package batteries

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file batVect.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
(*
 * Vect - Extensible arrays based on ropes
 * Copyright (C) 2007 Mauricio Fernandez <mfp@acm.org>
 *               2009 David Rajchenbach-Teller, LIFO, Universite d'Orleans
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version,
 * with the special exception on linking described in file LICENSE.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *)

module STRING : sig
  (* this module must provide the following functions: *)
  type 'a t = 'a array
  val length : 'a t -> int
  val make : int -> 'a -> 'a t
  val copy : 'a t -> 'a t
  val unsafe_get : 'a t -> int -> 'a
  val unsafe_set : 'a t -> int -> 'a -> unit
  val sub : 'a t -> int -> int -> 'a t
  val iter : ('a -> unit) -> 'a t -> unit
  val fold_right : ('a -> 'b -> 'b) -> 'a t -> 'b -> 'b
  val append : 'a t -> 'a t -> 'a t
  val concat : 'a t list -> 'a t
end = BatArray

type 'a t =
  | Empty
  | Concat of 'a t * int * 'a t * int * int
  | Leaf of 'a STRING.t

(* these invariants may be incomplete, feel free to improve it *)
let invariants t =
  let rec inv_height = function
    | Empty
    | Leaf _ -> 0
    | Concat (l, _, r, _, h) ->
      assert (h = 1 + max (inv_height l) (inv_height r));
      h in
  let rec inv_length = function
    | Empty -> 0
    | Leaf a -> STRING.length a
    | Concat (l, cl, r, cr, _) ->
      assert (inv_length l = cl);
      assert (inv_length r = cr);
      cl + cr in
  let rec other_inv depth = function
    | Empty -> assert (depth = 0)
    | Leaf a -> assert (STRING.length a > 0)
    | Concat (l, _, r, _, _) ->
      other_inv (depth + 1) l;
      other_inv (depth + 1) r in
  ignore (inv_height t);
  ignore (inv_length t);
  other_inv 0 t

type 'a forest_element = { mutable c : 'a t; mutable len : int }

let str_append = STRING.append
let string_of_string_list = STRING.concat

let singleton x = Leaf [|x|]

(* 48 limits max rope size to 236.10^9 elements on 64 bit,
 * ~ 734.10^6 on 32bit (length fields overflow after that) *)
let max_height = 48

(* actual size will be that plus 1 word header;
 * the code assumes it's an even num.
 * 32 gives up to 50% overhead in the worst case (all leaf nodes near
 * half-filled; 8 words for bookkeeping, 16 words worth of data per leaf node *)
let leaf_size = 16



exception Out_of_bounds

let empty = Empty

(* by construction, there cannot be Empty or Leaf "" leaves *)
let is_empty = function
  | Empty -> true
  | Leaf _ | Concat _ -> false

let height = function
  | Empty | Leaf _ -> 0
  | Concat (_, _, _, _, h) -> h

let length = function
  | Empty -> 0
  | Leaf s -> STRING.length s
  | Concat (_, cl, _, cr, _) -> cl + cr

let make_concat l r =
  let hl = height l and hr = height r in
  let cl = length l and cr = length r in
  Concat (l, cl, r, cr, if hl >= hr then hl + 1 else hr + 1)

let min_len =
  let fib_tbl = Array.make max_height 0 in
  let rec fib n =
    match fib_tbl.(n) with
    | 0 ->
      let last = fib (n - 1) and prev = fib (n - 2) in
      let r = last + prev in
      let r = if r > last then r else last in (* check overflow *)
      fib_tbl.(n) <- r; r
    | n -> n in
  fib_tbl.(0) <- leaf_size + 1; fib_tbl.(1) <- 3 * leaf_size / 2 + 1;
  Array.init max_height (fun i -> if i = 0 then 1 else fib (i - 1))

let max_length = min_len.(Array.length min_len - 1)

let concat_fast l r =
  match l with
  | Empty -> r
  | Leaf _ | Concat _ ->
    match r with
    | Empty -> l
    | Leaf _ | Concat _ -> make_concat l r

(* based on Hans-J. Boehm's *)
let add_forest forest rope len =
  let i = ref 0 in
  let sum = ref empty in
  while len > min_len.(!i+1) do
    if forest.(!i).c <> Empty then begin
      sum := concat_fast forest.(!i).c !sum;
      forest.(!i).c <- Empty
    end;
    incr i
  done;
  sum := concat_fast !sum rope;
  let sum_len = ref (length !sum) in
  while !sum_len >= min_len.(!i) do
    if forest.(!i).c <> Empty then begin
      sum := concat_fast forest.(!i).c !sum;
      sum_len := !sum_len + forest.(!i).len;
      forest.(!i).c <- Empty;
    end;
    incr i
  done;
  decr i;
  forest.(!i).c <- !sum;
  forest.(!i).len <- !sum_len

let concat_forest forest =
  Array.fold_left (fun s x -> concat_fast x.c s) Empty forest

let rec balance_insert rope len forest = match rope with
  | Empty -> ()
  | Leaf _ -> add_forest forest rope len
  | Concat (l, cl, r, cr, h) when h >= max_height || len < min_len.(h) ->
    balance_insert l cl forest;
    balance_insert r cr forest
  | Concat _ as x -> add_forest forest x len (* function or balanced *)

let balance r =
  match r with
  | Empty -> Empty
  | Leaf _ -> r
  | Concat _ ->
    let forest = Array.init max_height (fun _ -> {c = Empty; len = 0}) in
    balance_insert r (length r) forest;
    concat_forest forest

let bal_if_needed l r =
  let r = make_concat l r in
  if height r < max_height then r else balance r

let concat_str l = function
  | Empty | Concat _ -> assert false
  | Leaf rs as r ->
    let lenr = STRING.length rs in
    match l with
    | Empty -> r
    | Leaf ls ->
      let slen = lenr + STRING.length ls in
      if slen <= leaf_size then Leaf (str_append ls rs)
      else make_concat l r (* height = 1 *)
    | Concat (ll, cll, Leaf lrs, clr, h) ->
      let slen = clr + lenr in
      if clr + lenr <= leaf_size then
        Concat (ll, cll, Leaf (str_append lrs rs), slen, h)
      else
        bal_if_needed l r
    | Concat _ -> bal_if_needed l r

let append_char c r = concat_str r (Leaf (STRING.make 1 c))

let concat l = function
  | Empty -> l
  | Leaf _ as r -> concat_str l r
  | Concat (Leaf rls, rlc, rr, rc, h) as r -> (
      match l with
      | Empty -> r
      | Concat _ -> bal_if_needed l r
      | Leaf ls ->
        let slen = rlc + STRING.length ls in
        if slen <= leaf_size then
          Concat (Leaf (str_append ls rls), slen, rr, rc, h)
        else
          bal_if_needed l r
    )
  | Concat _ as r -> (
      match l with
      | Empty -> r
      | Leaf _ | Concat _ -> bal_if_needed l r
    )

let prepend_char c r = concat (Leaf (STRING.make 1 c)) r

let rec get t i =
  match t with
  | Empty -> raise Out_of_bounds
  | Leaf s ->
    if i >= 0 && i < STRING.length s then STRING.unsafe_get s i
    else raise Out_of_bounds
  | Concat (l, cl, r, _cr, _) ->
    if i < cl then get l i
    else get r (i - cl)

let rec set t i x =
  match t with
  | Empty ->
    raise Out_of_bounds
  | Leaf s ->
    if i >= 0 && i < STRING.length s then (
      let s = STRING.copy s in
      STRING.unsafe_set s i x;
      Leaf s
    ) else raise Out_of_bounds
  | Concat (l, cl, r, _cr, _) ->
    if i < cl then concat (set l i x) r
    else concat l (set r (i - cl) x)

let at = get

let rec modify t i f =
  match t with
  | Empty ->
    raise Out_of_bounds
  | Leaf s ->
    if i >= 0 && i < STRING.length s then (
      let s = STRING.copy s in
      STRING.unsafe_set s i (f (STRING.unsafe_get s i));
      Leaf s
    ) else raise Out_of_bounds
  | Concat (l, cl, r, _cr, _) ->
    if i < cl then concat (modify l i f) r
    else concat l (modify r (i - cl) f)

let of_string = function
  | [||] -> Empty
  | s ->
    let rec loop r s len i =
      if i < len then (* len - i > 0, thus Leaf "" can't happen *)
        loop (concat r (Leaf (STRING.sub s i (BatInt.min (len - i) leaf_size))))
          s len (i + leaf_size)
      else
        r in
    loop Empty s (STRING.length s) 0

let rec make len c =
  let rec concatloop len i r =
    if i <= len then
      concatloop len (i * 2) (concat r r)
    else r in
  if len = 0 then Empty
  else if len <= leaf_size then Leaf (STRING.make len c)
  else
    let rope = concatloop len 2 (of_string (STRING.make 1 c)) in
    concat rope (make (len - length rope) c)

(* overridden argument order below *)
let rec sub start len = function
  | Empty ->
    if start <> 0 || len <> 0 then raise Out_of_bounds else Empty
  | Leaf s ->
    if len > 0 then (* Leaf "" cannot happen *)
      (try Leaf (STRING.sub s start len) with _ -> raise Out_of_bounds)
    else if len < 0 || start < 0 || start > STRING.length s then
      raise Out_of_bounds
    else Empty
  | Concat (l, cl, r, cr, _) ->
    if start < 0 || len < 0 || start + len > cl + cr then raise Out_of_bounds;
    let left =
      if start = 0 then
        if len >= cl then
          l
        else sub 0 len l
      else if start > cl then Empty
      else if start + len >= cl then
        sub start (cl - start) l
      else sub start len l in
    let right =
      if start <= cl then
        let upto = start + len in
        if upto = cl + cr then r
        else if upto < cl then Empty
        else sub 0 (upto - cl) r
      else sub (start - cl) len r in
    concat left right

(* change argument order on Vect.sub *)
let sub v s l = sub s l v

let insert start rope r =
  concat (concat (sub r 0 start) rope) (sub r start (length r - start))

(*$T insert
(of_list [0;1;2;3] |> insert 0 (singleton 10) |> to_list) = [10;0;1;2;3]
(of_list [0;1;2;3] |> insert 1 (singleton 10) |> to_list) = [0;10;1;2;3]
(of_list [0;1;2;3] |> insert 2 (singleton 10) |> to_list) = [0;1;10;2;3]
(of_list [0;1;2;3] |> insert 3 (singleton 10) |> to_list) = [0;1;2;10;3]
(of_list [0;1;2;3] |> insert 4 (singleton 10) |> to_list) = [0;1;2;3;10]
try of_list [0;1;2;3] |> insert (-1) (singleton 10) |> to_list |> ignore; false; with _ -> true
try of_list [0;1;2;3] |> insert 5 (singleton 10) |> to_list |> ignore; false; with _ -> true
(of_list [] |> insert 0 (singleton 1) |> to_list) = [1]
(of_list [0] |> insert 0 (singleton 1) |> to_list) = [1; 0]
(of_list [0] |> insert 1 (singleton 1) |> to_list) = [0; 1]
*)

let remove start len r =
  concat (sub r 0 start) (sub r (start + len) (length r - start - len))

(*$Q remove
(Q.pair (Q.pair Q.small_int Q.small_int) (Q.small_int)) \
(fun ((n1, n2), lr) -> \
  let init len = of_list (BatList.init len (fun i -> i)) in \
  let n, lu = min n1 n2, max n1 n2 in \
  let u, r = init lu, init lr in \
  equal (=) u (u |> insert n r |> remove n (length r)))
*)

let to_string r =
  let rec strings l = function
    | Empty -> l
    | Leaf s -> s :: l
    | Concat (left, _, right, _, _) -> strings (strings l right) left in
  string_of_string_list (strings [] r)

let rec iter f = function
  | Empty -> ()
  | Leaf s -> STRING.iter f s
  | Concat (l, _, r, _, _) -> iter f l; iter f r

type 'a iter = E | C of 'a STRING.t * int * 'a t * 'a iter

let rec cons_iter s t =
  match s with
  | Empty -> t
  | Leaf s -> C (s, 0, Empty, t)
  | Concat (l, _llen, r, _rlen, _h) -> cons_iter l (cons_iter r t)

let rec rev_cons_iter s t =
  match s with
  | Empty -> t
  | Leaf s -> C (s, (STRING.length s - 1), Empty, t)
  | Concat (l, _, r, _, _) -> rev_cons_iter r (rev_cons_iter l t)

let enum_next l () =
  match !l with
  | E -> raise BatEnum.No_more_elements
  | C (s, p, r, t) ->
    if p + 1 = STRING.length s then
      l := cons_iter r t
    else
      l := C (s, p + 1, r, t);
    STRING.unsafe_get s p

let enum_backwards_next l () =
  match !l with
  | E -> raise BatEnum.No_more_elements
  | C (s, p, r, t) ->
    if p = 0 then
      l := rev_cons_iter r t
    else
      l := C (s, p - 1, r, t);
    STRING.unsafe_get s p

let enum_count l () =
  let rec aux n = function
    | E -> n
    | C (s, p, m, t) -> aux (n + (STRING.length s - p) + length m) t
  in aux 0 !l

let rev_enum_count l () =
  let rec aux n = function
    | E -> n
    | C (_s, p, m, t) -> aux (n + (p + 1) + length m) t
  in aux 0 !l

let enum t =
  let rec make l =
    let l = ref l in
    let clone () = make !l in
    BatEnum.make ~next:(enum_next l) ~count:(enum_count l) ~clone
  in make (cons_iter t E)

let backwards t =
  let rec make l =
    let l = ref l in
    let clone () = make !l in
    BatEnum.make ~next:(enum_backwards_next l) ~count:(rev_enum_count l) ~clone
  in make (rev_cons_iter t E)

let of_enum e =
  BatEnum.fold (fun acc x -> append_char x acc) empty e

let of_backwards e =
  BatEnum.fold (fun acc x -> prepend_char x acc) empty e

let iteri f r =
  let rec aux f i = function
    | Empty -> ()
    | Leaf s ->
      for j = 0 to STRING.length s - 1 do
        f (i + j) (STRING.unsafe_get s j)
      done
    | Concat (l, cl, r, _, _) -> aux f i l; aux f (i + cl) r in
  aux f 0 r

let rec rangeiter f start len = function
  | Empty -> if start <> 0 || len <> 0 then raise Out_of_bounds
  | Leaf s ->
    let n = start + len in
    let lens = STRING.length s in
    if start >= 0 && len >= 0 && n <= lens then
      for i = start to n - 1 do
        f (STRING.unsafe_get s i)
      done
    else raise Out_of_bounds
  | Concat (l, cl, r, cr, _) ->
    if start < 0 || len < 0 || start + len > cl + cr then raise Out_of_bounds;
    if start < cl then begin
      let upto = start + len in
      if upto <= cl then
        rangeiter f start len l
      else begin
        rangeiter f start (cl - start) l;
        rangeiter f 0 (upto - cl) r
      end
    end else begin
      rangeiter f (start - cl) len r
    end

let rec fold f a = function
  | Empty -> a
  | Leaf s ->
    let acc = ref a in
    for i = 0 to STRING.length s - 1 do
      acc := f !acc (STRING.unsafe_get s i)
    done;
    !acc
  | Concat (l, _, r, _, _) -> fold f (fold f a l) r

let foldi f a v =
  let rec aux i a = function
    | Empty -> a
    | Leaf s ->
      let acc = ref a in
      for j = 0 to STRING.length s - 1 do
        acc := f (i+j) !acc (STRING.unsafe_get s j)
      done;
      !acc
    | Concat (l, cl, r, _, _) -> aux (i+cl) (aux i a l) r in
  aux 0 a v

let fold_left = fold

let fold_right (f:'a -> 'b -> 'b) (v:'a t) (acc:'b)  : 'b =
  let rec aux (acc:'b) = function
    | Empty  -> acc
    | Leaf s -> STRING.fold_right f s acc
    | Concat (l, _, r, _, _) -> aux (aux acc r) l
  in aux acc v

let reduce f v =
  let acc = ref (get v 0) in
  rangeiter (fun e -> acc := f !acc e) 1 (length v - 1) v;
  !acc

let of_array = of_string
let to_array = to_string
let append = append_char
let prepend = prepend_char

let rec map f = function
  | Empty -> Empty
  | Leaf a -> Leaf (BatArray.map f a)
  | Concat (l, cl, r, cr, h) ->
    let l = map f l in
    let r = map f r in
    Concat (l, cl, r, cr, h)

let mapi f v =
  let off = ref 0 in
  map (fun x -> f (BatRef.post_incr off) x) v

let rec exists f = function
  | Empty -> false
  | Leaf a -> BatArray.exists f a
  | Concat (l, _, r, _, _) -> exists f l || exists f r

(*$T exists
  exists (fun x -> x = 2) empty = false
  exists (fun x -> x = 2) (singleton 2) = true
  exists (fun x -> x = 2) (singleton 3) = false
  exists (fun x -> x = 2) (of_array [|1; 3|]) = false
  exists (fun x -> x = 2) (of_array [|2; 3|]) = true
  exists (fun x -> x = 2) (concat (singleton 1) (singleton 3)) = false
  exists (fun x -> x = 2) (concat (singleton 1) (of_array [|2|])) = true
  exists (fun x -> x = 2) (concat (singleton 2) (singleton 3)) = true
*)
(*$Q exists
  (Q.list Q.small_int) (fun li -> let p i = (i mod 4 = 0) in List.exists p li = exists p (of_list li))
*)

let rec for_all f = function
  | Empty -> true
  | Leaf a -> BatArray.for_all f a
  | Concat (l, _, r, _, _) -> for_all f l && for_all f r
(*$T for_all
  for_all (fun x -> x = 2) empty = true
  for_all (fun x -> x = 2) (singleton 2) = true
  for_all (fun x -> x = 2) (singleton 3) = false
  for_all (fun x -> x = 2) (of_array [|2; 3|]) = false
  for_all (fun x -> x = 2) (of_array [|2; 2|]) = true
  for_all (fun x -> x = 2) (concat (singleton 1) (singleton 2)) = false
  for_all (fun x -> x = 2) (concat (singleton 2) (of_array [|2|])) = true
  for_all (fun x -> x = 2) (concat (singleton 2) (singleton 3)) = false
*)
(*$Q for_all
  (Q.list Q.small_int) (fun li -> let p i = (i mod 4 > 0) in List.for_all p li = for_all p (of_list li))
*)

let rec find_opt f = function
  | Empty -> None
  | Leaf a -> BatArray.Exceptionless.find f a
  | Concat (l, _, r, _, _) ->
    begin match find_opt f l with
      | Some _ as result -> result
      | None -> find_opt f r
    end
(*$T find_opt
  [0;1;2;3] |> of_list |> find_opt ((=) 2) = Some 2
  [0;1;2;3] |> of_list |> find_opt ((=) 4) = None
  [] |> of_list |> find_opt ((=) 2) = None
  concat (of_list [0; 1]) (of_list ([2; 3])) |> find_opt (fun n -> n > 0) = Some 1
*)

let find f v =
  match find_opt f v with
  | None -> raise Not_found
  | Some x -> x
(*$T find
  [0;1;2;3] |> of_list |> find ((=) 2) = 2
  try [0;1;2;3] |> of_list |> find ((=) 4) |> ignore; false with Not_found -> true
  try [] |> of_list |> find ((=) 2) |> ignore; false with Not_found -> true
  concat (of_list [0; 1]) (of_list ([2; 3])) |> find (fun n -> n > 0) = 1
*)

let findi f v =
  let off = ref (-1) in
  ignore (find (fun x -> let result = f x in incr off; result) v);
  !off

let partition p v =
  fold_left (fun (yes, no) x -> if p x then (append x yes, no) else (yes, append x no)) (empty, empty) v

let find_all p v =
  fold_left (fun acc x -> if p x then append x acc else acc) empty v

let mem m v = try let _ = find ( ( = ) m ) v in true with Not_found -> false

let memq m v = try let _ = find ( ( == ) m ) v in true with Not_found -> false

let first v = get v 0
let last v = get v (length v - 1)
let shift v = first v, sub v 1 (length v - 1)
let pop v = last v, sub v 0 (length v - 1)

let to_list r =
  let rec aux acc = function
    | Empty -> acc
    | Leaf a -> Array.fold_right (fun x l -> x :: l) a acc
    | Concat (l, _, r, _, _) -> aux (aux acc r) l in
  aux [] r

let filter = find_all

let filter_map f =
  fold (fun acc x ->
    match f x with
    | None   -> acc
    | Some v -> append v acc
  ) Empty

let destructive_set v i x =
  let rec aux i = function
    | Empty  -> raise Out_of_bounds
    | Leaf s ->
      if i >= 0 && i < STRING.length s then
        STRING.unsafe_set s i x
      else raise Out_of_bounds
    | Concat (l, cl, r, _cr, _) ->
      if i < cl then aux i l
      else aux (i - cl) r in
  aux i v

let of_list l = of_array (Array.of_list l)

let init n f =
  if n < 0 || n > max_length then invalid_arg "Vect.init";
  (* Create as many arrays as we need to store all the data *)
  let rec aux off acc =
    if off >= n then acc
    else
      let len = min leaf_size (n - off) in
      let arr = Array.init len (fun i -> f ( off + i ) ) in
      aux (off + len) (arr::acc) in
  let base = aux 0 [] in
  (* And then concatenate them *)
  List.fold_left (fun (acc:'a t) (array:'a array) -> concat (of_array array) acc) (empty:'a t) (base:'a array list)

(*$T init
  init 1000 (fun x -> x * x) |> to_array = Array.init 1000 (fun x -> x * x)
*)

let print ?(first="[|") ?(last="|]") ?(sep="; ") print_a out t =
  BatEnum.print ~first ~last ~sep print_a out (enum t)

let compare cmp_val v1 v2 = BatEnum.compare cmp_val (enum v1) (enum v2)
let equal eq_val v1 v2 = BatEnum.equal eq_val (enum v1) (enum v2)
let ord ord_val v1 v2 =
  let cmp_val = BatOrd.comp ord_val in
  BatOrd.ord0 (BatEnum.compare cmp_val (enum v1) (enum v2))

module Labels =
struct
  let init n ~f      = init n f
  let get v ~n       = get v n
  let at v ~n        = at v n
  let set v ~n ~elem = set v n elem
  let modify v ~n ~f = modify v n f
  let sub v ~m ~n    = sub v m n
  let insert ~n ~sub = insert n sub
  let remove ~m ~n   = remove m n
  let iter ~f        = iter f
  let iteri ~f       = iteri f
  let map ~f         = map f
  let mapi ~f        = mapi f
  let for_all ~f     = for_all f
  let exists ~f      = exists f
  let find ~f        = find f
  let mem ~elem      = mem elem
  let memq ~elem     = memq elem
  let findi ~f       = findi f
  let filter ~f      = filter f
  let filter_map ~f  = filter_map f
  let find_all ~f    = find_all f
  let partition ~f   = partition f
  let destructive_set v ~n ~elem = destructive_set v n elem
  let rangeiter ~f ~m ~n    = rangeiter f m n
  let fold_left ~f ~init    = fold_left f init
  let fold ~f ~init         = fold f init
  let reduce ~f             = reduce f
  let fold_right ~f v ~init = fold_right f v init
  let foldi ~f ~init        = foldi f init
end

(* Functorial interface *)

module type RANDOMACCESS =
sig
  type 'a t
  val empty : 'a t
  val get : 'a t -> int -> 'a
  val unsafe_get : 'a t -> int -> 'a
  val set : 'a t -> int -> 'a -> unit
  val unsafe_set : 'a t -> int -> 'a -> unit
  val append : 'a t -> 'a t -> 'a t
  val concat : 'a t list -> 'a t
  val length : 'a t -> int
  val copy : 'a t -> 'a t
  val sub : 'a t -> int -> int -> 'a t
  val make : int -> 'a -> 'a t
  val iter : ('a -> unit) -> 'a t -> unit
  val map : ('a -> 'b) -> 'a t -> 'b t
  val fold_right : ('a -> 'b -> 'b) -> 'a t -> 'b -> 'b
  val enum : 'a t -> 'a BatEnum.t
  val backwards : 'a t -> 'a BatEnum.t
  val of_enum : 'a BatEnum.t -> 'a t
  val of_backwards : 'a BatEnum.t -> 'a t
end

module Make(RANDOMACCESS : RANDOMACCESS)
    (PARAM : sig
       val max_height : int
       val leaf_size : int
     end)=
struct
  module STRING = RANDOMACCESS
  (*$inject module Test_functor = struct
    module STRING = struct
      include BatArray
      let empty = [||]
    end
    module PARAM = struct let max_height = 256 let leaf_size = 256 end
    module Instance = Make(STRING)(PARAM)
    open Instance
  *)

  type 'a t =
    | Empty
    | Concat of 'a t * int * 'a t * int * int
    | Leaf of 'a STRING.t

  let max_height = PARAM.max_height
  let leaf_size = PARAM.leaf_size

  let min_len =
    let fib_tbl = Array.make max_height 0 in
    let rec fib n =
      match fib_tbl.(n) with
      | 0 ->
        let last = fib (n - 1) and prev = fib (n - 2) in
        let r = last + prev in
        let r = if r > last then r else last in (* check overflow *)
        fib_tbl.(n) <- r; r
      | n -> n in
    fib_tbl.(0) <- leaf_size + 1; fib_tbl.(1) <- 3 * leaf_size / 2 + 1;
    Array.init max_height (fun i -> if i = 0 then 1 else fib (i - 1))

  let max_length = min_len.(Array.length min_len - 1)

  let invariants t =
    let rec inv_height = function
      | Empty
      | Leaf _ -> 0
      | Concat (l, _, r, _, h) ->
        assert (h = 1 + max (inv_height l) (inv_height r));
        h in
    let rec inv_length = function
      | Empty -> 0
      | Leaf a -> STRING.length a
      | Concat (l, cl, r, cr, _) ->
        assert (inv_length l = cl);
        assert (inv_length r = cr);
        cl + cr in
    let rec other_inv depth = function
      | Empty -> assert (depth = 0)
      | Leaf a -> assert (STRING.length a > 0)
      | Concat (l, _, r, _, _) ->
        other_inv (depth + 1) l;
        other_inv (depth + 1) r in
    ignore (inv_height t);
    assert (inv_length t < max_length);
    other_inv 0 t

  type 'a forest_element = { mutable c : 'a t; mutable len : int }

  let str_append = STRING.append
  let string_of_string_list = STRING.concat

  let singleton x = Leaf (STRING.make 1 x)

  exception Out_of_bounds

  let empty = Empty

  (* by construction, there cannot be Empty or Leaf "" leaves *)
  let is_empty = function
    | Empty -> true
    | Leaf _ | Concat _ -> false

  let height = function
    | Empty | Leaf _ -> 0
    | Concat (_, _, _, _, h) -> h

  let length = function
    | Empty -> 0
    | Leaf s -> STRING.length s
    | Concat (_, cl, _, cr, _) -> cl + cr

  let make_concat l r =
    let hl = height l and hr = height r in
    let cl = length l and cr = length r in
    Concat (l, cl, r, cr, if hl >= hr then hl + 1 else hr + 1)

  let concat_fast l r =
    match l with
    | Empty -> r
    | Leaf _ | Concat _ ->
      match r with
      | Empty -> l
      | Leaf _ | Concat _ -> make_concat l r

  (* based on Hans-J. Boehm's *)
  let add_forest forest rope len =
    let i = ref 0 in
    let sum = ref empty in
    while len > min_len.(!i+1) do
      if forest.(!i).c <> Empty then begin
        sum := concat_fast forest.(!i).c !sum;
        forest.(!i).c <- Empty
      end;
      incr i
    done;
    sum := concat_fast !sum rope;
    let sum_len = ref (length !sum) in
    while !sum_len >= min_len.(!i) do
      if forest.(!i).c <> Empty then begin
        sum := concat_fast forest.(!i).c !sum;
        sum_len := !sum_len + forest.(!i).len;
        forest.(!i).c <- Empty;
      end;
      incr i
    done;
    decr i;
    forest.(!i).c <- !sum;
    forest.(!i).len <- !sum_len

  let concat_forest forest =
    Array.fold_left (fun s x -> concat_fast x.c s) Empty forest

  let rec balance_insert rope len forest = match rope with
    | Empty -> ()
    | Leaf _ -> add_forest forest rope len
    | Concat (l, cl, r, cr, h) when h >= max_height || len < min_len.(h) ->
      balance_insert l cl forest;
      balance_insert r cr forest
    | Concat _ as x -> add_forest forest x len (* function or balanced *)

  let balance r =
    match r with
    | Empty -> Empty
    | Leaf _ -> r
    | Concat _ ->
      let forest = Array.init max_height (fun _ -> {c = Empty; len = 0}) in
      balance_insert r (length r) forest;
      concat_forest forest

  let bal_if_needed l r =
    let r = make_concat l r in
    if height r < max_height then r else balance r

  let concat_str l = function
    | Empty | Concat _ -> assert false
    | Leaf rs as r ->
      let lenr = STRING.length rs in
      match l with
      | Empty -> r
      | Leaf ls ->
        let slen = lenr + STRING.length ls in
        if slen <= leaf_size then Leaf (str_append ls rs)
        else make_concat l r (* height = 1 *)
      | Concat (ll, cll, Leaf lrs, clr, h) ->
        let slen = clr + lenr in
        if clr + lenr <= leaf_size then
          Concat (ll, cll, Leaf (str_append lrs rs), slen, h)
        else
          bal_if_needed l r
      | Concat _ -> bal_if_needed l r

  let append_char c r = concat_str r (Leaf (STRING.make 1 c))

  let concat l = function
    | Empty -> l
    | Leaf _ as r -> concat_str l r
    | Concat (Leaf rls, rlc, rr, rc, h) as r -> (
        match l with
        | Empty -> r
        | Concat _ -> bal_if_needed l r
        | Leaf ls ->
          let slen = rlc + STRING.length ls in
          if slen <= leaf_size then
            Concat (Leaf (str_append ls rls), slen, rr, rc, h)
          else
            bal_if_needed l r
      )
    | Concat _ as r -> (
        match l with
        | Empty -> r
        | Leaf _ | Concat _ -> bal_if_needed l r
      )

  let prepend_char c r = concat (Leaf (STRING.make 1 c)) r

  let rec get t i =
    match t with
    | Empty -> raise Out_of_bounds
    | Leaf s ->
      if i >= 0 && i < STRING.length s then STRING.unsafe_get s i
      else raise Out_of_bounds
    | Concat (l, cl, r, _cr, _) ->
      if i < cl then get l i
      else get r (i - cl)

  let rec set t i x =
    match t with
    | Empty ->
      raise Out_of_bounds
    | Leaf s ->
      if i >= 0 && i < STRING.length s then (
        let s = STRING.copy s in
        STRING.unsafe_set s i x;
        Leaf s
      ) else raise Out_of_bounds
    | Concat (l, cl, r, _cr, _) ->
      if i < cl then concat (set l i x) r
      else concat l (set r (i - cl) x)

  let at = get

  let rec modify t i f =
    match t with
    | Empty ->
      raise Out_of_bounds
    | Leaf s ->
      if i >= 0 && i < STRING.length s then (
        let s = STRING.copy s in
        STRING.unsafe_set s i (f (STRING.unsafe_get s i));
        Leaf s
      ) else raise Out_of_bounds
    | Concat (l, cl, r, _cr, _) ->
      if i < cl then concat (modify l i f) r
      else concat l (modify r (i - cl) f)

  let of_string s =
    if STRING.length s = 0 then Empty
    else
      let rec loop r s len i =
        if i < len then (* len - i > 0, thus Leaf "" can't happen *)
          loop (concat r (Leaf (STRING.sub s i (BatInt.min (len - i) leaf_size))))
            s len (i + leaf_size)
        else
          r in
      loop Empty s (STRING.length s) 0

  let rec make len c =
    let rec concatloop len i r =
      if i <= len then
        concatloop len (i * 2) (concat r r)
      else r in
    if len = 0 then Empty
    else if len <= leaf_size then Leaf (STRING.make len c)
    else
      let rope = concatloop len 2 (of_string (STRING.make 1 c)) in
      concat rope (make (len - length rope) c)

  (* overridden argument order below *)
  let rec sub start len = function
    | Empty ->
      if start <> 0 || len <> 0 then raise Out_of_bounds else Empty
    | Leaf s ->
      if len > 0 then (* Leaf "" cannot happen *)
        (try Leaf (STRING.sub s start len) with _ -> raise Out_of_bounds)
      else if len < 0 || start < 0 || start > STRING.length s then
        raise Out_of_bounds
      else Empty
    | Concat (l, cl, r, cr, _) ->
      if start < 0 || len < 0 || start + len > cl + cr then raise Out_of_bounds;
      let left =
        if start = 0 then
          if len >= cl then
            l
          else sub 0 len l
        else if start > cl then Empty
        else if start + len >= cl then
          sub start (cl - start) l
        else sub start len l in
      let right =
        if start <= cl then
          let upto = start + len in
          if upto = cl + cr then r
          else if upto < cl then Empty
          else sub 0 (upto - cl) r
        else sub (start - cl) len r in
      concat left right

  (* change argument order on Vect.sub *)
  let sub v s l = sub s l v

  let insert start rope r =
    concat (concat (sub r 0 start) rope) (sub r start (length r - start))

  let remove start len r =
    concat (sub r 0 start) (sub r (start + len) (length r - start - len))

  let to_string r =
    let rec strings l = function
      | Empty -> l
      | Leaf s -> s :: l
      | Concat (left, _, right, _, _) -> strings (strings l right) left in
    string_of_string_list (strings [] r)

  let rec iter f = function
    | Empty -> ()
    | Leaf s -> STRING.iter f s
    | Concat (l, _, r, _, _) -> iter f l; iter f r

  type 'a iter = E | C of 'a STRING.t * int * 'a t * 'a iter

  let rec cons_iter s t =
    match s with
    | Empty -> t
    | Leaf s -> C (s, 0, Empty, t)
    | Concat (l, _llen, r, _rlen, _h) -> cons_iter l (cons_iter r t)

  let rec rev_cons_iter s t =
    match s with
    | Empty -> t
    | Leaf s -> C (s, (STRING.length s - 1), Empty, t)
    | Concat (l, _, r, _, _) -> rev_cons_iter r (rev_cons_iter l t)

  let enum_next l () =
    match !l with
    | E -> raise BatEnum.No_more_elements
    | C (s, p, r, t) ->
      if p + 1 = STRING.length s then
        l := cons_iter r t
      else
        l := C (s, p + 1, r, t);
      STRING.unsafe_get s p

  let enum_backwards_next l () =
    match !l with
    | E -> raise BatEnum.No_more_elements
    | C (s, p, r, t) ->
      if p = 0 then
        l := rev_cons_iter r t
      else
        l := C (s, p - 1, r, t);
      STRING.unsafe_get s p

  let enum_count l () =
    let rec aux n = function
      | E -> n
      | C (s, p, m, t) -> aux (n + (STRING.length s - p) + length m) t
    in aux 0 !l

  let rev_enum_count l () =
    let rec aux n = function
      | E -> n
      | C (_s, p, m, t) -> aux (n + (p + 1) + length m) t
    in aux 0 !l

  let enum t =
    let rec make l =
      let l = ref l in
      let clone () = make !l in
      BatEnum.make ~next:(enum_next l) ~count:(enum_count l) ~clone
    in make (cons_iter t E)

  let backwards t =
    let rec make l =
      let l = ref l in
      let clone () = make !l in
      BatEnum.make ~next:(enum_backwards_next l) ~count:(rev_enum_count l) ~clone
    in make (rev_cons_iter t E)

  let of_enum e =
    BatEnum.fold (fun acc x -> append_char x acc) empty e

  let of_backwards e =
    BatEnum.fold (fun acc x -> prepend_char x acc) empty e

  let iteri f r =
    let rec aux f i = function
      | Empty -> ()
      | Leaf s ->
        for j = 0 to STRING.length s - 1 do
          f (i + j) (STRING.unsafe_get s j)
        done
      | Concat (l, cl, r, _, _) -> aux f i l; aux f (i + cl) r in
    aux f 0 r

  let rec rangeiter f start len = function
    | Empty -> if start <> 0 || len <> 0 then raise Out_of_bounds
    | Leaf s ->
      let n = start + len in
      let lens = STRING.length s in
      if start >= 0 && len >= 0 && n <= lens then
        for i = start to n - 1 do
          f (STRING.unsafe_get s i)
        done
      else raise Out_of_bounds
    | Concat (l, cl, r, cr, _) ->
      if start < 0 || len < 0 || start + len > cl + cr then raise Out_of_bounds;
      if start < cl then begin
        let upto = start + len in
        if upto <= cl then
          rangeiter f start len l
        else begin
          rangeiter f start (cl - start) l;
          rangeiter f 0 (upto - cl) r
        end
      end else begin
        rangeiter f (start - cl) len r
      end

  let rec fold f a = function
    | Empty -> a
    | Leaf s ->
      let acc = ref a in
      for i = 0 to STRING.length s - 1 do
        acc := f !acc (STRING.unsafe_get s i)
      done;
      !acc
    | Concat (l, _, r, _, _) -> fold f (fold f a l) r

  let foldi f a v =
    let rec aux i a = function
      | Empty -> a
      | Leaf s ->
        let acc = ref a in
        for j = 0 to STRING.length s - 1 do
          acc := f (i+j) !acc (STRING.unsafe_get s j)
        done;
        !acc
      | Concat (l, cl, r, _, _) -> aux (i+cl) (aux i a l) r in
    aux 0 a v

  let fold_left = fold

  let fold_right (f:'a -> 'b -> 'b) (v:'a t) (acc:'b)  : 'b =
    let rec aux (acc:'b) = function
      | Empty  -> acc
      | Leaf s -> STRING.fold_right f s acc
      | Concat (l, _, r, _, _) -> aux (aux acc r) l
    in aux acc v

  let reduce f v =
    let acc = ref (get v 0) in
    rangeiter (fun e -> acc := f !acc e) 1 (length v - 1) v;
    !acc

  let of_array a = of_string (STRING.of_enum (BatArray.enum a))
  let to_array t = BatArray.of_enum (enum t)
  let of_container = of_string
  let to_container = to_string
  let append = append_char
  let prepend = prepend_char

  let rec map f = function
    | Empty -> Empty
    | Leaf a -> Leaf (STRING.map f a)
    | Concat (l, cl, r, cr, h) ->
      let l = map f l in
      let r = map f r in
      Concat (l, cl, r, cr, h)

  let mapi f v =
    let off = ref 0 in
    map (fun x -> f (BatRef.post_incr off) x) v

  let rec exists f = function
    | Empty -> false
    | Leaf a ->
      let rec aux f a len i =
        (i < len)
        && (f (STRING.unsafe_get a i) || aux f a len (i + 1)) in
      aux f a (STRING.length a) 0
    | Concat (l, _, r, _, _) -> exists f l || exists f r

  (*$T exists
    exists (fun x -> true) empty = false
    exists (fun x -> false) (of_array [|0;1;2|]) = false
    exists (fun x -> x mod 2 <> 0) (of_array [|0;1;2|]) = true
    exists (fun x -> x mod 2 <> 0) (of_array [|0;2|]) = false
  *)

  let rec for_all f = function
    | Empty -> true
    | Leaf a ->
      let rec aux f a len i =
        (i >= len)
        || (f (STRING.unsafe_get a i) && aux f a len (i + 1)) in
      aux f a (STRING.length a) 0
    | Concat (l, _, r, _, _) -> for_all f l && for_all f r

  (*$T for_all
    for_all (fun x -> true) empty = true
    for_all (fun x -> true) (of_array [|0;1;2|]) = true
    for_all (fun x -> x mod 2 = 0) (of_array [|0;1;2|]) = false
    for_all (fun x -> x mod 2 = 0) (of_array [|0;2|]) = true
  *)

  let rec find_opt f = function
    | Empty -> None
    | Leaf a ->
      let rec aux f a len i =
        if i >= len then None
        else begin
          let x = STRING.unsafe_get a i in
          if f x then Some x
          else aux f a len (i + 1)
        end in
      aux f a (STRING.length a) 0
    | Concat (l, _, r, _, _) ->
      begin match find_opt f l with
        | Some _ as res -> res
        | None -> find_opt f r
      end

  (*$T find_opt
    find_opt (fun x -> true) empty = None
    find_opt (fun x -> true) (of_array [|0;1;2|]) = Some 0
    find_opt (fun x -> x mod 2 <> 0) (of_array [|0;1;2|]) = Some 1
    find_opt (fun x -> x mod 2 <> 0) (of_array [|0;2|]) = None
  *)

  let find f v = match find_opt f v with
    | None -> raise Not_found
    | Some a -> a

  (*$T find
    try ignore (find (fun x -> true) empty); false with Not_found -> true
    find (fun x -> true) (of_array [|0;1;2|]) = 0
    find (fun x -> x mod 2 <> 0) (of_array [|0;1;2|]) = 1
    try ignore (find (fun x -> x mod 2 <> 0) (of_array [|0;2|])); false with Not_found -> true
  *)

  let findi f v =
    let off = ref (-1) in
    ignore (find (fun x -> let result = f x in incr off; result) v);
    !off

  let partition p v =
    fold_left (fun (yes, no) x -> if p x then (append x yes, no) else (yes, append x no)) (empty, empty) v

  let find_all p v =
    fold_left (fun acc x -> if p x then append x acc else acc) empty v

  let mem m v = try let _ = find ( ( = ) m ) v in true with Not_found -> false

  let memq m v = try let _ = find ( ( == ) m ) v in true with Not_found -> false

  let first v = get v 0
  let last v = get v (length v - 1)
  let shift v = first v, sub v 1 (length v - 1)
  let pop v = last v, sub v 0 (length v - 1)

  let to_list r =
    let rec aux acc = function
      | Empty -> acc
      | Leaf a -> STRING.fold_right (fun x l -> x :: l) a acc
      | Concat (l, _, r, _, _) -> aux (aux acc r) l in
    aux [] r

  let filter = find_all

  let filter_map f =
    fold (fun acc x ->
      match f x with
      | None   -> acc
      | Some v -> append v acc
    ) Empty

  let destructive_set v i x =
    let rec aux i = function
      | Empty  -> raise Out_of_bounds
      | Leaf s ->
        if i >= 0 && i < STRING.length s then
          STRING.unsafe_set s i x
        else raise Out_of_bounds
      | Concat (l, cl, r, _cr, _) ->
        if i < cl then aux i l
        else aux (i - cl) r in
    aux i v

  let of_list l = of_array (Array.of_list l)

  let init n f =
    if n < 0 || n > max_length then invalid_arg "Vect.init";
    (* Create as many arrays as we need to store all the data *)
    let rec aux off acc =
      if off >= n then acc
      else
        let len = min leaf_size (n - off) in
        let arr = Array.init len (fun i -> f ( off + i ) ) in
        aux (off + len) (arr::acc) in
    let base = aux 0 [] in
    (* And then concatenate them *)
    List.fold_left (fun (acc:'a t) (array:'a array) -> concat (of_array array) acc) (empty:'a t) (base:'a array list)

  let print ?(first="[|") ?(last="|]") ?(sep="; ") print_a out t =
    BatEnum.print ~first ~last ~sep print_a out (enum t)

  module Labels =
  struct
    let init n ~f      = init n f
    let get v ~n       = get v n
    let at v ~n        = at v n
    let set v ~n ~elem = set v n elem
    let modify v ~n ~f = modify v n f
    let sub v ~m ~n    = sub v m n
    let insert ~n ~sub = insert n sub
    let remove ~m ~n   = remove m n
    let iter ~f        = iter f
    let iteri ~f       = iteri f
    let map ~f         = map f
    let mapi ~f        = mapi f
    let for_all ~f     = for_all f
    let exists ~f      = exists f
    let find ~f        = find f
    let mem ~elem      = mem elem
    let memq ~elem     = memq elem
    let findi ~f       = findi f
    let filter ~f      = filter f
    let filter_map ~f  = filter_map f
    let find_all ~f    = find_all f
    let partition ~f   = partition f
    let destructive_set v ~n ~elem = destructive_set v n elem
    let rangeiter ~f ~m ~n    = rangeiter f m n
    let fold_left ~f ~init    = fold_left f init
    let fold ~f ~init         = fold f init
    let reduce ~f             = reduce f
    let fold_right ~f v ~init = fold_right f v init
    let foldi ~f ~init        = foldi f init
  end

(*$inject end *)
end
OCaml

Innovation. Community. Security.