_ltype = Logic_utils.unroll_type ~unroll_typedef:false t.term_type in
    match cvsort_of_ltype src_ltype with
    | L_bool -> C.logic env t
    | L_integer | L_cint _ ->
      L.map Cmath.int_of_bool (C.logic env t)
    | L_real | L_cfloat _ | L_pointer _ | L_array _ ->
      Warning.error "@[Logic cast from (%a) to (%a) not implemented yet@]"
        Printer.pp_logic_type src_ltype Printer.pp_logic_type Logic_const.boolean_type

  let rec term_cast_to_ltype env dst_ltype t =
    match Logic_utils.unroll_type ~unroll_typedef:false dst_ltype with
    | Ctype typ-> term_cast_to_ctype env typ t
    | Linteger -> term_cast_to_integer env t
    | Lreal -> term_cast_to_real env t
    | Ltype _ as b when Logic_const.is_boolean_type b -> term_cast_to_boolean env t
    | Ltype({lt_name="set"},[elt_ltype]) -> (* lifting, set of elements ? *)
      term_cast_to_ltype env elt_ltype t
    | (Ltype _ | Lvar _ | Larrow _) as dst_ltype ->
      let src_ltype = Logic_utils.unroll_type ~unroll_typedef:false t.term_type in
      Warning.error "@[Logic cast to (%a) from (%a) not implemented yet@]"
        Printer.pp_logic_type dst_ltype Printer.pp_logic_type src_ltype


  (* -------------------------------------------------------------------------- *)
  (* --- Environment Binding                                                --- *)
  (* -------------------------------------------------------------------------- *)

  let bind_quantifiers (env:env) qs =
    let rec acc xs env hs = function
      | [] -> List.rev xs , env , hs
      | v::vs ->
        let t = Lang.tau_of_ltype v.lv_type in
        let x = Lang.freshvar ~basename:v.lv_name t in
        let h =
          if Wp_parameters.SimplifyForall.get ()
          then F.p_true
          else C.has_ltype v.lv_type (e_var x)
        in
        let e = C.env_let env v (Vexp (e_var x)) in
        acc (x::xs) e (h::hs) vs in
    acc [] env [] qs

  (* -------------------------------------------------------------------------- *)
  (* --- Undefined Term                                                     --- *)
  (* -------------------------------------------------------------------------- *)

  let term_undefined t =
    let x = Lang.freshvar ~basename:"w" (Lang.tau_of_ltype t.term_type) in
    Cvalues.plain t.term_type (e_var x)

  (* -------------------------------------------------------------------------- *)
  (* --- Term Nodes                                                         --- *)
  (* -------------------------------------------------------------------------- *)

  let term_node (env:env) t =
    match t.term_node with
    | TConst c -> Vexp (Cvalues.logic_constant c)
    | TSizeOf _ | TSizeOfE _ | TSizeOfStr _ | TAlignOf _ | TAlignOfE _ ->
      Vexp (Cvalues.constant_term t)

    | TLval lval ->
      if Cil.isVolatileTermLval lval &&
         Cvalues.volatile ~warn:"unsafe volatile access to (term) l-value" ()
      then term_undefined t
      else term_lval env lval
    | TAddrOf lval -> addr_lval env lval
    | TStartOf lval ->
      begin
        let lt = Cil.typeOfTermLval lval in
        let base = addr_lval env lval in
        match Logic_utils.unroll_type lt with
        | Ctype ct ->
          L.map_loc (fun l -> Cvalues.startof ~shift:M.shift l ct) base
        | _ -> base
      end

    | TUnOp(Neg,t) when not (Logic_typing.is_integral_type t.term_type) ->
      L.map F.e_opp (C.logic env t)
    | TUnOp(unop,t) -> term_unop unop (C.logic env t)
    | TBinOp(binop,a,b) -> term_binop env binop a b

    | TCast (_, typ,t) -> term_cast_to_ltype env typ t

    | Tapp(f,ls,ts) ->
      let vs = List.map (val_of_term env) ts in
      let result = Lang.tau_of_ltype t.term_type in
      let r = match LogicBuiltins.logic f with
        | ACSLDEF -> C.call_fun env result f ls vs
        | HACK phi -> phi vs
        | LFUN f -> e_fun ~result f vs
      in
      begin match t.term_type with
        | Ctype t -> Lang.assume (Cvalues.has_ctype t r)
        | _ -> ()
      end ;
      Vexp r

    | Tlambda _ ->
      Warning.error "Lambda-functions not yet implemented"

    | TDataCons({ctor_name="\\true"},_) -> Vexp(e_true)
    | TDataCons({ctor_name="\\false"},_) -> Vexp(e_false)

    | TDataCons(c,ts) ->
      let es = List.map (val_of_term env) ts in
      let r = match LogicBuiltins.ctor c with
        | ACSLDEF -> e_fun (Lang.ctor c) es
        | HACK phi -> phi es
        | LFUN f -> e_fun f es ~result:(Lang.tau_of_ltype t.term_type)
      in Vexp r

    | Tif( cond , a , b ) ->
      let c = val_of_term env cond in
      let a = val_of_term env a in
      let b = val_of_term env b in
      Vexp (e_if c a b)

    | Tat( t , label ) ->
      let clabel = Clabels.of_logic label in
      C.logic (C.env_at env clabel) t

    | Tbase_addr (label,t) ->
      ignore label ;
      L.map_loc M.base_addr (C.logic env t)

    | Toffset (label,t) ->
      ignore label ;
      L.map_l2t M.base_offset (C.logic env t)

    | Tblock_length (label,t) ->
      let obj = object_of (Logic_typing.ctype_of_pointed t.term_type) in
      let sigma = C.mem_at env (of_logic label) in
      L.map_l2t (M.block_length sigma obj) (C.logic env t)

    | Tnull ->
      Vloc M.null

    | TUpdate(a,offset,b) ->
      Vexp (update_offset env (val_of_term env a) offset (val_of_term env b))

    | Tempty_set -> Vset []
    | Tunion ts ->
      L.union t.term_type (List.map (collection_of_term env) ts)
    | Tinter ts ->
      L.inter t.term_type (List.map (collection_of_term env) ts)
    | Tcomprehension(t,qs,cond) ->
      begin
        let xs,env,domain = bind_quantifiers env qs in
        let condition = match cond with
          | None -> p_conj domain
          | Some p ->
            let cc = C.pred `NoPolarity env in
            let p = Lang.without_assume cc p in
            p_conj (p :: domain)
        in match C.logic env t with
        | Vexp e -> Vset[Vset.Descr(xs,e,condition)]
        | Vloc l -> Lset[Sdescr(xs,l,condition)]
        | _ -> Wp_parameters.fatal "comprehension set of sets"
      end

    | Tlet( { l_var_info=v ; l_body=LBterm a } , b ) ->
      let va = C.logic env a in
      C.logic (C.env_let env v va) b

    | Tlet _ ->
      Warning.error "Complex let-binding not implemented yet (%a)"
        Printer.pp_term t

    | Trange(a,b) ->
      let bound env = function
        | None -> None
        | Some x -> Some (val_of_term env x)
      in Vset(Vset.range (bound env a) (bound env b))

    | Ttypeof _ | Ttype _ ->
      Warning.error "Type tag not implemented yet"

  (* -------------------------------------------------------------------------- *)
  (* --- Separated                                                          --- *)
  (* -------------------------------------------------------------------------- *)

  let separated_terms env ts =
    L.separated
      begin
        List.map
          (fun t ->
             let te = Logic_typing.ctype_of_pointed t.term_type in
             let obj = Ctypes.object_of te in
             L.region obj (C.logic env t)
          ) ts
      end

  (* -------------------------------------------------------------------------- *)
  (* --- Relations                                                          --- *)
  (* -------------------------------------------------------------------------- *)

  let relation polarity env rel a b =
    match rel with
    | Rlt -> compare_term env p_lt M.loc_lt Cfloat.flt a b
    | Rgt -> compare_term env p_lt M.loc_lt Cfloat.flt b a
    | Rle -> compare_term env p_leq M.loc_leq Cfloat.fle a b
    | Rge -> compare_term env p_leq M.loc_leq Cfloat.fle b a
    | Req -> term_equal polarity env a b
    | Rneq -> term_diff polarity env a b

  (* -------------------------------------------------------------------------- *)
  (* --- Predicates                                                         --- *)
  (* -------------------------------------------------------------------------- *)

  let valid env acs label t =
    let te = Logic_typing.ctype_of_pointed t.term_type in
    let sigma = C.mem_at env (Clabels.of_logic label) in
    let addrs = C.logic env t in
    p_all (L.valid sigma acs) (L.region (Ctypes.object_of te) addrs)

  let initialized env label t =
    let te = Logic_typing.ctype_of_pointed t.term_type in
    let sigma = C.mem_at env (Clabels.of_logic label) in
    let addrs = C.logic env t in
    p_all (L.initialized sigma) (L.region (Ctypes.object_of te) addrs)

  let call_pred env f ls es =
    match C.logic_info env f with
    | Some p ->
      if ls <> [] || es <> [] then
        Warning.error "Unexpected parameters for named predicate '%a'"
          Logic_info.pretty f ; p
    | None ->
      let empty ls =
        if ls <> [] then
          Warning.error "Unexpected labels for purely logic '%a'"
            Logic_info.pretty f ;
      in
      match LogicBuiltins.logic f with
      | ACSLDEF -> C.call_pred env f ls es
      | HACK phi -> empty ls ; F.p_bool (phi es)
      | LFUN p -> empty ls ; p_call p es

  let predicate polarity env p =
    match p.pred_content with
    | Pfalse -> p_false
    | Ptrue -> p_true
    | Pseparated ts -> separated_terms env ts
    | Prel(rel,a,b) -> relation polarity env rel a b
    | Pand(a,b) -> p_and (C.pred polarity env a) (C.pred polarity env b)
    | Por(a,b)  -> p_or (C.pred polarity env a) (C.pred polarity env b)
    | Pxor(a,b) -> p_not (p_equiv (C.pred `NoPolarity env a) (C.pred `NoPolarity env b))
    | Pimplies(a,b) ->
      let negated = Cvalues.negate polarity in
      p_imply (C.pred negated env a) (C.pred polarity env b)
    | Piff(a,b) -> p_equiv (C.pred `NoPolarity  env a) (C.pred `NoPolarity  env b)
    | Pnot a -> p_not (C.pred (Cvalues.negate polarity) env a)
    | Pif(t,a,b) ->
      p_if (p_bool (val_of_term env t))
        (C.pred polarity env a)
        (C.pred polarity env b)
    | Papp({l_var_info = {lv_name = "\\subset"}},_,ts) ->
      begin match ts with
        | [a;b] -> L.subset
                     a.term_type (C.logic env a)
                     b.term_type (C.logic env b)
        | _ -> Warning.error "\\subset requires 2 arguments"
      end
    | Papp(f,ls,ts) ->
      call_pred env f ls @@ List.map (val_of_term env) ts

    | Plet( { l_var_info=v ; l_body=LBterm a } , p ) ->
      let va = C.logic env a in
      C.pred polarity (C.env_let env v va) p

    | Plet( { l_var_info=v ; l_body=LBpred q } , p ) ->
      let vq = C.pred `NoPolarity env q in
      C.pred polarity (C.env_letp env v vq) p

    | Plet _ ->
      Warning.error "Complex let-inding not implemented yet (%a)"
        Printer.pp_predicate p

    | Pforall(qs,p) ->
      let xs,env,hs = bind_quantifiers env qs in
      let p = Lang.without_assume (C.pred polarity env) p in
      p_forall xs (p_hyps hs p)

    | Pexists(qs,p) ->
      let xs,env,hs = bind_quantifiers env qs in
      let p = Lang.without_assume (C.pred polarity env) p in
      p_exists xs (p_conj (p :: hs))

    | Pat(p,label) ->
      let clabel = Clabels.of_logic label in
      C.pred polarity (C.env_at env clabel) p

    | Pvalid(label,t) -> valid env RW label t
    | Pvalid_read(label,t) -> valid env RD label t
    | Pobject_pointer(label,t) -> valid env OBJ label t

    | Pinitialized(label, t) -> initialized env label t

    | Pvalid_function _t ->
      Warning.error
        "\\valid_function not yet implemented@\n\
         @[<hov 0>(%a)@]" Printer.pp_predicate p

    | Pallocable _ | Pfreeable _ | Pfresh _ | Pdangling _ ->
      Warning.error
        "Allocation, initialization and danglingness not yet implemented@\n\
         @[<hov 0>(%a)@]" Printer.pp_predicate p


  (* -------------------------------------------------------------------------- *)
  (* --- Set of locations for a term representing a set of l-values         --- *)
  (* -------------------------------------------------------------------------- *)

  let assignable_lval env lv =
    match fst lv with
    | TResult _  | TVar{lv_name="\\exit_status"} -> [] (* special case ! *)
    | _ ->
      let obj = Ctypes.object_of_logic_type (Cil.typeOfTermLval lv) in
      L.region obj (addr_lval env lv)

  let assignable env t =
    match t.term_node with
    | Tempty_set -> []
    | TLval lv -> assignable_lval env lv
    | Tunion ts -> List.concat (List.map (C.region env) ts)
    | Tinter _ -> Warning.error "Intersection in assigns not implemented yet"
    | Tcomprehension(t,qs,cond) ->
      begin
        let xs,env,domain = bind_quantifiers env qs in
        let conditions = match cond with
          | None -> domain
          | Some p -> C.pred `NoPolarity env p :: domain
        in
        List.map
          (function (obj,sloc) ->
             obj , match sloc with
             | Sloc l -> Sdescr(xs,l,p_conj conditions)
             | (Sarray _ | Srange _ | Sdescr _) as sloc ->
               let ys,l,extend = L.rdescr sloc in
               Sdescr(xs@ys,l,p_conj (extend :: conditions))
          ) (C.region env t)
      end

    | Tat(t,label) ->
      C.region (C.env_at env (Clabels.of_logic label)) t

    | Tlet( { l_var_info=v ; l_body=LBterm a } , b ) ->
      let va = C.logic env a in
      C.region (C.env_let env v va) b

    | Tlet _ ->
      Warning.error "Complex let-binding not implemented yet (%a)"
        Printer.pp_term t

    | TCast (_,_,t) -> C.region env t

    | TBinOp _ | TUnOp _ | Trange _ | TUpdate _ | Tapp _ | Tif _
    | TConst _ | Tnull | TDataCons _ | Tlambda _
    | Ttype _ | Ttypeof _
    | TAlignOfE _ | TAlignOf _ | TSizeOfStr _ | TSizeOfE _ | TSizeOf _
    | Tblock_length _ | Tbase_addr _ | Toffset _ | TAddrOf _ | TStartOf _
      -> Wp_parameters.abort ~current:true
           "Non-assignable term (%a)" Printer.pp_term t

  (* -------------------------------------------------------------------------- *)
  (* --- Protection                                                         --- *)
  (* -------------------------------------------------------------------------- *)

  let term_protected env t =
    Warning.handle
      ~handler:term_undefined
      ~severe:false
      ~effect:"Hide sub-term definition"
      (term_node env) t

  let pred_protected polarity env p =
    match polarity with
    | `Positive ->
      Warning.handle
        ~effect:"Target turned to False"
        ~severe:true ~handler:(fun _ -> p_false)
        (predicate `Positive env) p
    | `Negative ->
      Warning.handle
        ~effect:"Ignored Hypothesis"
        ~severe:false ~handler:(fun _ -> p_true)
        (predicate `Negative env) p
    | `NoPolarity ->
      predicate `NoPolarity env p

  (* -------------------------------------------------------------------------- *)
  (* --- Boot Strapping                                                     --- *)
  (* -------------------------------------------------------------------------- *)

  let term_trigger env t =
    let v = term_protected env t in
    if List.mem "TRIGGER" t.term_name then
      begin
        match v with
        | Vexp e -> C.trigger (Trigger.of_term e)
        | Vloc l -> C.trigger (Trigger.of_term (M.pointer_val l))
        | _ -> Wp_parameters.warning ~current:true
                 "Can not trigger on tset"
      end ; v

  let pred_trigger positive env np =
    let p = pred_protected positive env np in
    if List.mem "TRIGGER" np.Cil_types.pred_name then
      C.trigger (Trigger.of_pred p);
    p

  let pred polarity env p =
    Current_loc.with_loc p.pred_loc (pred_trigger polarity env) p

  let logic env t =
    Current_loc.with_loc t.term_loc (term_trigger env) t

  let region env t =
    Current_loc.with_loc t.term_loc (assignable env) t

  let () = C.bootstrap_pred pred
  let () = C.bootstrap_term term
  let () = C.bootstrap_logic logic
  let () = C.bootstrap_region region

  let lemma = C.lemma

  (* -------------------------------------------------------------------------- *)
  (* --- Regions                                                            --- *)
  (* -------------------------------------------------------------------------- *)

  let assigned_of_lval env (lv : Cil_types.lval) =
    assignable_lval env (Logic_utils.lval_to_term_lval lv)

  let assigned_of_froms env froms =
    List.concat
      (List.map
         (fun ({it_content=wr},_deps) -> region env wr) froms)

  let assigned_of_assigns env = function
    | WritesAny -> None
    | Writes froms -> Some (assigned_of_froms env froms)

  let occurs_opt x = function None -> false | Some t -> F.occurs x t

  let occurs_sloc x = function
    | Sloc l -> M.occurs x l
    | Sarray(l,_,_) -> M.occurs x l
    | Srange(l,_,a,b) -> M.occurs x l || occurs_opt x a || occurs_opt x b
    | Sdescr(xs,l,p) ->
      if List.exists (Var.equal x) xs then false
      else (M.occurs x l || F.occursp x p)

  let occurs x region = List.exists (fun (_,s) -> occurs_sloc x s) region

  let vars_opt = function None -> Vars.empty | Some t -> F.vars t

  let vars_sloc = function
    | Sloc l
    | Sarray(l,_,_) ->
      M.vars l
    | Srange(l,_,a,b) ->
      Vars.union (M.vars l) (Vars.union (vars_opt a) (vars_opt b))
    | Sdescr(xs,l,p) ->
      List.fold_left
        (fun xs x -> Vars.remove x xs)
        (Vars.union (M.vars l) (F.varsp p)) xs

  let vars region =
    List.fold_left
      (fun xs (_,s) -> Vars.union xs (vars_sloc s)) Vars.empty region

  (* -------------------------------------------------------------------------- *)
  (* --- CheckAssigns                                                       --- *)
  (* -------------------------------------------------------------------------- *)

  let rec assignable_region unfold reg assignable =
    let inclusion = p_any (L.included reg) assignable in
    if unfold = 0 then inclusion
    else p_or inclusion (assignable_unfolded_region unfold reg assignable)

  (* Note that when a region cannot be unfolded anymore (that is, when it is a
     [Sloc] with atomic type, including unknown size arrays and opaque structs),
     the function return [p_false]. *)
  and assignable_unfolded_region unfold (obj, sloc) assignable =
    let range size = Some e_zero, Some (e_sub (e_int size) e_one) in
    match sloc with
    | Sloc loc ->
      begin match obj with
        | C_pointer _ | C_int _ | C_float _
        | C_comp { cfields = None } | C_array { arr_flat = None } ->
          (* Nothing to unfold *)
          p_false

        | C_comp { cfields = Some fields } ->
          let assignable_field f =
            let reg = Ctypes.object_of f.ftype, Sloc (M.field loc f) in
            assignable_region (unfold-1) reg assignable
          in
          p_conj (List.map assignable_field fields)

        | C_array { arr_flat = Some { arr_size=len ; arr_cell=typ } } ->
          let obj = Ctypes.object_of typ in
          assignable_unfolded_range unfold loc obj (range len) assignable
      end

    | Sarray (loc, obj, len) ->
      assignable_unfolded_range unfold loc obj (range len) assignable

    | Srange (loc, obj, b, e) ->
      assignable_unfolded_range unfold loc obj (b, e) assignable

    | Sdescr (xs, loc, guard) ->
      assignable_unfolded_descr unfold obj xs loc guard assignable

  and assignable_unfolded_range unfold loc obj (low, up) =
    let x = Lang.freshvar ~basename:"k" Lang.t_int in
    let k = e_var x in
    let guard = Vset.in_range k low up in
    let loc = M.shift loc obj k in
    assignable_unfolded_descr unfold obj [x] loc guard

  and assignable_unfolded_descr unfold obj xs loc guard assignable =
    p_forall xs
      (p_imply guard
         (assignable_region (unfold-1) (obj, Sloc loc) assignable))

  let check_assigns ~unfold sigma ~written ~assignable =
    p_all
      (fun reg ->
         p_imply
           (p_not (L.invalid sigma reg))
           (assignable_region unfold reg assignable)
      ) (written : region)

end
OCaml

Innovation. Community. Security.