package frama-c

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file MemVar.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
(**************************************************************************)
(*                                                                        *)
(*  This file is part of WP plug-in of Frama-C.                           *)
(*                                                                        *)
(*  Copyright (C) 2007-2024                                               *)
(*    CEA (Commissariat a l'energie atomique et aux energies              *)
(*         alternatives)                                                  *)
(*                                                                        *)
(*  you can redistribute it and/or modify it under the terms of the GNU   *)
(*  Lesser General Public License as published by the Free Software       *)
(*  Foundation, version 2.1.                                              *)
(*                                                                        *)
(*  It is distributed in the hope that it will be useful,                 *)
(*  but WITHOUT ANY WARRANTY; without even the implied warranty of        *)
(*  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *)
(*  GNU Lesser General Public License for more details.                   *)
(*                                                                        *)
(*  See the GNU Lesser General Public License version 2.1                 *)
(*  for more details (enclosed in the file licenses/LGPLv2.1).            *)
(*                                                                        *)
(**************************************************************************)

(* -------------------------------------------------------------------------- *)
(* --- No-Aliasing Memory Model                                           --- *)
(* -------------------------------------------------------------------------- *)

open Cil_types
open Cil_datatype
open Ctypes

open MemoryContext
open Lang
open Lang.F
open Sigs

module type VarUsage =
sig
  val datatype : string
  val param : varinfo -> MemoryContext.param
  val iter: ?kf:kernel_function -> init:bool -> (varinfo -> unit) -> unit
end

module Raw : VarUsage =
struct
  let datatype = "Raw"
  let param _x = MemoryContext.ByValue
  let iter ?kf ~init f =
    begin
      ignore init ;
      Globals.Vars.iter (fun x _initinfo -> f x) ;
      match kf with
      | None -> ()
      | Some kf -> List.iter f (Kernel_function.get_formals kf) ;
    end
end

module Static : VarUsage =
struct
  let datatype = "Static"
  let param x =
    let open Cil_types in
    if x.vaddrof || Cil.isArrayType x.vtype || Cil.isPointerType x.vtype
    then MemoryContext.ByAddr else MemoryContext.ByValue
  let iter = Raw.iter
end

module Make(V : VarUsage)(M : Sigs.Model) =
struct

  (* -------------------------------------------------------------------------- *)
  (* ---  Model                                                             --- *)
  (* -------------------------------------------------------------------------- *)

  let datatype = "MemVar." ^ V.datatype ^ M.datatype
  let configure = M.configure
  let no_binder = { bind = fun _ f v -> f v }
  let configure_ia _ = no_binder

  let hypotheses p =
    let kf,init = match WpContext.get_scope () with
      | WpContext.Global -> None,false
      | WpContext.Kf f ->
        Some f, CfgInfos.is_entry_point f in
    let w = ref p in
    V.iter ?kf ~init (fun vi -> w := MemoryContext.set vi (V.param vi) !w) ;
    M.hypotheses !w

  (* -------------------------------------------------------------------------- *)
  (* ---  Chunk                                                             --- *)
  (* -------------------------------------------------------------------------- *)

  type chunk =
    | Var of varinfo
    | Alloc of varinfo
    | Init of varinfo
    | Mem of M.Chunk.t

  let is_framed_var x = not x.vglob && not x.vaddrof
  (* Can not use VarUsage info, since (&x) can still be passed
     to the function and be modified by the call (when it assigns everything). *)

  module VAR =
  struct
    type t = varinfo
    let self = "var"
    let hash = Varinfo.hash
    let equal = Varinfo.equal
    let compare = Varinfo.compare
    let pretty = Varinfo.pretty
    let typ_of_chunk x =
      match V.param x with
      | ByRef -> Cil.typeOf_pointed x.vtype
      | _ -> x.vtype
    let tau_of_chunk x = Lang.tau_of_ctype (typ_of_chunk x)
    let is_framed = is_framed_var
    let basename_of_chunk = LogicUsage.basename
  end

  module VALLOC =
  struct
    type t = varinfo
    let self = "alloc"
    let hash = Varinfo.hash
    let compare = Varinfo.compare
    let equal = Varinfo.equal
    let pretty = Varinfo.pretty
    let tau_of_chunk _x = Qed.Logic.Bool
    let basename_of_chunk x =
      match V.param x with
      | ByRef ->
        "ra_" ^ LogicUsage.basename x
      | NotUsed | ByValue | ByShift | ByAddr | InContext _ | InArray _ ->
        "ta_" ^ LogicUsage.basename x
    let is_framed = is_framed_var
  end

  module VINIT =
  struct
    type t = varinfo
    let self = "init"
    let hash = Varinfo.hash
    let compare = Varinfo.compare
    let equal = Varinfo.equal
    let pretty = Varinfo.pretty
    let typ_of_chunk x =
      match V.param x with
      | ByRef -> Cil.typeOf_pointed x.vtype
      | _ -> x.vtype
    let tau_of_chunk x = Lang.init_of_ctype (typ_of_chunk x)
    let is_framed = is_framed_var
    let basename_of_chunk x = "Init_" ^ (LogicUsage.basename x)
  end

  module Chunk =
  struct
    type t = chunk
    let self = "varmem"
    let hash = function
      | Var x -> 3 * Varinfo.hash x
      | Alloc x -> 5 * Varinfo.hash x
      | Mem m -> 7 * M.Chunk.hash m
      | Init x -> 11 * Varinfo.hash x
    let compare c1 c2 =
      if c1 == c2 then 0 else
        match c1 , c2 with
        | Var x , Var y
        | Alloc x , Alloc y
        | Init x, Init y -> Varinfo.compare x y
        | Mem p , Mem q -> M.Chunk.compare p q
        | Var _ , _ -> (-1)
        | _ , Var _ -> 1
        | Init _, _ -> (-1)
        | _, Init _ -> 1
        | Alloc _  , _ -> (-1)
        | _ , Alloc _ -> 1
    let equal c1 c2 = (compare c1 c2 = 0)
    let pretty fmt = function
      | Var x -> Varinfo.pretty fmt x
      | Alloc x -> Format.fprintf fmt "alloc(%a)" Varinfo.pretty x
      | Init x -> Format.fprintf fmt "init(%a)" Varinfo.pretty x
      | Mem m -> M.Chunk.pretty fmt m
    let tau_of_chunk = function
      | Var x -> VAR.tau_of_chunk x
      | Alloc x -> VALLOC.tau_of_chunk x
      | Init x -> VINIT.tau_of_chunk x
      | Mem m -> M.Chunk.tau_of_chunk m
    let basename_of_chunk = function
      | Var x -> VAR.basename_of_chunk x
      | Alloc x -> VALLOC.basename_of_chunk x
      | Init x -> VINIT.basename_of_chunk x
      | Mem m -> M.Chunk.basename_of_chunk m
    let is_framed = function
      | Var x -> VAR.is_framed x
      | Alloc x -> VALLOC.is_framed x
      | Init x -> VINIT.is_framed x
      | Mem m -> M.Chunk.is_framed m
  end

  (* -------------------------------------------------------------------------- *)
  (* ---  Sigma                                                             --- *)
  (* -------------------------------------------------------------------------- *)

  module HEAP = Qed.Collection.Make(VAR)
  module TALLOC = Qed.Collection.Make(VALLOC)
  module TINIT = Qed.Collection.Make(VINIT)
  module SIGMA = Sigma.Make(VAR)(HEAP)
  module ALLOC = Sigma.Make(VALLOC)(TALLOC)
  module INIT = Sigma.Make(VINIT)(TINIT)
  module Heap = Qed.Collection.Make(Chunk)

  type sigma = {
    mem : M.Sigma.t ;
    vars : SIGMA.t ;
    init : INIT.t ;
    alloc : ALLOC.t ;
  }

  module Sigma =
  struct
    type t = sigma
    type chunk = Chunk.t
    module Chunk = Heap
    type domain = Heap.set
    let empty = Heap.Set.empty
    let union = Heap.Set.union

    let create () = {
      vars = SIGMA.create () ;
      init = INIT.create () ;
      alloc = ALLOC.create () ;
      mem = M.Sigma.create () ;
    }

    let copy s = {
      vars = SIGMA.copy s.vars ;
      init = INIT.copy s.init ;
      alloc = ALLOC.copy s.alloc ;
      mem = M.Sigma.copy s.mem ;
    }

    let choose s1 s2 =
      let s = SIGMA.choose s1.vars s2.vars in
      let i = INIT.choose s1.init s2.init in
      let a = ALLOC.choose s1.alloc s2.alloc in
      let m = M.Sigma.choose s1.mem s2.mem in
      { vars = s ; alloc = a ; mem = m ; init = i }

    let merge s1 s2 =
      let s,pa1,pa2 = SIGMA.merge s1.vars s2.vars in
      let i,ia1,ia2 = INIT.merge s1.init s2.init in
      let a,ta1,ta2 = ALLOC.merge s1.alloc s2.alloc in
      let m,qa1,qa2 = M.Sigma.merge s1.mem s2.mem in
      { vars = s ; alloc = a ; mem = m ; init = i } ,
      Passive.union (Passive.union (Passive.union pa1 ta1) qa1) ia1 ,
      Passive.union (Passive.union (Passive.union pa2 ta2) qa2) ia2

    let merge_list l =
      let s,pa = SIGMA.merge_list (List.map (fun s -> s.vars) l) in
      let i,ia = INIT.merge_list (List.map (fun s -> s.init) l) in
      let a,ta = ALLOC.merge_list (List.map (fun s -> s.alloc) l) in
      let m,qa = M.Sigma.merge_list (List.map (fun s -> s.mem) l) in
      { vars = s ; alloc = a ; mem = m ; init = i } ,
      let union = List.map2 Passive.union in
      union (union (union pa ta) qa) ia

    let join s1 s2 =
      Passive.union
        (Passive.union
           (Passive.union
              (SIGMA.join s1.vars s2.vars)
              (ALLOC.join s1.alloc s2.alloc))
           (M.Sigma.join s1.mem s2.mem))
        (INIT.join s1.init s2.init)

    let get s = function
      | Var x -> SIGMA.get s.vars x
      | Init x -> INIT.get s.init x
      | Alloc x -> ALLOC.get s.alloc x
      | Mem m -> M.Sigma.get s.mem m

    let mem s = function
      | Var x -> SIGMA.mem s.vars x
      | Init x -> INIT.mem s.init x
      | Alloc x -> ALLOC.mem s.alloc x
      | Mem m -> M.Sigma.mem s.mem m

    let value s c = e_var (get s c)

    let iter f s =
      begin
        SIGMA.iter (fun x -> f (Var x)) s.vars ;
        INIT.iter (fun x -> f (Init x)) s.init ;
        ALLOC.iter (fun x -> f (Alloc x)) s.alloc ;
        M.Sigma.iter (fun m -> f (Mem m)) s.mem ;
      end

    let iter2 f s t =
      begin
        SIGMA.iter2 (fun x a b -> f (Var x) a b) s.vars t.vars ;
        INIT.iter2 (fun x a b -> f (Init x) a b) s.init t.init ;
        ALLOC.iter2 (fun x a b -> f (Alloc x) a b) s.alloc t.alloc ;
        M.Sigma.iter2 (fun m p q -> f (Mem m) p q) s.mem t.mem ;
      end

    let domain_partition r =
      begin
        let xs = ref HEAP.Set.empty in
        let is = ref TINIT.Set.empty in
        let ts = ref TALLOC.Set.empty in
        let ms = ref M.Heap.Set.empty in
        Heap.Set.iter
          (function
            | Var x -> xs := HEAP.Set.add x !xs
            | Init x -> is := TINIT.Set.add x !is
            | Alloc x -> ts := TALLOC.Set.add x !ts
            | Mem c -> ms := M.Heap.Set.add c !ms
          ) r ;
        !xs , !is, !ts , !ms
      end

    let domain_var xs =
      HEAP.Set.fold (fun x s -> Heap.Set.add (Var x) s) xs Heap.Set.empty

    let domain_init xs =
      TINIT.Set.fold (fun x s -> Heap.Set.add (Init x) s) xs Heap.Set.empty

    let domain_alloc ts =
      TALLOC.Set.fold (fun x s -> Heap.Set.add (Alloc x) s) ts Heap.Set.empty

    let domain_mem ms =
      M.Heap.Set.fold (fun m s -> Heap.Set.add (Mem m) s) ms Heap.Set.empty

    let assigned ~pre ~post w =
      let w_vars , w_init, w_alloc , w_mem = domain_partition w in
      let h_vars = SIGMA.assigned ~pre:pre.vars ~post:post.vars w_vars in
      let h_init = INIT.assigned ~pre:pre.init ~post:post.init w_init in
      let h_alloc = ALLOC.assigned ~pre:pre.alloc ~post:post.alloc w_alloc in
      let h_mem = M.Sigma.assigned ~pre:pre.mem ~post:post.mem w_mem in
      Bag.ulist [h_vars;h_init;h_alloc;h_mem]

    let havoc s r =
      let rvar , rinit, ralloc , rmem = domain_partition r
      in {
        vars = SIGMA.havoc s.vars rvar ;
        init = INIT.havoc s.init rinit ;
        alloc = ALLOC.havoc s.alloc ralloc ;
        mem = M.Sigma.havoc s.mem rmem ;
      }

    let havoc_chunk s = function
      | Var x -> { s with vars = SIGMA.havoc_chunk s.vars x }
      | Init x -> { s with init = INIT.havoc_chunk s.init x }
      | Alloc x -> { s with alloc = ALLOC.havoc_chunk s.alloc x }
      | Mem m -> { s with mem = M.Sigma.havoc_chunk s.mem m }

    let havoc_any ~call s = {
      alloc = s.alloc ;
      vars = SIGMA.havoc_any ~call s.vars ;
      init = INIT.havoc_any ~call s.init ;
      mem = M.Sigma.havoc_any ~call s.mem ;
    }

    let remove_chunks s r =
      let rvar , rinit, ralloc , rmem = domain_partition r
      in {
        vars = SIGMA.remove_chunks s.vars rvar ;
        init = INIT.remove_chunks s.init rinit ;
        alloc = ALLOC.remove_chunks s.alloc ralloc ;
        mem = M.Sigma.remove_chunks s.mem rmem ;
      }

    let domain s =
      Heap.Set.union
        (Heap.Set.union
           (Heap.Set.union
              (domain_var (SIGMA.domain s.vars))
              (domain_alloc (ALLOC.domain s.alloc)))
           (domain_mem (M.Sigma.domain s.mem)))
        (domain_init (INIT.domain s.init))

    let writes s =
      Heap.Set.union
        (Heap.Set.union
           (Heap.Set.union
              (domain_var (SIGMA.writes {pre=s.pre.vars;post=s.post.vars}))
              (domain_alloc (ALLOC.writes {pre=s.pre.alloc;post=s.post.alloc})))
           (domain_mem (M.Sigma.writes {pre=s.pre.mem;post=s.post.mem})))
        (domain_init (INIT.writes {pre=s.pre.init;post=s.post.init}))

    let pretty fmt s =
      Format.fprintf fmt "@[<hov 2>{X:@[%a@]@ I:@[%a@]@ T:@[%a@]@ M:@[%a@]}@]"
        SIGMA.pretty s.vars
        INIT.pretty s.init
        ALLOC.pretty s.alloc
        M.Sigma.pretty s.mem

  end

  type domain = Sigma.domain

  let get_var s x = SIGMA.get s.vars x
  let get_term s x = e_var (get_var s x)

  let get_init s x = INIT.get s.init x
  let get_init_term s x = e_var (get_init s x)

  (* -------------------------------------------------------------------------- *)
  (* ---  State Pretty Printer                                              --- *)
  (* -------------------------------------------------------------------------- *)

  type ichunk = Iref of varinfo | Ivar of varinfo | Iinit of varinfo

  type state = {
    svar : ichunk Tmap.t ;
    smem : M.state ;
  }

  module IChunk =
  struct

    let compare_var x y =
      let rank x =
        if x.vformal then 0 else
        if x.vglob then 1 else
        if x.vtemp then 3 else 2 in
      let cmp = rank x - rank y in
      if cmp <> 0 then cmp else Varinfo.compare x y

    type t = ichunk
    let hash = function
      | Iref x | Ivar x -> Varinfo.hash x
      | Iinit x -> 13 * Varinfo.hash x
    let compare x y =
      match x,y with
      | Iref x , Iref y -> Varinfo.compare x y
      | Ivar x , Ivar y -> compare_var x y
      | Iinit x, Iinit y -> compare_var x y
      | Iref _ , _ -> (-1)
      | Iinit _, _ -> (-1)
      | _ , Iref _ -> 1
      | _ , Iinit _ -> 1

    let equal x y =
      match x,y with
      | Iref x, Iref y | Ivar x, Ivar y | Iinit x, Iinit y -> Varinfo.equal x y
      |  _, _ -> false

  end

  module Icmap = Qed.Mergemap.Make(IChunk)

  let set_chunk v c m =
    let c =
      try
        let c0 = Tmap.find v m in
        if IChunk.compare c c0 < 0 then c else c0
      with Not_found -> c in
    Tmap.add v c m

  let state s =
    let m = ref Tmap.empty in
    SIGMA.iter (fun x v ->
        let c = match V.param x with ByRef -> Iref x | _ -> Ivar x in
        m := set_chunk (e_var v) c !m
      ) s.vars ;
    INIT.iter (fun x v ->
        match V.param x with
        | ByRef -> ()
        | _ -> m := set_chunk (e_var v) (Iinit x) !m
      ) s.init ;
    { svar = !m ; smem = M.state s.mem }

  let ilval = function
    | Iref x -> (Mvar x,[Mindex e_zero])
    | Ivar x | Iinit x -> (Mvar x,[])

  let imval c = match c with
    | Iref _ | Ivar _ -> Sigs.Mlval (ilval c, KValue)
    | Iinit _ -> Sigs.Mlval (ilval c, KInit)

  let lookup s e =
    try imval (Tmap.find e s.svar)
    with Not_found -> M.lookup s.smem e

  let apply f s =
    let m = ref Tmap.empty in
    Tmap.iter (fun e c ->
        let e = f e in
        m := set_chunk e c !m ;
      ) s.svar ;
    { svar = !m ; smem = M.apply f s.smem }

  let iter f s =
    Tmap.iter (fun v c -> f (imval c) v) s.svar ;
    M.iter f s.smem

  let icmap domain istate =
    Tmap.fold (fun m c w ->
        if Vars.intersect (F.vars m) domain
        then Icmap.add c m w else w
      ) istate Icmap.empty

  let rec diff lv v1 v2 =
    if v1 == v2 then Bag.empty else
      match F.repr v2 with
      | Qed.Logic.Aset(m , k , vk) ->
        let upd = diff (Mstate.index lv k) (F.e_get m k) vk in
        Bag.concat (diff lv v1 m) upd
      | Qed.Logic.Rdef fvs ->
        rdiff lv v1 v2 fvs
      | _ ->
        Bag.elt (Mstore(lv,v2))

  and rdiff lv v1 v2 = function
    | (Lang.Cfield (fi, _k) as fd ,f2) :: fvs ->
      let f1 = F.e_getfield v1 fd in
      if f1 == f2 then rdiff lv v1 v2 fvs else
        let upd = diff (Mstate.field lv fi) f1 f2 in
        let m = F.e_setfield v2 fd f1 in
        Bag.concat upd (diff lv v1 m)
    | (Lang.Mfield _,_)::_ -> Bag.elt (Mstore(lv,v2))
    | [] -> Bag.empty

  let updates seq domain =
    let pre = icmap domain seq.pre.svar in
    let post = icmap domain seq.post.svar in
    let pool = ref Bag.empty in
    Icmap.iter2
      (fun c v1 v2 ->
         match v1 , v2 with
         | _ , None -> ()
         | None , Some v -> pool := Bag.add (Mstore(ilval c,v)) !pool
         | Some v1 , Some v2 -> pool := Bag.concat (diff (ilval c) v1 v2) !pool
      ) pre post ;
    let seq_mem =  { pre = seq.pre.smem ; post = seq.post.smem } in
    Bag.concat !pool (M.updates seq_mem domain)

  (* -------------------------------------------------------------------------- *)
  (* ---  Location                                                          --- *)
  (* -------------------------------------------------------------------------- *)

  type mem =
    | CVAL (* By-Value variable *)
    | CREF (* By-Ref variable *)
    | CTXT of MemoryContext.validity (* In-context pointer *)
    | CARR of MemoryContext.validity (* In-context array *)
    | HEAP (* In-heap variable *)

  let is_heap_allocated = function
    | CREF | CVAL -> false | HEAP | CTXT _ | CARR _ -> true

  type loc =
    | Ref of varinfo
    | Val of mem * varinfo * ofs list (* The varinfo has {i not} been contextualized yet *)
    | Loc of M.loc (* Generalized In-Heap pointer *)

  and ofs =
    | Field of fieldinfo
    | Shift of c_object * term

  type segment = loc rloc

  let rec ofs_vars xs = function
    | [] -> xs
    | Field _ :: ofs -> ofs_vars xs ofs
    | Shift(_,k) :: ofs -> ofs_vars (Vars.union xs (F.vars k)) ofs

  let vars = function
    | Ref _ -> Vars.empty
    | Loc l -> M.vars l
    | Val(_,_,ofs) -> ofs_vars Vars.empty ofs

  let rec ofs_occurs x = function
    | [] -> false
    | Field _ :: ofs -> ofs_occurs x ofs
    | Shift(_,k) :: ofs -> Vars.mem x (F.vars k) || ofs_occurs x ofs

  let occurs x = function
    | Ref _ -> false
    | Loc l -> M.occurs x l
    | Val(_,_,ofs) -> ofs_occurs x ofs

  let byte_offset n = function
    | Field fd -> F.e_add n (F.e_int (Ctypes.field_offset fd))
    | Shift(obj,k) -> F.e_add n (F.e_fact (Ctypes.sizeof_object obj) k)

  (* -------------------------------------------------------------------------- *)
  (* ---  Variable and Context                                              --- *)
  (* -------------------------------------------------------------------------- *)

  let vtype m x =
    match m with
    | CVAL | HEAP -> x.vtype
    | CTXT _ | CREF -> Cil.typeOf_pointed x.vtype
    | CARR _ -> Ast_info.array_type (Cil.typeOf_pointed x.vtype)

  let vobject m x = Ctypes.object_of (vtype m x)

  let vbase m x =
    match m with
    | CVAL | HEAP -> x
    | _ -> { x with vglob = true ; vtype = vtype m x }

  (* -------------------------------------------------------------------------- *)
  (* ---  Pretty                                                            --- *)
  (* -------------------------------------------------------------------------- *)

  let rec pp_offset ~obj fmt = function
    | [] -> ()
    | Field f :: ofs ->
      Format.fprintf fmt ".%s" f.fname ;
      pp_offset ~obj:(object_of f.ftype) fmt ofs
    | Shift(elt,k) :: ofs ->
      if Ctypes.is_array obj ~elt then
        ( Format.fprintf fmt ".(%a)" F.pp_term k ;
          pp_offset ~obj:elt fmt ofs )
      else
        ( Format.fprintf fmt ".(%a : %a)" F.pp_term k Ctypes.pretty elt ;
          pp_offset ~obj:elt fmt ofs )

  let pp_mem fmt = function
    | CVAL -> Format.pp_print_string fmt "var"
    | CREF -> Format.pp_print_string fmt "ref"
    | CTXT _ -> Format.pp_print_string fmt "ptr"
    | CARR _ -> Format.pp_print_string fmt "arr"
    | HEAP -> Format.pp_print_string fmt "mem"

  (* re-uses strings that are used into the description of -wp-xxx-vars *)
  let pp_var_model fmt = function
    | ByValue | ByShift | NotUsed -> Format.pp_print_string fmt "non-aliased" (* cf.  -wp-unalias-vars *)
    | ByRef -> Format.pp_print_string fmt "by reference" (* cf. -wp-ref-vars *)
    | InContext _ | InArray _ -> Format.pp_print_string fmt "in an isolated context" (* cf. -wp-context-vars *)
    | ByAddr -> Format.pp_print_string fmt "aliased" (* cf. -wp-alias-vars *)

  let pretty fmt = function
    | Ref x -> VAR.pretty fmt x
    | Loc l -> M.pretty fmt l
    | Val(m,x,ofs) ->
      let obj = vobject m x in
      Format.fprintf fmt "@[%a:%a%a@]"
        pp_mem m VAR.pretty x
        (pp_offset ~obj) ofs

  let noref ~op var =
    Warning.error
      "forbidden %s variable '%a' considered %a.@\n\
       Use model 'Typed' instead or specify '-wp-unalias-vars %a'"
      op Varinfo.pretty var
      pp_var_model (V.param var)
      Varinfo.pretty var

  (* -------------------------------------------------------------------------- *)
  (* ---  Basic Constructors                                                --- *)
  (* -------------------------------------------------------------------------- *)

  let null = Loc M.null

  let literal ~eid cst = Loc (M.literal ~eid cst)

  let cvar x = match V.param x with
    | NotUsed | ByValue | ByShift -> Val(CVAL,x,[])
    | ByAddr -> Val(HEAP,x,[])
    | InContext _ | InArray _ | ByRef -> Ref x

  (* -------------------------------------------------------------------------- *)
  (* ---  Nullable locations                                                --- *)
  (* -------------------------------------------------------------------------- *)

  module Nullable = WpContext.Generator(Varinfo)
      (struct
        let name = "MemVar.Nullable"
        type key = varinfo
        type data = lfun

        let compile v =
          let result = t_addr () in
          let lfun = Lang.generated_f ~result "pointer_%s" v.vname in
          let cluster =
            Definitions.cluster ~id:"Globals" ~title:"Context pointers" ()
          in
          Definitions.define_symbol {
            d_lfun = lfun ;
            d_types = 0 ;
            d_params = [] ;
            d_definition = Definitions.Logic result ;
            d_cluster = cluster
          } ;
          lfun
      end)

  let nullable_address v =
    Lang.F.e_fun (Nullable.get v) []

  (* -------------------------------------------------------------------------- *)
  (* ---  Lifting                                                           --- *)
  (* -------------------------------------------------------------------------- *)

  let moffset l = function
    | Field f -> M.field l f
    | Shift(e,k) -> M.shift l e k

  let mseq_of_seq seq = { pre = seq.pre.mem ; post = seq.post.mem }

  let mloc_of_path m x ofs =
    let l = match m with
      | CTXT Nullable | CARR Nullable -> M.pointer_loc @@ nullable_address x
      | _ -> M.cvar (vbase m x)
    in
    List.fold_left moffset l ofs

  let mloc_of_loc = function
    | Loc l -> l
    | Ref x -> M.cvar x
    | Val(m,x,ofs) -> mloc_of_path m x ofs

  let pointer_loc p = Loc (M.pointer_loc p)
  let pointer_val l = M.pointer_val (mloc_of_loc l)

  let field l f =
    match l with
    | Loc l -> Loc (M.field l f)
    | Ref x -> noref ~op:"field access to" x
    | Val(m,x,ofs) ->
      if not @@ is_heap_allocated m then MemMemory.unsupported_union f ;
      Val(m,x,ofs @ [Field f])

  let rec ofs_shift obj k = function
    | [] -> [Shift(obj,k)]
    | [Shift(elt,i)] when Ctypes.equal obj elt -> [Shift(elt,F.e_add i k)]
    | f::ofs -> f :: ofs_shift obj k ofs

  let shift l obj k = match l with
    | Loc l -> Loc (M.shift l obj k)
    | Ref x -> noref ~op:"array access to" x
    | Val(m,x,ofs) -> Val(m,x,ofs_shift obj k ofs)

  let base_addr = function
    | Loc l -> Loc (M.base_addr l)
    | Ref x -> noref ~op:"base address of" x (* ??? ~suggest:ByValue *)
    | Val(m,x,_) -> Val(m,x,[])

  let base_offset = function
    | Loc l -> M.base_offset l
    | Ref x -> noref ~op:"offset address of" x (* ??? ~suggest:ByValue *)
    | Val(_,_,ofs) -> List.fold_left byte_offset e_zero ofs

  let block_length sigma obj = function
    | Loc l -> M.block_length sigma.mem obj l
    | Ref x -> noref ~op:"block-length of" x
    | Val(m,x,_) ->
      begin match Ctypes.object_of (vtype m x) with
        | C_comp ({ cfields = None } as c) ->
          Cvalues.bytes_length_of_opaque_comp c
        | obj ->
          let size =
            if Ctypes.sizeof_defined obj
            then Ctypes.sizeof_object obj
            else if Wp_parameters.ExternArrays.get ()
            then max_int
            else Warning.error ~source:"MemVar" "Unknown array-size"
          in F.e_int size
      end

  let cast obj l = Loc(M.cast obj (mloc_of_loc l))
  let loc_of_int e a = Loc(M.loc_of_int e a)
  let int_of_loc i l = M.int_of_loc i (mloc_of_loc l)

  (* -------------------------------------------------------------------------- *)
  (* ---  Memory Load                                                       --- *)
  (* -------------------------------------------------------------------------- *)

  let rec access_gen kind a = function
    | [] -> a
    | Field f :: ofs -> access_gen kind (e_getfield a (cfield ~kind f)) ofs
    | Shift(_,k) :: ofs -> access_gen kind (e_get a k) ofs

  let access = access_gen KValue
  let access_init = access_gen KInit

  let rec update_gen kind a ofs v = match ofs with
    | [] -> v
    | Field f :: ofs ->
      let phi = cfield ~kind f in
      let a_f = F.e_getfield a phi in
      let a_f_v = update_gen kind a_f ofs v in
      F.e_setfield a phi a_f_v
    | Shift(_,k) :: ofs ->
      let a_k = F.e_get a k in
      let a_k_v = update_gen kind a_k ofs v in
      F.e_set a k a_k_v

  let update = update_gen KValue
  let update_init = update_gen KInit

  let load sigma obj = function
    | Ref x ->
      begin match V.param x with
        | ByRef       -> Sigs.Loc(Val(CREF,x,[]))
        | InContext n -> Sigs.Loc(Val(CTXT n,x,[]))
        | InArray n   -> Sigs.Loc(Val(CARR n,x,[]))
        | NotUsed | ByAddr | ByValue | ByShift -> assert false
      end
    | Val((CREF|CVAL),x,ofs) ->
      Sigs.Val(access (get_term sigma x) ofs)
    | Loc l ->
      Cvalues.map_value
        (fun l -> Loc l)
        (M.load sigma.mem obj l)
    | Val((CTXT _|CARR _|HEAP) as m,x,ofs) ->
      Cvalues.map_value
        (fun l -> Loc l)
        (M.load sigma.mem obj (mloc_of_path m x ofs))

  let load_init sigma obj = function
    | Ref _ ->
      e_true
    | Val((CREF|CVAL),x,_) when Cvalues.always_initialized x ->
      Cvalues.initialized_obj obj
    | Val((CREF|CVAL),x,ofs) ->
      access_init (get_init_term sigma x) ofs
    | Loc l ->
      M.load_init sigma.mem obj l
    | Val((CTXT _|CARR _|HEAP) as m,x,ofs) ->
      M.load_init sigma.mem obj (mloc_of_path m x ofs)

  (* -------------------------------------------------------------------------- *)
  (* ---  Memory Store                                                      --- *)
  (* -------------------------------------------------------------------------- *)

  let memvar_stored kind seq x ofs v =
    let get_term, update = match kind with
      | KValue -> get_term, update
      | KInit -> get_init_term, update_init
    in
    let v1 = get_term seq.pre x in
    let v2 = get_term seq.post x in
    Set( v2 , update v1 ofs v )

  let gen_stored kind seq obj l v =
    let mstored = match kind with KValue -> M.stored | KInit -> M.stored_init in
    match l with
    | Ref x -> noref ~op:"write to" x
    | Val((CREF|CVAL),x,ofs) ->
      [memvar_stored kind seq x ofs v]
    | Val((CTXT _|CARR _|HEAP) as m,x,ofs) ->
      mstored (mseq_of_seq seq) obj (mloc_of_path m x ofs) v
    | Loc l ->
      mstored (mseq_of_seq seq) obj l v

  let stored = gen_stored KValue
  let stored_init = gen_stored KInit

  let copied seq obj l1 l2 =
    let v = match load seq.pre obj l2 with
      | Sigs.Val r -> r
      | Sigs.Loc l -> pointer_val l
    in stored seq obj l1 v

  let copied_init seq obj l1 l2 =
    stored_init seq obj l1 (load_init seq.pre obj l2)

  (* -------------------------------------------------------------------------- *)
  (* ---  Pointer Comparison                                                --- *)
  (* -------------------------------------------------------------------------- *)

  let is_null = function
    | Loc l -> M.is_null l
    | Val ((CTXT Nullable|CARR Nullable)as m,x,ofs) ->
      M.is_null (mloc_of_path m x ofs)
    | Ref _ | Val _ -> F.p_false

  let rec offset = function
    | [] -> e_zero
    | Field f :: ofs ->
      e_add (e_int (Ctypes.field_offset f)) (offset ofs)
    | Shift(obj,k)::ofs ->
      e_add (e_fact (Ctypes.sizeof_object obj) k) (offset ofs)

  let loc_diff obj a b =
    match a , b with
    | Loc l1 , Loc l2 -> M.loc_diff obj l1 l2
    | Ref x , Ref y when Varinfo.equal x y -> e_zero
    | Val(_,x,p) , Val(_,y,q) when Varinfo.equal x y ->
      e_div (e_sub (offset p) (offset q)) (e_int (Ctypes.sizeof_object obj))
    | _ ->
      Warning.error ~source:"Reference Variable Model"
        "Uncomparable locations %a and %a" pretty a pretty b

  let loc_compare lcmp icmp same a b =
    match a , b with
    | Loc l1 , Loc l2 -> lcmp l1 l2
    | Ref x , Ref y ->
      if Varinfo.equal x y then same else p_not same
    | Val(_,x,p) , Val(_,y,q) ->
      if Varinfo.equal x y then icmp (offset p) (offset q) else p_not same
    | (Val _ | Loc _) , (Val _ | Loc _) -> lcmp (mloc_of_loc a) (mloc_of_loc b)
    | Ref _ , (Val _ | Loc _) | (Val _ | Loc _) , Ref _ -> p_not same

  let loc_eq = loc_compare M.loc_eq F.p_equal F.p_true
  let loc_lt = loc_compare M.loc_lt F.p_lt F.p_false
  let loc_leq = loc_compare M.loc_leq F.p_leq F.p_true
  let loc_neq = loc_compare M.loc_neq F.p_neq F.p_false

  (* -------------------------------------------------------------------------- *)
  (* ---  Range & Offset Fits                                               --- *)
  (* -------------------------------------------------------------------------- *)

  exception ShiftMismatch

  let shift_mismatch l =
    Wp_parameters.fatal "Invalid shift : %a" pretty l

  let unsized_array () = Warning.error ~severe:false
      "Validity of unsized-array not implemented yet"

  let fits_inside cond a b n =
    p_leq e_zero a :: p_lt b (e_int n) :: cond

  let fits_off_by_one cond a b n =
    p_leq e_zero a :: p_leq b (e_int n) :: cond

  let stay_outside cond a b n =
    p_lt b e_zero :: p_leq (e_int n) a :: cond

  (* Append conditions to [cond] for [range=(elt,a,b)],
     consisting of [a..b] elements with type [elt] to fits inside the block,
     provided [a<=b]. *)
  let rec block_check fitting cond (block,size) ((elt,a,b) as range) =
    if Ctypes.equal block elt then
      fitting cond a b size
    else
      match Ctypes.get_array block with
      | Some( e , Some n ) -> block_check fitting cond (e , n * size) range
      | Some( _ , None ) -> unsized_array ()
      | None -> raise ShiftMismatch

  (* Append conditions for and array offset (te,k) to fits in obj *)
  let array_check fitting cond te k obj =
    match Ctypes.get_array obj with
    | Some( e , Some n ) when Ctypes.equal e te -> fitting cond k k n
    | Some( _ , None ) -> unsized_array ()
    | _ -> block_check fitting cond (obj,1) (te,k,k)

  (* Append conditions for [offset] to fits [object], provided [a<=b]. *)
  let rec offset_fits cond obj offset =
    match offset with
    | [] -> cond
    | Field fd :: ofs ->
      offset_fits cond (Ctypes.object_of fd.ftype) ofs
    | Shift(te,k) :: ofs ->
      let cond = array_check fits_inside cond te k obj in
      offset_fits cond te ofs

  (* Append conditions to [cond] for [range=(elt,a,b)], starting at [offset],
     consisting of [a..b] elements with type [elt] to fits inside the block,
     of stay outside valid paths, provided [a<=b]. *)
  let rec range_check fitting cond alloc offset ((elt,a,b) as range) =
    match offset with
    | [] -> block_check fitting cond alloc range
    | Field fd :: ofs ->
      range_check fitting cond (Ctypes.object_of fd.ftype,1) ofs range
    | Shift(te,k) :: ofs ->
      if Ctypes.equal te elt then
        range_check fitting cond alloc ofs (elt,e_add a k,e_add b k)
      else
        match Ctypes.get_array (fst alloc) with
        | Some( e , Some n ) when Ctypes.equal e te ->
          let cond = fitting cond k k n in
          range_check fitting cond (e,n) ofs range
        | Some( _ , None ) ->
          unsized_array ()
        | _ ->
          let cond = block_check fitting cond alloc (te,k,k) in
          range_check fitting cond (te,1) ofs range

  (* -------------------------------------------------------------------------- *)
  (* ---  Validity                                                          --- *)
  (* -------------------------------------------------------------------------- *)

  let rec last_field_shift acs obj ofs =
    match acs , obj , ofs with
    | OBJ , _ , [Shift(te,k)] -> Some(te,k,obj)
    | OBJ , C_comp c , (Field fd :: ofs) ->
      begin
        match Option.map List.rev c.cfields with
        | Some (fd0::_) when Fieldinfo.equal fd fd0 ->
          last_field_shift acs (Ctypes.object_of fd.ftype) ofs
        | _ -> None
      end
    | _ -> None

  let valid_offset acs obj ofs =
    match last_field_shift acs obj ofs with
    | Some(te,k,obj) ->
      F.p_conj (array_check fits_off_by_one [] te k obj)
    | None ->
      F.p_conj (offset_fits [] obj ofs)

  let valid_range acs obj ofs range =
    match last_field_shift acs obj ofs with
    | Some _ ->
      F.p_conj (range_check fits_off_by_one [] (obj,1) ofs range)
    | _ ->
      F.p_conj (range_check fits_inside [] (obj,1) ofs range)

  (* varinfo *)

  let valid_base sigma acs mem x =
    if x.vglob then
      match acs with
      | RW -> if Cil.typeHasQualifier "const" x.vtype then p_false else p_true
      | RD | OBJ -> p_true
    else
      match mem with
      | CVAL | HEAP -> p_bool (ALLOC.value sigma.alloc x)
      | CREF | CTXT Valid | CARR Valid -> p_true
      | CTXT Nullable | CARR Nullable ->
        p_not @@ M.is_null (mloc_of_path mem x [])

  (* segment *)

  let valid_offset_path sigma acs mem x ofs =
    p_and
      (valid_base sigma acs mem x)
      (valid_offset acs (vobject mem x) ofs)

  let valid_range_path sigma acs mem x ofs rg =
    p_and
      (valid_base sigma acs mem x)
      (valid_range acs (vobject mem x) ofs rg)

  (* in-model validation *)

  let valid sigma acs = function
    | Rloc(obj,l) ->
      begin match l with
        | Ref _ -> p_true
        | Loc l -> M.valid sigma.mem acs (Rloc(obj,l))
        | Val(m,x,p) ->
          try valid_offset_path sigma acs m x p
          with ShiftMismatch ->
            if is_heap_allocated m then
              M.valid sigma.mem acs (Rloc(obj,mloc_of_loc l))
            else
              shift_mismatch l
      end
    | Rrange(l,elt,a,b) ->
      begin match l with
        | Ref x -> noref ~op:"valid sub-range of" x
        | Loc l -> M.valid sigma.mem acs (Rrange(l,elt,a,b))
        | Val(m,x,p) ->
          match a,b with
          | Some ka,Some kb ->
            begin
              try
                F.p_imply (F.p_leq ka kb)
                  (valid_range_path sigma acs m x p (elt,ka,kb))
              with ShiftMismatch ->
                if is_heap_allocated m then
                  let l = mloc_of_loc l in
                  M.valid sigma.mem acs (Rrange(l,elt,a,b))
                else shift_mismatch l
            end
          | _ ->
            Warning.error "Validity of infinite range @[%a.(%a..%a)@]"
              pretty l Vset.pp_bound a Vset.pp_bound b
      end

  (* -------------------------------------------------------------------------- *)
  (* ---  Invalidity                                                        --- *)
  (* -------------------------------------------------------------------------- *)

  let invalid_range obj ofs range =
    F.p_disj (range_check stay_outside [] (obj,1) ofs range)

  let invalid_offset_path sigma m x p =
    p_not (valid_offset_path sigma RD m x p)

  let invalid_range_path sigma m x p rg =
    p_imply
      (valid_base sigma RD m x)
      (invalid_range (vobject m x) p rg)

  let invalid sigma = function
    | Rloc(obj,l) ->
      begin match l with
        | Ref _ -> p_false
        | Loc l -> M.invalid sigma.mem (Rloc(obj,l))
        | Val(m,x,p) ->
          try invalid_offset_path sigma m x p
          with ShiftMismatch ->
            if is_heap_allocated m then
              M.invalid sigma.mem (Rloc(obj,mloc_of_loc l))
            else
              shift_mismatch l
      end
    | Rrange(l,elt,a,b) ->
      begin match l with
        | Ref x -> noref ~op:"invalid sub-range of" x
        | Loc l -> M.invalid sigma.mem (Rrange(l,elt,a,b))
        | Val(m,x,p) ->
          match a,b with
          | Some ka,Some kb ->
            begin
              try
                F.p_imply (F.p_leq ka kb)
                  (invalid_range_path sigma m x p (elt,ka,kb))
              with ShiftMismatch ->
                if is_heap_allocated m then
                  let l = mloc_of_loc l in
                  M.invalid sigma.mem (Rrange(l,elt,a,b))
                else shift_mismatch l
            end
          | _ ->
            Warning.error "Invalidity of infinite range @[%a.(%a..%a)@]"
              pretty l Vset.pp_bound a Vset.pp_bound b
      end

  (* -------------------------------------------------------------------------- *)
  (* ---  Initialized                                                       --- *)
  (* -------------------------------------------------------------------------- *)

  let rec initialized_loc sigma obj x ofs =
    match obj with
    | C_int _ | C_float _ | C_pointer _ ->
      p_bool (access_init (get_init_term sigma x) ofs)
    | C_array { arr_flat=flat ; arr_element = te } ->
      let size = match flat with
        | None -> unsized_array ()
        | Some { arr_size } -> arr_size in
      let elt = Ctypes.object_of te in
      initialized_range sigma elt x ofs (e_int 0) (e_int (size-1))
    | C_comp { cfields = None } ->
      Lang.F.p_equal
        (access_init (get_init_term sigma x) ofs)
        (Cvalues.initialized_obj obj)
    | C_comp { cfields = Some fields } ->
      let init_field fd =
        let obj_fd = Ctypes.object_of fd.ftype in
        let ofs_fd = ofs @ [Field fd] in
        initialized_loc sigma obj_fd x ofs_fd
      in
      Lang.F.p_conj (List.map init_field fields)

  and initialized_range sigma elt x ofs lo up =
    let i = Lang.freshvar ~basename:"i" Lang.t_int in
    let vi = e_var i in
    let ofs = ofs @ [ Shift(elt, vi) ] in
    let range_i = p_and (p_leq lo vi) (p_leq vi up) in
    let init_i = initialized_loc sigma elt x ofs in
    Lang.F.p_forall [i] (p_imply range_i init_i)

  let initialized sigma l =
    match l with
    | Rloc(obj,l) ->
      begin match l with
        | Ref _ -> p_true
        | Loc l -> M.initialized sigma.mem (Rloc(obj,l))
        | Val(m,x,p) ->
          if is_heap_allocated m then
            M.initialized sigma.mem (Rloc(obj,mloc_of_loc l))
          else if Cvalues.always_initialized x then
            try valid_offset RD (vobject m x) p
            with ShiftMismatch -> shift_mismatch l
          else
            initialized_loc sigma obj x p
      end
    | Rrange(l,elt, Some a, Some b) ->
      begin match l with
        | Ref _ -> p_true
        | Loc l -> M.initialized sigma.mem (Rrange(l,elt,Some a, Some b))
        | Val(m,x,p) ->
          try
            if is_heap_allocated m then
              let l = mloc_of_loc l in
              M.initialized sigma.mem (Rrange(l,elt,Some a, Some b))
            else
              let rec normalize obj = function
                | [] -> [], a, b
                | [Shift(elt, i)] when Ctypes.equal obj elt ->
                  [], F.e_add a i, F.e_add b i
                | f :: ofs ->
                  let l, a, b = normalize obj ofs in f :: l, a, b
              in
              let p, a, b = normalize elt p in
              let in_array = valid_range RD (vobject m x) p (elt, a, b) in
              let initialized =
                if Cvalues.always_initialized x then p_true
                else initialized_range sigma elt x p a b
              in
              F.p_imply (F.p_leq a b) (p_and in_array initialized)
          with ShiftMismatch ->
            shift_mismatch l
      end
    | Rrange(l, _,a,b) ->
      Warning.error
        "Initialization of infinite range @[%a.(%a..%a)@]"
        pretty l Vset.pp_bound a Vset.pp_bound b


  (* -------------------------------------------------------------------------- *)
  (* ---  Framing                                                           --- *)
  (* -------------------------------------------------------------------------- *)

  let rec forall_pointers phi v t =
    match Cil.unrollType t with
    | TInt _ | TFloat _ | TVoid _ | TEnum _ | TNamed _ | TBuiltin_va_list _
      -> F.p_true
    | TPtr _ | TFun _ -> phi v
    | TComp({ cfields = None },_) ->
      F.p_true
    | TComp({ cfields = Some fields },_) ->
      F.p_all
        (fun fd ->
           forall_pointers phi (e_getfield v (cfield fd)) fd.ftype)
        fields
    | TArray(elt,_,_) ->
      let k = Lang.freshvar Qed.Logic.Int in
      F.p_forall [k] (forall_pointers phi (e_get v (e_var k)) elt)

  let frame sigma =
    let hs = ref [] in
    SIGMA.iter
      begin fun x chunk ->
        (if (x.vglob || x.vformal) then
           let t = VAR.typ_of_chunk x in
           let v = e_var chunk in
           let h = forall_pointers (M.global sigma.mem) v t in
           if not (F.eqp h F.p_true) then hs := h :: !hs ) ;
        (if x.vglob then
           let v = e_var chunk in
           hs := Cvalues.has_ctype x.vtype v :: !hs ) ;
      end sigma.vars ;
    !hs @ M.frame sigma.mem

  (* -------------------------------------------------------------------------- *)
  (* ---  Scope                                                             --- *)
  (* -------------------------------------------------------------------------- *)

  let is_mem x = match V.param x with
    | ByAddr -> true
    | _ -> false

  let is_mvar_alloc x =
    match V.param x with
    | ByRef | InContext _ | InArray _ | NotUsed -> false
    | ByValue | ByShift | ByAddr -> true

  let alloc sigma xs =
    let xm = List.filter is_mem xs in
    let mem = M.alloc sigma.mem xm in
    let xv = List.filter is_mvar_alloc xs in
    let domain = TALLOC.Set.of_list xv in
    let alloc = ALLOC.havoc sigma.alloc domain in
    { sigma with alloc ; mem }

  let scope_vars seq scope xs =
    let xs = List.filter is_mvar_alloc xs in
    if xs = [] then []
    else
      let t_in = seq.pre.alloc in
      let t_out = seq.post.alloc in
      let v_in  = match scope with Enter -> e_false | Leave -> e_true in
      let v_out = match scope with Enter -> e_true | Leave -> e_false in
      List.map
        (fun x ->
           F.p_and
             (F.p_equal (ALLOC.value t_in x) v_in)
             (F.p_equal (ALLOC.value t_out x) v_out)
        ) xs

  let scope_init seq scope xs =
    match scope with
    | Leave -> []
    | Enter ->
      let init_status v =
        if v.vdefined || Cvalues.always_initialized v || not@@ is_mvar_alloc v
        then None
        else
          let i = Cvalues.uninitialized_obj (Ctypes.object_of v.vtype) in
          Some (Lang.F.p_equal (access_init (get_init_term seq.post v) []) i)
      in
      List.filter_map init_status xs

  let is_nullable m v =
    let addr = nullable_address v in
    p_or
      (M.is_null @@ M.pointer_loc addr)
      (p_equal (M.pointer_val @@ M.cvar (vbase m v)) addr)

  let nullable_scope v =
    match V.param v with
    | InContext Nullable -> Some (is_nullable (CTXT Nullable) v)
    | InArray Nullable -> Some (is_nullable (CARR Nullable) v)
    | _ -> None

  let scope seq scope xs =
    let xm = List.filter is_mem xs in
    let smem = { pre = seq.pre.mem ; post = seq.post.mem } in
    let hmem = M.scope smem scope xm in
    let hvars = scope_vars seq scope xs in
    let hinit = scope_init seq scope xs in
    let hcontext = List.filter_map nullable_scope xs in
    hvars @ hinit @ hmem @ hcontext

  let global sigma p = M.global sigma.mem p

  (* -------------------------------------------------------------------------- *)
  (* ---  Havoc along a ranged-path                                        --- *)
  (* -------------------------------------------------------------------------- *)

  let rec assigned_path
      kind
      (hs : pred list) (* collector of properties *)
      (xs : var list)  (* variable quantifying the assigned location *)
      (ys : var list)  (* variable quantifying others locations *)
      (a : term)  (* pre-term for root + current offset *)
      (b : term)  (* post-term for root + current offset *)
    = function
      | [] -> hs

      (*TODO: optimized version for terminal [Field _] and [Index _] *)

      | Field f :: ofs ->
        let cf = cfield ~kind f in
        let af = e_getfield a cf in
        let bf = e_getfield b cf in
        let hs = assigned_path kind hs xs ys af bf ofs in
        List.fold_left
          (fun hs g ->
             if Fieldinfo.equal f g then hs else
               let cg = cfield ~kind g in
               let ag = e_getfield a cg in
               let bg = e_getfield b cg in
               let eqg = p_forall ys (p_equal ag bg) in
               eqg :: hs
          ) hs
          (* Note: we have field accesses, everything here is thus complete *)
          (Option.get f.fcomp.cfields)

      | Shift(_,e) :: ofs ->
        let y = Lang.freshvar ~basename:"k" Qed.Logic.Int in
        let k = e_var y in
        let ak = e_get a k in
        let bk = e_get b k in
        if List.exists (fun x -> F.occurs x e) xs then
          (* index [e] is covered by [xs]:
             must explore deeper the remaining path. *)
          assigned_path kind hs xs (y::ys) ak bk ofs
        else
          (* index [e] is not covered by [xs]:
             any index different from e is disjoint.
             explore also deeply with index [e]. *)
          let ae = e_get a e in
          let be = e_get b e in
          let ek = p_neq e k in
          let eqk = p_forall (y::ys) (p_imply ek (p_equal ak bk)) in
          assigned_path kind (eqk :: hs) xs ys ae be ofs

  let assigned_genset s xs mem x ofs p =
    let valid = valid_offset_path s.post Sigs.RW mem x ofs in
    let a = get_term s.pre x in
    let b = get_term s.post x in
    let a_ofs = access a ofs in
    let b_ofs = access b ofs in
    let p_sloc = p_forall xs (p_hyps [valid;p_not p] (p_equal a_ofs b_ofs)) in
    let conds = assigned_path KValue [p_sloc] xs [] a b ofs in
    List.map (fun p -> Assert p) conds

  (*
  let monotonic_initialized_genset s xs mem x ofs p =
    if always_init x then [Assert p_true]
    else
      let valid = valid_offset_path s.post Sigs.RW mem x ofs in
      let a = get_init_term s.pre x in
      let b = get_init_term s.post x in
      let a_ofs = access_init a ofs in
      let b_ofs = access_init b ofs in
      let not_p = p_forall xs (p_hyps [valid;p_not p] (p_equal a_ofs b_ofs)) in
      let exact_p =
        p_forall xs (p_hyps [valid; p] (p_imply (p_bool a_ofs) (p_bool b_ofs)))
      in
      let conds = assigned_path KInit [not_p; exact_p] xs [] a b ofs in
      List.map (fun p -> Assert p) conds
  *)

  (* -------------------------------------------------------------------------- *)
  (* ---  Assigned                                                          --- *)
  (* -------------------------------------------------------------------------- *)

  let rec monotonic_initialized seq obj x ofs =
    if Cvalues.always_initialized x then p_true
    else
      match obj with
      (* Structure initialization is not monotonic *)
      | C_comp _ -> p_true
      (* Neither is initialization of arrays of structures *)
      | C_array { arr_element=t } when Cil.isStructOrUnionType t -> p_true

      | C_int _ | C_float _ | C_pointer _ ->
        p_imply
          (p_bool (access_init (get_init_term seq.pre x) ofs))
          (p_bool (access_init (get_init_term seq.post x) ofs))

      | C_array { arr_flat=flat ; arr_element=t } ->
        let size = match flat with
          | None -> unsized_array ()
          | Some { arr_size } -> arr_size
        in
        let v = Lang.freshvar ~basename:"i" Lang.t_int in
        let obj = Ctypes.object_of t in
        let ofs = ofs @ [ Shift(obj, e_var v) ] in
        let low = Some (e_int 0) in
        let up = Some (e_int (size-1)) in
        let hyp = Vset.in_range (e_var v) low up in
        let in_range = monotonic_initialized seq obj x ofs in
        Lang.F.p_forall [v] (p_imply hyp in_range)

  let assigned_loc seq obj = function
    | Ref x -> noref ~op:"assigns to" x
    | Val((CVAL|CREF),x,[]) ->
      [ Assert (monotonic_initialized seq obj x []) ]
    | Val((CVAL|CREF),x,ofs) ->
      let value = Lang.freshvar ~basename:"v" (tau_of_object obj) in
      memvar_stored KValue seq x ofs (e_var value) ::
      if Cil.isStructOrUnionType x.vtype then []
      else begin
        let init = Lang.freshvar ~basename:"v" (init_of_object obj) in
        Assert(monotonic_initialized seq obj x ofs) ::
        [ memvar_stored KInit seq x ofs (e_var init) ]
      end
    | Val((HEAP|CTXT _|CARR _) as m,x,ofs) ->
      M.assigned (mseq_of_seq seq) obj (Sloc (mloc_of_path m x ofs))
    | Loc l ->
      M.assigned (mseq_of_seq seq) obj (Sloc l)

  let assigned_array seq obj l elt n =
    match l with
    | Ref x -> noref ~op:"assigns to" x
    | Val((CVAL|CREF),x,[]) ->
      if Ctypes.is_compound elt then []
      else
        (* Note that 'obj' above corresponds to the elements *)
        let obj = Ctypes.object_of x.vtype in
        [ Assert (monotonic_initialized seq obj x []) ]

    | Val((CVAL|CREF),x,ofs) ->
      let f_array t =
        e_var (Lang.freshvar ~basename:"v" Qed.Logic.(Array(Int, t))) in
      [ memvar_stored KValue seq x ofs (f_array @@ Lang.tau_of_object elt) ;
        memvar_stored KInit  seq x ofs (f_array @@ Lang.init_of_object elt) ]

    | Val((HEAP|CTXT _|CARR _) as m,x,ofs) ->
      let l = mloc_of_path m x ofs in
      M.assigned (mseq_of_seq seq) obj (Sarray(l,elt,n))
    | Loc l ->
      M.assigned (mseq_of_seq seq) obj (Sarray(l,elt,n))

  let assigned_range seq obj l elt a b =
    match l with
    | Ref x -> noref ~op:"assigns to" x
    | Loc l ->
      M.assigned (mseq_of_seq seq) obj (Srange(l,elt,a,b))
    | Val((HEAP|CTXT _|CARR _) as m,x,ofs) ->
      M.assigned (mseq_of_seq seq) obj (Srange(mloc_of_path m x ofs,elt,a,b))
    | Val((CVAL|CREF) as m,x,ofs) ->
      let k = Lang.freshvar ~basename:"k" Qed.Logic.Int in
      let p = Vset.in_range (e_var k) a b in
      let ofs = ofs_shift elt (e_var k) ofs in
      (* (monotonic_initialized_genset seq [k] m x ofs p) @*)
      (assigned_genset seq [k] m x ofs p)

  let assigned_descr seq obj xs l p =
    match l with
    | Ref x -> noref ~op:"assigns to" x
    | Loc l ->
      M.assigned (mseq_of_seq seq) obj (Sdescr(xs,l,p))
    | Val((HEAP|CTXT _|CARR _) as m,x,ofs) ->
      M.assigned (mseq_of_seq seq) obj (Sdescr(xs,mloc_of_path m x ofs,p))
    | Val((CVAL|CREF) as m,x,ofs) ->
      (* (monotonic_initialized_genset seq xs m x ofs p) @ *)
      (assigned_genset seq xs m x ofs p)

  let assigned seq obj = function
    | Sloc l -> assigned_loc seq obj l
    | Sarray(l,elt,n) -> assigned_array seq obj l elt n
    | Srange(l,elt,a,b) -> assigned_range seq obj l elt a b
    | Sdescr(xs,l,p) -> assigned_descr seq obj xs l p

  (* -------------------------------------------------------------------------- *)
  (* --- Segments                                                           --- *)
  (* -------------------------------------------------------------------------- *)

  type seq =
    | Rseg of varinfo
    | Fseg of varinfo * delta list
    | Mseg of M.loc rloc * varinfo * delta list
    | Lseg of M.loc rloc
  and delta =
    | Dfield of fieldinfo
    | Drange of term option * term option

  let dofs = function
    | Field f -> Dfield f
    | Shift(_,k) -> let u = Some k in Drange(u,u)

  let tofs = function
    | Field d -> Ctypes.object_of d.ftype
    | Shift(elt,_) -> elt

  let rec dstartof dim = function
    | C_array arr ->
      let n = match arr.arr_flat with None -> 1 | Some a -> a.arr_dim in
      if n > dim then
        let u = Some e_zero in
        let elt = Ctypes.object_of arr.arr_element in
        Drange(u,u) :: dstartof dim elt
      else []
    | _ -> []

  let rec doffset obj host = function
    | d::ds -> dofs d :: (doffset obj (tofs d) ds)
    | [] -> dstartof (Ctypes.get_array_dim obj) host

  let delta obj x ofs = doffset obj (Ctypes.object_of x.vtype) ofs

  let rec range ofs obj a b =
    match ofs with
    | [] -> [ Drange(a,b) ]
    | [Shift(elt,k)] when Ctypes.equal elt obj ->
      [ Drange( Vset.bound_shift a k , Vset.bound_shift b k ) ]
    | d :: ofs -> dofs d :: range ofs obj a b

  let locseg = function

    | Rloc(_,Ref x) -> Rseg x
    | Rrange(Ref x,_,_,_) -> noref ~op:"sub-range of" x

    | Rloc(obj,Loc l) -> Lseg (Rloc(obj,l))
    | Rloc(obj,Val((CVAL|CREF),x,ofs)) ->
      Fseg(x,delta obj x ofs)

    | Rrange(Loc l,obj,a,b) -> Lseg (Rrange(l,obj,a,b))
    | Rrange(Val((CVAL|CREF),x,ofs),obj,a,b) ->
      Fseg(x,range ofs obj a b)

    (* Nullable: force M without symbolic access *)
    | Rloc(obj,Val((CTXT Nullable|CARR Nullable) as m,x,ofs)) ->
      Lseg(Rloc(obj, mloc_of_path m x ofs))
    | Rrange(Val((CTXT Nullable|CARR Nullable) as m,x,ofs),obj,a,b) ->
      Lseg(Rrange(mloc_of_path m x ofs, obj, a, b))

    (* Otherwise: use M with symbolic access *)
    | Rloc(obj,Val((CTXT Valid|CARR Valid|HEAP) as m,x,ofs)) ->
      Mseg(Rloc(obj,mloc_of_path m x ofs),x,delta obj x ofs)
    | Rrange(Val((CTXT Valid|CARR Valid|HEAP) as m,x,ofs),obj,a,b) ->
      Mseg(Rrange(mloc_of_path m x ofs,obj,a,b),x,range ofs obj a b)

  (* -------------------------------------------------------------------------- *)
  (* ---  Segment Inclusion                                                 --- *)
  (* -------------------------------------------------------------------------- *)

  let rec included_delta d1 d2 =
    match d1 , d2 with
    | _ , [] -> p_true
    | [] , _ -> p_false
    | u :: d1 , v :: d2 ->
      match u , v with
      | Dfield f , Dfield g when Fieldinfo.equal f g ->
        included_delta d1 d2
      | Dfield _ , _ | _ , Dfield _ -> p_false
      | Drange(a1,b1) , Drange(a2,b2) ->
        p_conj [ Vset.ordered ~strict:false ~limit:true a2 a1 ;
                 Vset.ordered ~strict:false ~limit:true b1 b2 ;
                 included_delta d1 d2 ]

  let included s1 s2 =
    match locseg s1 , locseg s2 with
    | Rseg x , Rseg y -> if Varinfo.equal x y then p_true else p_false
    | Rseg _ , _ | _ , Rseg _ -> p_false

    | Fseg(x1,d1) , Fseg(x2,d2)
    | Mseg(_,x1,d1) , Mseg(_,x2,d2) ->
      if Varinfo.equal x1 x2 then included_delta d1 d2 else p_false

    | Fseg _ , _ | _ , Fseg _ -> p_false

    | (Lseg s1|Mseg(s1,_,_)) , (Lseg s2|Mseg(s2,_,_)) -> M.included s1 s2

  (* -------------------------------------------------------------------------- *)
  (* ---  Segment Separation                                                --- *)
  (* -------------------------------------------------------------------------- *)

  let rec separated_delta d1 d2 =
    match d1 , d2 with
    | [] , _ | _ , [] -> p_false
    | u :: d1 , v :: d2 ->
      match u , v with
      | Dfield f , Dfield g when Fieldinfo.equal f g
        -> separated_delta d1 d2
      | Dfield _ , _ | _ , Dfield _ -> p_true
      | Drange(a1,b1) , Drange(a2,b2) ->
        p_disj [ Vset.ordered ~strict:true ~limit:false b1 a2 ;
                 Vset.ordered ~strict:true ~limit:false b2 a1 ;
                 separated_delta d1 d2 ]

  let separated r1 r2 =
    match locseg r1 , locseg r2 with
    | Rseg x , Rseg y -> if Varinfo.equal x y then p_false else p_true
    | Rseg _ , _ | _ , Rseg _ -> p_true

    | Fseg(x1,d1) , Fseg(x2,d2)
    | Mseg(_,x1,d1) , Mseg(_,x2,d2) ->
      if Varinfo.equal x1 x2 then separated_delta d1 d2 else p_true
    | Fseg _ , _ | _ , Fseg _ -> p_true

    | (Lseg s1|Mseg(s1,_,_)) , (Lseg s2|Mseg(s2,_,_)) -> M.separated s1 s2

  (* -------------------------------------------------------------------------- *)
  (* ---  Domain                                                            --- *)
  (* -------------------------------------------------------------------------- *)

  let domain obj l =
    match l with
    | Ref x | Val((CVAL|CREF),x,_) ->
      let init =
        if not @@ Cvalues.always_initialized x then [ Init x ] else []
      in
      Heap.Set.of_list ((Var x) :: init)
    | Loc _ | Val((CTXT _|CARR _|HEAP),_,_) ->
      M.Heap.Set.fold
        (fun m s -> Heap.Set.add (Mem m) s)
        (M.domain obj (mloc_of_loc l)) Heap.Set.empty

  let is_well_formed sigma =
    let cstrs = ref [] in
    SIGMA.iter
      (fun v c -> cstrs := Cvalues.has_ctype v.vtype (e_var c) :: !cstrs)
      sigma.vars ;
    p_conj ((M.is_well_formed sigma.mem) :: !cstrs)

  (* -------------------------------------------------------------------------- *)

end
OCaml

Innovation. Community. Security.