package batteries

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file batText.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
(*
 * BatText - Unicode text library
 *
 * Copyright (C) 2012 The Batteries Included Team
 * Copyright (C) 2007 Mauricio Fernandez <mfp@acm.org>
 * Copyright (C) 2008 Edgar Friendly <thelema314@gmail.com>
 * Copyright (C) 2008 David Teller, LIFO, Universite d'Orleans
 *
 * Rope: Rope: an implementation of the data structure described in
 *
 * Boehm, H., Atkinson, R., and Plass, M. 1995. Ropes: an alternative to
 * strings. Softw. Pract. Exper. 25, 12 (Dec. 1995), 1315-1330.
 *
 * Motivated by Luca de Alfaro's extensible array implementation Vec.
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version,
 * with the special exception on linking described in file LICENSE.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *)



module UTF8 = BatUTF8
module UChar = BatUChar

(**Low-level optimization*)
let int_max (x:int) (y:int) = if x < y then y else x
let int_min (x:int) (y:int) = if x < y then x else y

let splice s1 off len s2 =
  let len1 = String.length s1 and len2 = String.length s2           in
  let off  = if off < 0 then len1 + off - 1 else off  in
  let len  = int_min (len1 - off) len                 in
  let out_len = len1 - len + len2                     in
  let s = Bytes.create out_len in
  Bytes.blit_string s1 0 s 0 off; (* s1 before splice point *)
  Bytes.blit_string s2 0 s off len2; (* s2 at splice point *)
  Bytes.blit_string (* s1 after off+len *)
    s1 (off+len) s (off+len2) (len1 - (off+len));
  Bytes.unsafe_to_string s

type t =
    Empty                             (**An empty rope*)
  | Concat of t * int * t * int * int (**[Concat l ls r rs h] is the concatenation of
                                         ropes [l] and [r], where [ls] is the total
                                         length of [l], [rs] is the length of [r]
                                         and [h] is the height of the node in the
                                         tree, used for rebalancing. *)
  | Leaf of int * UTF8.t              (**[Leaf l t] is string [t] with length [l],
                                         measured in number of Unicode characters.*)

type forest_element = { mutable c : t; mutable len : int }

let str_append = (^)
let empty_str = ""
let string_of_string_list l = String.concat empty_str l



(* 48 limits max rope size to 220GB on 64 bit,
 * ~ 700MB on 32bit (length fields overflow after that) *)
let max_height = 48

(* actual size will be that plus 1 word header;
 * the code assumes it's an even num.
 * 256 gives up to a 50% overhead in the worst case (all leaf nodes near
 * half-filled *)
let leaf_size = 256 (* utf-8 characters, not bytes *)


(* MAIN CODE STARTS HERE *)

exception Out_of_bounds

let empty = Empty

(* by construction, there cannot be Empty or Leaf "" leaves *)
let is_empty = function Empty -> true | _ -> false

let height = function
  | Empty | Leaf _ -> 0
  | Concat(_,_,_,_,h) -> h

let length = function
  | Empty -> 0
  | Leaf (l,_) -> l
  | Concat(_,cl,_,cr,_) -> cl + cr

let make_concat l r =
  let hl = height l and hr = height r in
  let cl = length l and cr = length r in
  Concat(l, cl, r, cr, if hl >= hr then hl + 1 else hr + 1)

let min_len =
  let fib_tbl = Array.make max_height 0 in
  let rec fib n = match fib_tbl.(n) with
    | 0 ->
      let last = fib (n - 1) and prev = fib (n - 2) in
      let r = last + prev in
      let r = if r > last then r else last in (* check overflow *)
      fib_tbl.(n) <- r; r
    | n -> n
  in
  fib_tbl.(0) <- leaf_size + 1; fib_tbl.(1) <- 3 * leaf_size / 2 + 1;
  Array.init max_height (fun i -> if i = 0 then 1 else fib (i - 1))

let max_length = min_len.(Array.length min_len - 1)

let concat_fast l r = match l with
  | Empty -> r
  | Leaf _ | Concat(_,_,_,_,_) ->
    match r with
    | Empty -> l
    | Leaf _ | Concat(_,_,_,_,_) -> make_concat l r

(* based on Hans-J. Boehm's *)
let add_forest forest rope len =
  let i = ref 0 in
  let sum = ref empty in
  while len > min_len.(!i+1) do
    if forest.(!i).c <> Empty then begin
      sum := concat_fast forest.(!i).c !sum;
      forest.(!i).c <- Empty
    end;
    incr i
  done;
  sum := concat_fast !sum rope;
  let sum_len = ref (length !sum) in
  while !sum_len >= min_len.(!i) do
    if forest.(!i).c <> Empty then begin
      sum := concat_fast forest.(!i).c !sum;
      sum_len := !sum_len + forest.(!i).len;
      forest.(!i).c <- Empty;
    end;
    incr i
  done;
  decr i;
  forest.(!i).c <- !sum;
  forest.(!i).len <- !sum_len

let concat_forest forest =
  Array.fold_left (fun s x -> concat_fast x.c s) Empty forest

let rec balance_insert rope len forest = match rope with
  | Empty -> ()
  | Leaf _ -> add_forest forest rope len
  | Concat(l,cl,r,cr,h) when h >= max_height || len < min_len.(h) ->
    balance_insert l cl forest;
    balance_insert r cr forest
  | x -> add_forest forest x len (* function or balanced *)

let balance r =
  match r with
  | Empty | Leaf _ -> r
  | _ ->
    let forest = Array.init max_height (fun _ -> {c = Empty; len = 0}) in
    balance_insert r (length r) forest;
    concat_forest forest

let bal_if_needed l r =
  let r = make_concat l r in
  if height r < max_height then r else balance r

let concat_str l = function
  | Empty | Concat(_,_,_,_,_) -> invalid_arg "Text.concat_str"
  | Leaf (lenr, rs) as r ->
    match l with
    | Empty -> r
    | Leaf (lenl, ls) ->
      let slen = lenr + lenl in
      if slen <= leaf_size then Leaf ((lenl+lenr),(str_append ls rs))
      else make_concat l r (* height = 1 *)
    | Concat(ll, cll, Leaf (lenlr ,lrs), clr, h) ->
      let slen = clr + lenr in
      if clr + lenr <= leaf_size then
        Concat(ll, cll, Leaf ((lenlr + lenr),(str_append lrs rs)), slen, h)
      else
        bal_if_needed l r
    | _ -> bal_if_needed l r

let append_char c r = concat_str r (Leaf (1, (UTF8.make 1 c)))

let append l = function
  | Empty -> l
  | Leaf _ as r -> concat_str l r
  | Concat(Leaf (lenrl,rls),rlc,rr,rc,h) as r ->
    (match l with
       Empty -> r
     | Concat(_,_,_,_,_) -> bal_if_needed l r
     | Leaf (lenl, ls) ->
       let slen = rlc + lenl in
       if slen <= leaf_size then
         Concat(Leaf((lenrl+lenl),(str_append ls rls)), slen, rr, rc, h)
       else
         bal_if_needed l r)
  | r -> (match l with Empty -> r | _ -> bal_if_needed l r)

let ( ^^^ ) = append

let prepend_char c r = append (Leaf (1,(UTF8.make 1 c))) r

let get r i =
  let rec aux i = function
      Empty -> raise Out_of_bounds
    | Leaf (lens, s) ->
      if i >= 0 && i < lens then UTF8.get s i
      else raise Out_of_bounds
    | Concat (l, cl, r, _cr, _) ->
      if i < cl then aux i l
      else aux (i - cl) r
  in
  aux i r

let copy_set us cpos c =
  let ipos = UTF8.ByteIndex.of_char_idx us cpos in
  let jpos = UTF8.ByteIndex.next us ipos in
  let i = UTF8.ByteIndex.to_int ipos
  and j = UTF8.ByteIndex.to_int jpos in
  splice us i (j-i) (UTF8.of_char c)

let set r i v =
  let rec aux i = function
      Empty -> raise Out_of_bounds
    | Leaf (lens, s) ->
      if i >= 0 && i < lens then
        let s = copy_set s i v in
        Leaf (lens, s)
      else raise Out_of_bounds
    | Concat(l, cl, r, _cr, _) ->
      if i < cl then append (aux i l) r
      else append l (aux (i - cl) r)
  in
  aux i r


module Iter = struct

  (* Iterators are used for iterating efficiently over multiple ropes
     at the same time *)

  type iterator = {
    (* Current leaf in which the iterator is *)
    mutable leaf : UTF8.t;
    (* Current byte position of the iterator *)
    mutable idx : UTF8.ByteIndex.b_idx;
    (* Ropes not yet visited *)
    mutable rest : t list;
  }

  let copy i = {i with idx=i.idx; }

  (* Initial iterator state: *)
  let make rope = { leaf = UTF8.empty;
                    idx = UTF8.ByteIndex.first;
                    rest = if rope = Empty then [] else [rope] }

  let rec next_leaf = function
    | Empty :: l ->
      next_leaf l
    | Leaf(_len, str) :: l ->
      Some(str, l)
    | Concat(left, _left_len, right, _right_len, _height) :: l ->
      next_leaf (left :: right :: l)
    | [] ->
      None

  (* Advance the iterator to the next position, and return current
     character: *)
  let next iter =
    if UTF8.ByteIndex.at_end iter.leaf iter.idx then
      (* We are at the end of the current leaf, find another one: *)
      match next_leaf iter.rest with
      | None ->
        None
      | Some(leaf, rest) ->
        iter.leaf <- leaf;
        iter.idx <- UTF8.ByteIndex.next leaf UTF8.ByteIndex.first;
        iter.rest <- rest;
        Some(UTF8.ByteIndex.look leaf UTF8.ByteIndex.first)
    else begin
      (* Just advance in the current leaf: *)
      let ch = UTF8.ByteIndex.look iter.leaf iter.idx in
      iter.idx <- UTF8.ByteIndex.next iter.leaf iter.idx;
      Some ch
    end

  (* Same thing but map leafs: *)
  let next_map f iter =
    if UTF8.ByteIndex.at_end iter.leaf iter.idx then
      match next_leaf iter.rest with
      | None ->
        None
      | Some(leaf, rest) ->
        let leaf = f leaf in
        iter.leaf <- leaf;
        iter.idx <- UTF8.ByteIndex.next leaf UTF8.ByteIndex.first;
        iter.rest <- rest;
        Some(UTF8.ByteIndex.look leaf UTF8.ByteIndex.first)
    else begin
      let ch = UTF8.ByteIndex.look iter.leaf iter.idx in
      iter.idx <- UTF8.ByteIndex.next iter.leaf iter.idx;
      Some ch
    end

  (* Same thing but in reverse order: *)

  let rec prev_leaf = function
    | Empty :: l ->
      prev_leaf l
    | Leaf(_len, str) :: l ->
      Some(str, l)
    | Concat(left, _left_len, right, _right_len, _height) :: l ->
      prev_leaf (right :: left :: l)
    | [] ->
      None

  let prev iter =
    if iter.idx = UTF8.ByteIndex.first then
      match prev_leaf iter.rest with
      | None ->
        None
      | Some(leaf, rest) ->
        iter.leaf <- leaf;
        iter.idx <- UTF8.ByteIndex.last leaf;
        iter.rest <- rest;
        Some(UTF8.ByteIndex.look leaf iter.idx)
    else begin
      iter.idx <- UTF8.ByteIndex.prev iter.leaf iter.idx;
      Some(UTF8.ByteIndex.look iter.leaf iter.idx)
    end
end

(* Can be improved? *)
let compare a b =
  let ia = Iter.make a and ib = Iter.make b in
  let rec loop _ =
    match Iter.next ia, Iter.next ib with
    | None, None -> 0
    | None, _ -> -1
    | _, None -> 1
    | Some ca, Some cb ->
      match UChar.compare ca cb with
      | 0 -> loop ()
      | n -> n
  in
  loop ()

let of_ustring ustr =
  (* We need fast access to raw bytes: *)
  let bytes =  ustr in
  let byte_length = String.length bytes in

  (* - [rope] is the accumulator
     - [start_byte_idx] is the byte position of the current slice
     - [current_byte_idx] is the current byte position
     - [slice_size] is the number of unicode characters contained
     between [start_byte_idx] and [current_byte_idx] *)
  let rec loop rope start_byte_idx current_byte_idx slice_size =
    if current_byte_idx = byte_length then begin

      if slice_size = 0 then
        rope
      else
        add_slice rope start_byte_idx current_byte_idx slice_size

    end else begin

      if slice_size = leaf_size then
        (* We have enough unicode characters for this slice, extract
           it and add a leaf to the rope: *)
        loop (add_slice rope start_byte_idx current_byte_idx slice_size)
          current_byte_idx current_byte_idx 0
      else
        let next_byte_idx = UTF8.next ustr current_byte_idx in
        loop rope start_byte_idx next_byte_idx (slice_size + 1)
    end
  and add_slice rope start_byte_idx end_byte_idx slice_size =
    append rope (Leaf(slice_size,
        (* This is correct, we are just extracting a
           sequence of well-formed UTF-8 encoded unicode
           characters: *)
        UTF8.of_string_unsafe
          (String.sub bytes start_byte_idx (end_byte_idx - start_byte_idx))))
  in
  loop Empty 0 0 0

let of_string s =
  (* Validate + unsafe to avoid an extra copy (it is OK because
     of_ustring do not reuse its argument in the resulting rope): *)
  UTF8.validate s;
  of_ustring (UTF8.of_string_unsafe s)

let append_us r us = append r (of_ustring us)

let rec make len c =
  let rec concatloop len i r =
    if i <= len then
      (*TODO: test for sharing among substrings *)
      concatloop len (i * 2) (append r r)
    else r
  in
  if len = 0 then Empty
  else if len <= leaf_size then Leaf (len, (UTF8.make len c))
  else
    let rope = concatloop len 2 (of_ustring (UTF8.make 1 c)) in
    append rope (make (len - length rope) c)

let of_uchar c = make 1 c
let of_char c = of_uchar (UChar.of_char c)

let sub r start len =
  let rec aux start len = function
      Empty -> if start <> 0 || len <> 0 then raise Out_of_bounds else Empty
    | Leaf (lens, s) ->
      if len < 0 || start < 0 || start + len > lens then
        raise Out_of_bounds
      else if len > 0 then (* Leaf "" cannot happen *)
        (try Leaf (len, (UTF8.sub s start len)) with _ -> raise Out_of_bounds)
      else Empty
    | Concat(l,cl,r,cr,_) ->
      if start < 0 || len < 0 || start + len > cl + cr then raise Out_of_bounds;
      let left =
        if start = 0 then
          if len >= cl then
            l
          else aux 0 len l
        else if start > cl then Empty
        else if start + len >= cl then
          aux start (cl - start) l
        else aux start len l in
      let right =
        if start <= cl then
          let upto = start + len in
          if upto = cl + cr then r
          else if upto < cl then Empty
          else aux 0 (upto - cl) r
        else aux (start - cl) len r
      in
      append left right
  in aux start len r

let insert start rope r =
  append (append (sub r 0 start) rope) (sub r start (length r - start))

let remove start len r =
  append (sub r 0 start) (sub r (start + len) (length r - start - len))

let to_ustring r =
  let rec strings l = function
    | Empty -> l
    | Leaf (_,s) -> s :: l
    | Concat(left,_,right,_,_) -> strings (strings l right) left
  in
  string_of_string_list (strings [] r)

let rec bulk_iter f = function
  | Empty -> ()
  | Leaf (_,s) -> f s
  | Concat(l,_,r,_,_) -> bulk_iter f l; bulk_iter f r

let rec bulk_iteri ?(base=0) f = function
  | Empty -> ()
  | Leaf (_,s) -> f base s
  | Concat(l,cl,r,_,_) ->
    bulk_iteri ~base f l;
    bulk_iteri ~base:(base+cl) f r

let rec iter f = function
  | Empty -> ()
  | Leaf (_,s) -> UTF8.iter f s
  | Concat(l,_,r,_,_) -> iter f l; iter f r


let rec iteri ?(base=0) f = function
  | Empty -> ()
  | Leaf (_,s) ->
    UTF8.iteri (fun c j -> f (base + j) c) s
  | Concat(l,cl,r,_,_) -> iteri ~base f l; iteri ~base:(base + cl) f r


let rec bulk_iteri_backwards ~top f = function
  | Empty -> ()
  | Leaf (_lens,s) -> f top s
  | Concat(l,_,r,cr,_) ->
    bulk_iteri_backwards ~top f r;
    bulk_iteri_backwards ~top:(top-cr) f l

let rec range_iter f start len = function
  | Empty -> if start <> 0 || len <> 0 then raise Out_of_bounds
  | Leaf (lens, s) ->
    let n = start + len in
    if start >= 0 && len >= 0 && n <= lens then
      for i = start to n - 1 do
        f (UTF8.look s (UTF8.nth s i)) (*TODO: use enum to iterate efficiently*)
      done
    else raise Out_of_bounds
  | Concat(l,cl,r,cr,_) ->
    if start < 0 || len < 0 || start + len > cl + cr then raise Out_of_bounds;
    if start < cl then begin
      let upto = start + len in
      if upto <= cl then
        range_iter f start len l
      else begin
        range_iter f start (cl - start) l;
        range_iter f 0 (upto - cl) r
      end
    end else begin
      range_iter f (start - cl) len r
    end

let rec range_iteri f ?(base = 0) start len = function
  | Empty -> if start <> 0 || len <> 0 then raise Out_of_bounds
  | Leaf (lens, s) ->
    let n = start + len in
    if start >= 0 && len >= 0 && n <= lens then
      for i = start to n - 1 do
        f (base+i) (UTF8.look s (UTF8.nth s i))
        (*TODO: use enum to iterate efficiently*)
      done
    else raise Out_of_bounds
  | Concat(l,cl,r,cr,_) ->
    if start < 0 || len < 0 || start + len > cl + cr then raise Out_of_bounds;
    if start < cl then begin
      let upto = start + len in
      if upto <= cl then
        range_iteri f ~base start len l
      else begin
        range_iteri f ~base start (cl - start) l;
        range_iteri f ~base:(base + cl - start) 0 (upto - cl) r
      end
    end else begin
      range_iteri f ~base (start - cl) len r
    end

let rec fold f a = function
  | Empty -> a
  | Leaf (_,s) ->
    UTF8.fold (fun a c -> f a c) a s
  | Concat(l,_,r,_,_) -> fold f (fold f a l) r

let rec bulk_fold f a = function
  | Empty                  -> a
  | Leaf   (_, s)          -> f a s
  | Concat (l, _, r, _, _) -> bulk_fold f (bulk_fold f a l) r

let to_string t =
  (* We use unsafe version to avoid the copy of the non-reachable
     temporary string: *)
  UTF8.to_string_unsafe (to_ustring t)

let init len f = Leaf (len, UTF8.init len f)

let of_string_unsafe s = of_ustring (UTF8.of_string_unsafe s)
let of_int i = of_string_unsafe (string_of_int i)
let of_float f = of_string_unsafe (string_of_float f)

let to_int r = int_of_string (UTF8.to_string_unsafe (to_ustring r))
let to_float r = float_of_string (UTF8.to_string_unsafe (to_ustring r))

let bulk_map f r = bulk_fold (fun acc s -> append_us acc (f s)) Empty r
let map f r = bulk_map (fun s -> UTF8.map f s) r

let bulk_filter_map f r = bulk_fold (fun acc s -> match f s with None -> acc | Some r -> append_us acc r) Empty r
let filter_map f r = bulk_map (UTF8.filter_map f) r

let filter f r = bulk_map (UTF8.filter f) r

let left r len  = sub r 0 len
let right r len = let rlen = length r in sub r (rlen - len) len
let head = left
let tail r pos = sub r pos (length r - pos)

let index r u =
  let i = Iter.make r in
  let rec loop n =
    match Iter.next i with
    | None  -> raise Not_found
    | Some u' ->
      if UChar.eq u u' then n else
        loop (n + 1)
  in
  loop 0

let enum r =
  let next iter () = match Iter.next iter with
    | None -> raise BatEnum.No_more_elements
    | Some x -> x
  and count iter () =
    let n = ref 0 in
    let iter' = Iter.copy iter in
    begin try
      while true do match Iter.next iter' with None -> raise Exit | Some _ -> incr n
    done with Exit -> ()
    end;
    !n
  in
  let rec make iter =
    BatEnum.make ~next:(next iter) ~clone:(clone iter) ~count:(count iter)
  and clone iter () = make (Iter.copy iter)
  in
  make (Iter.make r)

let backwards r =
  let next iter () = match Iter.prev iter with
    | None -> raise BatEnum.No_more_elements
    | Some x -> x
  and count iter () =
    let n = ref 0 in
    let iter' = Iter.copy iter in
    begin try
      while true do match Iter.prev iter' with None -> raise Exit | Some _ -> incr n
    done with Exit -> ()
    end;
    !n
  in
  let rec make iter =
    BatEnum.make ~next:(next iter) ~clone:(clone iter) ~count:(count iter)
  and clone iter () = make (Iter.copy iter)
  in
  make (Iter.make r)

let of_enum e =
  let size = BatEnum.count e in
  init size
    (fun _i ->
       try BatEnum.get_exn e
       with BatEnum.No_more_elements -> assert false)

(*$Q enum; of_enum
  (Q.array Q.small_int) (fun a -> \
    let s = BatUTF8.init (Array.length a) (fun i -> BatUChar.chr (Array.get a i)) in \
    s = (of_string s |> enum |> of_enum |> to_string))
*)

module Return = BatReturn

let index_from r base item =
  Return.with_label (fun label ->
    let index_aux i c =
      if c = item then Return.return label i
    in
    range_iteri index_aux base (length r - base) r;
    raise Not_found)
(*$T index_from
  index_from (of_string "batteries") 0 (BatUChar.of_char 't') = 2
  index_from (of_string "batteries") 3 (BatUChar.of_char 't') = 3
  Result.(catch (index_from (of_string "batteries") 4) (BatUChar.of_char 't') \
            |> is_exn Not_found)
  Result.(catch (index_from (of_string "batteries") 20) (BatUChar.of_char 't') \
            |> is_exn Out_of_bounds)
*)

let rindex r char =
  Return.with_label (fun label ->
    let index_aux i us =
      try
        let p = UTF8.rindex us char in
        Return.return label (p+i)
      with Not_found -> ()
    in
    bulk_iteri_backwards ~top:(length r - 1) index_aux r;
    raise Not_found)
(*$T rindex
  rindex (of_string "batteries") (BatUChar.of_char 't') = 3
  rindex (of_string "batt") (BatUChar.of_char 't') = 3
  try ignore (rindex (of_string "batteries") (BatUChar.of_char 'y')); false with Not_found -> true
*)

let rindex_from r start char =
  let rsub = left r (start + 1) in
  (rindex rsub char)
(*$T rindex_from
  let s = "batteries" in rindex_from (of_string s) (String.length s - 1) (BatUChar.of_char 't') = 3
  let s = "batteries" in rindex_from (of_string s) 2 (BatUChar.of_char 't') = 2
  try ignore (rindex_from (of_string "batteries") 4 (BatUChar.of_char 'y')); false with Not_found -> true
  try ignore (rindex_from (of_string "batteries") 20 (BatUChar.of_char 'y')); false with Out_of_bounds -> true
*)

let contains r char =
  Return.with_label (fun label ->
    let contains_aux us =
      if UTF8.contains us char then Return.return label true
    in
    bulk_iter contains_aux r;
    false)
(*$T contains
  contains empty (BatUChar.of_char 't') = false
  contains (of_string "") (BatUChar.of_char 't') = false
  contains (of_string "batteries") (BatUChar.of_char 't') = true
  contains (of_string "batteries") (BatUChar.of_char 'y') = false
*)

let contains_from r start char =
  Return.with_label (fun label ->
    let contains_aux c = if c = char then Return.return label true in
    range_iter contains_aux start (length r - start) r;
    false)
(*$T contains_from
  try ignore (contains_from empty 4 (BatUChar.of_char 't')); false with Out_of_bounds -> true
  try ignore (contains_from (of_string "") 4 (BatUChar.of_char 't')); false with Out_of_bounds -> true
  contains_from (of_string "batteries") 4 (BatUChar.of_char 't') = false
  contains_from (of_string "batteries") 3 (BatUChar.of_char 't') = true
  contains_from (of_string "batteries") 2 (BatUChar.of_char 't') = true
  contains_from (of_string "batteries") 1 (BatUChar.of_char 't') = true
  contains_from (of_string "batteries") 4 (BatUChar.of_char 'y') = false
*)

let rcontains_from r stop char =
  Return.with_label (fun label ->
    let contains_aux c = if c = char then Return.return label true in
    range_iter contains_aux 0 (stop + 1) r;
    false)
(*$T rcontains_from
  try ignore (rcontains_from empty 4 (BatUChar.of_char 't')); false with Out_of_bounds -> true
  try ignore (rcontains_from (of_string "") 4 (BatUChar.of_char 't')); false with Out_of_bounds -> true
  rcontains_from (of_string "batteries") 4 (BatUChar.of_char 't') = true
  rcontains_from (of_string "batteries") 3 (BatUChar.of_char 't') = true
  rcontains_from (of_string "batteries") 2 (BatUChar.of_char 't') = true
  rcontains_from (of_string "batteries") 1 (BatUChar.of_char 't') = false
  rcontains_from (of_string "batteries") 4 (BatUChar.of_char 'y') = false
*)

let equal r1 r2 = compare r1 r2 = 0

let starts_with r prefix =
  let ir = Iter.make r and iprefix = Iter.make prefix in
  let rec loop _ =
    match Iter.next iprefix with
    | None -> true
    | Some ch1 ->
      match Iter.next ir with
      | None -> false
      | Some ch2 -> UChar.compare ch1 ch2 = 0 && loop ()
  in
  loop ()

let ends_with r suffix =
  let ir = Iter.make r and isuffix = Iter.make suffix in
  let rec loop _ =
    match Iter.prev isuffix with
    | None -> true
    | Some ch1 ->
      match Iter.prev ir with
      | None -> false
      | Some ch2 -> UChar.compare ch1 ch2 = 0 && loop ()
  in
  loop ()

(** find [sub] within [rop] or raises Not_found *)
let find_from rop ofs sub_rop =
  let len = length rop in
  if ofs < 0 || ofs > len then raise Out_of_bounds;
  let matchlen = length sub_rop in
  let sub_rop = to_ustring sub_rop in
  let check_at pos = sub_rop = (to_ustring (sub rop pos matchlen)) in
  (* TODO: inefficient *)
  Return.with_label (fun label ->
    for i = ofs to len - matchlen do
      if check_at i then Return.return label i
    done;
    raise Not_found)
(*$T find_from
  find_from (of_string "foobarbaz") 4 (of_string "ba") = 6
  find_from (of_string "foobarbaz") 7 (of_string "") = 7
  Result.(catch (find_from (of_string "") 0) (of_string "a") |> is_exn Not_found)
  let foo = of_string "foo" in Result.(catch (find_from foo 2) foo |> is_exn Not_found)
  let foo = of_string "foo" in Result.(catch (find_from foo 3) foo |> is_exn Not_found)
  let foo = of_string "foo" in Result.(catch (find_from foo 4) foo |> is_exn Out_of_bounds)
  let foo = of_string "foo" in Result.(catch (find_from foo (-1)) foo |> is_exn Out_of_bounds)
*)

let find rop sub = find_from rop 0 sub

let rfind_from rop suf sub_rop =
  if suf + 1 < 0 || suf + 1 > length rop then raise Out_of_bounds;
  let matchlen = length sub_rop in
  let sub_rop = to_ustring sub_rop in
  let check_at pos = sub_rop = (to_ustring (sub rop pos matchlen)) in
  (* TODO: inefficient *)
  Return.with_label (fun label ->
    for i = suf - matchlen + 1 downto 0 do
      if check_at i then Return.return label i
    done;
    raise Not_found)
(*$T rfind_from
  rfind_from (of_string "foobarbaz") 5 (of_string "ba") = 3
  rfind_from (of_string "foobarbaz") 7 (of_string "ba") = 6
  rfind_from (of_string "foobarbaz") 6 (of_string "ba") = 3
  rfind_from (of_string "foobarbaz") 7 (of_string "") = 8
  Result.(catch (rfind_from (of_string "") 3) empty |> is_exn Out_of_bounds)
  Result.(catch (rfind_from (of_string "") (-1)) (of_string "a") |> is_exn Not_found)
  Result.(catch (rfind_from (of_string "foobarbaz") 2) (of_string "ba") |> is_exn Not_found)
  Result.(catch (rfind_from (of_string "foo") 3) (of_string "foo") |> is_exn Out_of_bounds)
  Result.(catch (rfind_from (of_string "foo") (-2)) (of_string "foo") |> is_exn Out_of_bounds)
*)

let rfind rop sub = rfind_from rop (length rop - 1) sub

let exists r_str r_sub = try ignore(find r_str r_sub); true with Not_found -> false

let strip_default_chars = List.map UChar.of_char [' ';'\t';'\r';'\n']
let strip ?(chars=strip_default_chars) rope =
  let rec strip_left n iter =
    match Iter.next iter with
    | None ->
      Empty
    | Some ch when List.mem ch chars ->
      strip_left (n + 1) iter
    | _ ->
      sub rope n (strip_right (length rope - n) (Iter.make rope))
  and strip_right n iter =
    match Iter.prev iter with
    | None ->
      assert false
    | Some ch when List.mem ch chars ->
      strip_right (n - 1) iter
    | _ ->
      n
  in
  strip_left 0 (Iter.make rope)

let lchop = function
  | Empty -> Empty
  | str -> sub str 1 (length str - 1)
let rchop = function
  | Empty -> Empty
  | str -> sub str 0 (length str - 1)


let of_list l =
  let e = ref l in
  let get_leaf () =
    Return.label
      (fun label ->
        let b = Buffer.create 256 in
        for _i = 1 to 256 do
          match !e with
            []   -> Return.return label (false, UTF8.of_string_unsafe (Buffer.contents b))
          | c :: rest  -> Buffer.add_string b (UTF8.to_string_unsafe (UTF8.of_char c)); e := rest
        done;
        (true, UTF8.of_string_unsafe (Buffer.contents b) ))
  in
  let rec loop r = (* concat 256 characters at a time *)
    match get_leaf () with
      (true,  us) -> loop     (append r (of_ustring us))
    | (false, us) -> append r (of_ustring us)
  in
  loop Empty

let splice r start len new_sub =
  let start = if start >= 0 then start else (length r) + start in
  append (left r start)
    (append new_sub (tail r (start+len)))

let fill r start len char =
  splice r start len (make len char)

let blit rsrc offsrc rdst offdst len =
  splice rdst offdst len (sub rsrc offsrc len)

let concat sep r_list =
  match r_list with
    | [] ->
        empty
    | h :: t ->
        List.fold_left (fun r1 r2 -> append r1 (append sep r2)) h t

(**T concat
   Text.concat (Text.of_string "xyz") [] = Text.empty
 **)

let escaped r = bulk_map UTF8.escaped r

let replace_chars f r = fold (fun acc s -> append_us acc (f s)) Empty r

let split r sep =
  let i = find r sep in
  head r i, tail r (i+length sep)
(*$T split
  split (of_string "OCaml, the coolest FP language.") (of_char ' ') = \
    (of_string "OCaml,", of_string "the coolest FP language.")
  split (of_string "OCaml, the coolest FP language.") (of_char '.') = \
    (of_string "OCaml, the coolest FP language", empty)
  Result.(catch (split (of_string "OCaml, the coolest FP language.")) \
        (of_char '!') |> is_exn Not_found)
*)

let rsplit (r:t) sep =
  let i = rfind r sep in
  head r i, tail r (i+length sep)
(*$T rsplit
  rsplit (of_string "OCaml, the coolest FP language.") (of_char ' ') = \
    (of_string "OCaml, the coolest FP", of_string "language.")
  rsplit (of_string "OCaml, the coolest FP language.") (of_char 'O') = \
    (empty, of_string "Caml, the coolest FP language.")
  Result.(catch (rsplit (of_string "OCaml, the coolest FP language.")) \
        (of_char '!') |> is_exn Not_found)
*)

(** An implementation of [nsplit] in one pass.

    This implementation traverses the string backwards, hence building
    the list of substrings from the end to the beginning, so as to
    avoid a call to [List.rev].  *)
let nsplit str sep =
  if is_empty str then []
  else if is_empty sep then invalid_arg "Text.nsplit: empty sep not allowed"
  else
    (* str is not empty *)
    let seplen = length sep in
    let rec aux acc ofs =
      if ofs >= 0 then (
        match
          try Some (rfind_from str ofs sep)
          with Not_found -> None
        with
        | Some idx -> (* sep found *)
          let end_of_sep = idx + seplen - 1 in
          if end_of_sep = ofs (* sep at end of str *)
          then aux (empty::acc) (idx - 1)
          else
            let token = sub str (end_of_sep + 1) (ofs - end_of_sep) in
            aux (token::acc) (idx - 1)
        | None -> (* sep NOT found *)
          (sub str 0 (ofs + 1))::acc
      )
      else
        (* Negative ofs: the last sep started at the beginning of str *)
        empty::acc
    in
    aux [] (length str - 1 )

(*$T nsplit
  nsplit (of_string "OCaml, the coolest FP language.") (of_char 'o') \
    |> List.map to_string = ["OCaml, the c"; ""; "lest FP language."]
  nsplit (of_string "OCaml, the coolest FP language.") (of_char '!') \
    |> List.map to_string = ["OCaml, the coolest FP language."]
  nsplit (of_string "1,2,3") (of_string ",") \
    |> List.map to_string = ["1"; "2"; "3"]
  nsplit (of_string "a;b;c") (of_string ";") \
    |> List.map to_string = ["a"; "b"; "c"]
  nsplit (of_string "") (of_string "x") = []
  try ignore (nsplit (of_string "abc") (of_string "")); false \
    with Invalid_argument _ -> true
  nsplit (of_string "a/b/c") (of_string "/") |> List.map to_string \
    = ["a"; "b"; "c"]
  nsplit (of_string "/a/b/c//") (of_string "/") |> List.map to_string \
    = [""; "a"; "b"; "c"; ""; ""]
  nsplit (of_string "FOOaFOObFOOcFOOFOO") (of_string "FOO") |> List.map to_string \
    = [""; "a"; "b"; "c"; ""; ""]
*)

let join = concat

let slice ?(first=0) ?(last=max_int) s =
  let clip _min _max x = int_max _min (int_min _max x) in
  let i = clip 0 (length s)
      (if (first<0) then (length s) + first else first)
  and j = clip 0 (length s)
      (if (last<0) then (length s) + last else last)
  in
  if i>=j || i=length s then
    Empty
  else
    sub s i (j-i)


let replace ~str ~sub ~by =
  try
    let i = find str sub in
    (true, append (slice ~last:i str)
       (append by (slice ~first:(i+(length sub)) str)))
  with Not_found -> (false, str)


let explode r = List.rev (fold (fun a u -> u :: a) [] r)
(*$T explode
   explode (of_string "foo") = List.map UChar.of_char ['f'; 'o'; 'o']
   explode (of_string "ếẶ") = List.map UChar.chr [0x1ebf; 0x1eb6]
   explode (of_string "") = []
*)

let implode l = of_list l
(*$T implode
   implode (List.map UChar.of_char ['f'; 'o'; 'o']) = of_string "foo"
   implode (List.map UChar.chr [0x1ebf; 0x1eb6]) = of_string "ếẶ"
   implode [] = of_string ""
*)

let of_latin1 s = of_ustring (UTF8.of_latin1 s)


let print out t = bulk_iter (BatIO.nwrite out) t

open BatIO
(** {6 Unicode}*)

(** {7 Reading unicode}

    All these functions assume that the input is UTF-8 encoded.
*)

(*val read_uchar: input -> UChar.t*)
(** read one UChar from a UTF-8 encoded input*)
let read_char i =
  let n0  = read i in
  let len = UTF8.length0 (Char.code n0) in
  if len = 1 then UChar.of_char n0
  else
    let s = Bytes.create len in
    Bytes.set s 0 n0;
    let n = really_input i s 1 (len - 1) in
    assert (n = len - 1);
    let s = Bytes.unsafe_to_string s in
    UTF8.get s 0


(*val uchars_of : input -> UChar.t BatEnum.t*)
(** offer the characters of an UTF-8 encoded input as an enumeration*)

let chars_of i = make_enum read_char i

(*val read_rope: input -> int -> Rope.t*)
(** read up to n uchars from a UTF-8 encoded input*)
let read_text i n =
  let rec loop r j =
    if j = 0 then r
    else loop (append_char (read_char i) r) (j-1) (* TODO: make more efficient by appending a string of Rope.leaf_size (256) chars at a time *)
  in
  if n <= 0 then empty
  else loop empty n

(** read the whole contents of a UTF-8 encoded input*)
let read_all i = of_string (BatIO.read_all i)
(* TODO: make efficient - possibly similar to above - buffering leaf_size chars at a time *)

(** read a line of UTF-8*)
let read_line i =
  let line = read_line i in
  UTF8.validate line;
  of_string line

(** offer the lines of a UTF-8 encoded input as an enumeration*)
let lines_of i = BatIO.make_enum read_line i

(** {7 Writing unicode}

    All these functions assume that the output is UTF-8 encoded.*)

let write_string o c = write_string o c

(*val write_uchar: _ output -> UChar.t -> unit*)
let write_char o c = write_string o (UTF8.init 1 (fun _ -> c))

(*val write_rope : _ output -> Rope.t -> unit*)
let write_text = print

(*val write_uline: _ output -> Rope.t -> unit*)
let write_line o r = write_text o r; write o '\n'

(*val write_ulines : _ output -> Rope.t BatEnum.t -> unit*)
let write_lines o re = BatEnum.iter (write_line o) re

(*val write_ropes : _ output -> Rope.t BatEnum.t -> unit*)
let write_texts o re = BatEnum.iter (write_text o) re

(*val write_uchars : _ output -> UChar.t BatEnum.t -> unit*)
let write_chars o uce = BatEnum.iter (write_char o) uce

let sprintf fmt =
  BatPrintf.ksprintf of_string fmt

let ksprintf k fmt =
  BatPrintf.ksprintf (fun s -> k (of_string s)) fmt

let output_text       = print
OCaml

Innovation. Community. Security.