Source file batFingerTree.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
type 'a monoid = {
zero : 'a;
combine : 'a -> 'a -> 'a ;
}
module type S =
sig
type ('a, 'm) fg
type ('wrapped_type, 'a, 'm) wrap
val empty : ('a, 'm) fg
val singleton : 'a -> ('a, 'm) fg
val cons : (('a, 'm) fg -> 'a -> ('a, 'm) fg, 'a, 'm) wrap
val snoc : (('a, 'm) fg -> 'a -> ('a, 'm) fg, 'a, 'm) wrap
val front : (('a, 'm) fg -> (('a, 'm) fg * 'a) option, 'a, 'm) wrap
val front_exn : (('a, 'm) fg -> (('a, 'm) fg * 'a), 'a, 'm) wrap
val head : ('a, 'm) fg -> 'a option
val head_exn : ('a, 'm) fg -> 'a
val last : ('a, 'm) fg -> 'a option
val last_exn : ('a, 'm) fg -> 'a
val tail : (('a, 'm) fg -> ('a, 'm) fg option, 'a, 'm) wrap
val tail_exn : (('a, 'm) fg -> ('a, 'm) fg, 'a, 'm) wrap
val init : (('a, 'm) fg -> ('a, 'm) fg option, 'a, 'm) wrap
val init_exn : (('a, 'm) fg -> ('a, 'm) fg, 'a, 'm) wrap
val rear : (('a, 'm) fg -> (('a, 'm) fg * 'a) option, 'a, 'm) wrap
val rear_exn : (('a, 'm) fg -> (('a, 'm) fg * 'a), 'a, 'm) wrap
val size : ('a, 'm) fg -> int
val is_empty : ('a, 'm) fg -> bool
val fold_left : ('acc -> 'a -> 'acc) -> 'acc -> ('a, 'm) fg -> 'acc
val fold_right : ('acc -> 'a -> 'acc) -> 'acc -> ('a, 'm) fg -> 'acc
val iter : ('a -> unit) -> ('a, 'm) fg -> unit
val iter_right : ('a -> unit) -> ('a, 'm) fg -> unit
val compare : ('a -> 'a -> int) -> ('a, 'm) fg -> ('a, 'm) fg -> int
val equal : ('a -> 'a -> bool) -> ('a, 'm) fg -> ('a, 'm) fg -> bool
val enum : ('a, 'm) fg -> 'a BatEnum.t
val backwards : ('a, 'm) fg -> 'a BatEnum.t
val to_list : ('a, 'm) fg -> 'a list
val to_list_backwards : ('a, 'm) fg -> 'a list
val of_enum : ('a BatEnum.t -> ('a, 'm) fg, 'a, 'm) wrap
val of_backwards : ('a BatEnum.t -> ('a, 'm) fg, 'a, 'm) wrap
val of_list : ('a list -> ('a, 'm) fg, 'a, 'm) wrap
val of_list_backwards : ('a list -> ('a, 'm) fg, 'a, 'm) wrap
val map : (('a -> 'b) -> ('a, 'm) fg -> ('b, 'm) fg, 'b, 'm) wrap
val map_right : (('a -> 'b) -> ('a, 'm) fg -> ('b, 'm) fg, 'b, 'm) wrap
val append : (('a, 'm) fg -> ('a, 'm) fg -> ('a, 'm) fg, 'a, 'm) wrap
val reverse : (('a, 'm) fg -> ('a, 'm) fg, 'a, 'm) wrap
val print : ?first:string -> ?last:string -> ?sep:string -> ('a BatInnerIO.output -> 'b -> unit) -> 'a BatInnerIO.output -> ('b, _) fg -> unit
end
exception Empty
module Generic =
struct
type ('a, 'm) node =
| Node2 of 'm * 'a * 'a
| Node3 of 'm * 'a * 'a * 'a
type ('a, 'm) digit =
| One of 'm * 'a
| Two of 'm * 'a * 'a
| Three of 'm * 'a * 'a * 'a
| Four of 'm * 'a * 'a * 'a * 'a
type ('a, 'm) fg =
| Nil
| Single of 'a
| Deep of 'm * ('a, 'm) digit * (('a, 'm) node, 'm) fg * ('a, 'm) digit
let empty = Nil
let singleton a = Single a
let is_empty = function
| Nil -> true
| Single _ | Deep _ -> false
let fold_right_node f acc = function
| Node2 (_, a, b) -> f (f acc b) a
| Node3 (_, a, b, c) -> f (f (f acc c) b) a
let fold_left_node f acc = function
| Node2 (_, a, b) -> f (f acc a) b
| Node3 (_, a, b, c) -> f (f (f acc a) b) c
let fold_right_digit f acc = function
| One (_, a) -> f acc a
| Two (_, a, b) -> f (f acc b) a
| Three (_, a, b, c) -> f (f (f acc c) b) a
| Four (_, a, b, c, d) -> f (f (f (f acc d) c) b) a
let fold_left_digit f acc = function
| One (_, a) -> f acc a
| Two (_, a, b) -> f (f acc a) b
| Three (_, a, b, c) -> f (f (f acc a) b) c
| Four (_, a, b, c, d) -> f (f (f (f acc a) b) c) d
let rec fold_right : 'acc 'a 'm. ('acc -> 'a -> 'acc) -> 'acc -> ('a, 'm) fg -> 'acc = fun f acc -> function
| Nil -> acc
| Single x -> f acc x
| Deep (_, pr, m, sf) ->
let acc = fold_right_digit f acc sf in
let acc = fold_right (fun acc elt -> fold_right_node f acc elt) acc m in
let acc = fold_right_digit f acc pr in
acc
let rec fold_left : 'acc 'a 'm. ('acc -> 'a -> 'acc) -> 'acc -> ('a, 'm) fg -> 'acc = fun f acc -> function
| Nil -> acc
| Single x -> f acc x
| Deep (_, pr, m, sf) ->
let acc = fold_left_digit f acc pr in
let acc = fold_left (fun acc elt -> fold_left_node f acc elt) acc m in
let acc = fold_left_digit f acc sf in
acc
let pp_debug_digit pp_measure pp_a f = function
| One (m, a) ->
Format.fprintf f "@[@[<2>One (@,%a,@ %a@])@]" pp_measure m pp_a a
| Two (m, a, b) ->
Format.fprintf f "@[@[<2>Two (@,%a,@ %a,@ %a@])@]" pp_measure m pp_a a pp_a b
| Three (m, a, b, c) ->
Format.fprintf f "@[@[<2>Three (@,%a,@ %a,@ %a,@ %a@])@]" pp_measure m pp_a a pp_a b pp_a c
| Four (m, a, b, c, d) ->
Format.fprintf f "@[@[<2>Four (@,%a,@ %a,@ %a,@ %a,@ %a@])@]" pp_measure m pp_a a pp_a b pp_a c pp_a d
let pp_debug_node pp_measure pp_a f = function
| Node2 (m, a, b) ->
Format.fprintf f "@[@[<2>Node2 (@,%a,@ %a,@ %a@])@]" pp_measure m pp_a a pp_a b
| Node3 (m, a, b, c) ->
Format.fprintf f "@[@[<2>Node3 (@,%a,@ %a,@ %a,@ %a@])@]" pp_measure m pp_a a pp_a b pp_a c
type 'a printer = Format.formatter -> 'a -> unit
let rec pp_debug_tree : 'a 'm. 'm printer -> 'a printer -> ('a, 'm) fg printer =
fun pp_measure pp_a f -> function
| Nil -> Format.fprintf f "Nil"
| Single a -> Format.fprintf f "@[<2>Single@ %a@]" pp_a a
| Deep (v, pr, m, sf) ->
Format.fprintf f "@[@[<v2>Deep (@,%a,@ %a,@ %a,@ %a@]@\n)@]"
pp_measure v
(pp_debug_digit pp_measure pp_a) pr
(pp_debug_tree pp_measure (pp_debug_node pp_measure pp_a)) m
(pp_debug_digit pp_measure pp_a) sf
let dummy_printer f _ =
Format.pp_print_string f "_"
let pp_debug ?(pp_measure = dummy_printer) pp_a f t =
pp_debug_tree pp_measure pp_a f t
let pp_list pp_a f = function
| [] -> Format.fprintf f "[]"
| h :: t ->
Format.fprintf f "[%a" pp_a h;
List.iter (fun a -> Format.fprintf f "; %a" pp_a a) t;
Format.fprintf f "]"
type ('wrapped_type, 'a, 'm) wrap = monoid:'m monoid -> measure:('a -> 'm) -> 'wrapped_type
let measure_node = function
| Node2 (v, _, _)
| Node3 (v, _, _, _) -> v
let measure_digit = function
| One (v, _)
| Two (v, _, _)
| Three (v, _, _, _)
| Four (v, _, _, _, _) -> v
let measure_t_node ~monoid = function
| Nil -> monoid.zero
| Single x -> measure_node x
| Deep (v, _, _, _) -> v
let measure_t ~monoid ~measure = function
| Nil -> monoid.zero
| Single x -> measure x
| Deep (v, _, _, _) -> v
let check_measures_digit ~monoid ~measure ~eq check = function
| One (v, a) ->
check a &&
eq (measure a) v
| Two (v, a, b) ->
check a &&
check b &&
eq (monoid.combine (measure a) (measure b)) v
| Three (v, a, b, c) ->
check a &&
check b &&
check c &&
eq (monoid.combine
(monoid.combine (measure a) (measure b))
(measure c)) v
| Four (v, a, b, c, d) ->
check a &&
check b &&
check c &&
check d &&
eq (monoid.combine
(monoid.combine (measure a) (measure b))
(monoid.combine (measure c) (measure d))) v
let check_measures_node ~monoid ~measure ~eq check = function
| Node2 (v, a, b) ->
check a &&
check b &&
eq (monoid.combine (measure a) (measure b)) v
| Node3 (v, a, b, c) ->
check a &&
check b &&
check c &&
eq (monoid.combine
(monoid.combine (measure a) (measure b))
(measure c)) v
let rec check_measures : 'a 'm. monoid:'m monoid -> measure:('a -> 'm) -> eq:('m -> 'm -> bool) -> ('a -> bool) -> ('a, 'm) fg -> bool =
fun ~monoid ~measure ~eq check -> function
| Nil -> true
| Single a -> check a
| Deep (v, pr, m, sf) ->
check_measures_digit ~monoid ~measure ~eq check pr &&
check_measures_digit ~monoid ~measure ~eq check sf &&
check_measures ~monoid ~measure:measure_node ~eq (fun a ->
check_measures_node ~monoid ~measure ~eq check a
) m &&
eq (monoid.combine (measure_digit pr) (monoid.combine (measure_t_node ~monoid m) (measure_digit sf))) v
let check_measures ~monoid ~measure ~eq t =
check_measures ~monoid ~measure ~eq (fun _ -> true) t
*---------------------------------*)
let node2 ~monoid ~measure a b =
Node2 (monoid.combine (measure a) (measure b), a, b)
let node2_node ~monoid a b =
Node2 (monoid.combine (measure_node a) (measure_node b), a, b)
let node3 ~monoid ~measure a b c =
Node3 (monoid.combine (measure a) (monoid.combine (measure b) (measure c)), a, b, c)
let node3_node ~monoid a b c =
Node3 (monoid.combine (measure_node a) (monoid.combine (measure_node b) (measure_node c)), a, b, c)
let deep ~monoid pr m sf =
let v = measure_digit pr in
let v = monoid.combine v (measure_t_node ~monoid m) in
let v = monoid.combine v (measure_digit sf) in
Deep (v, pr, m, sf)
let one_node a =
One (measure_node a, a)
let one ~measure a =
One (measure a, a)
let two_node ~monoid a b =
Two (monoid.combine (measure_node a) (measure_node b), a, b)
let two ~monoid ~measure a b =
Two (monoid.combine (measure a) (measure b), a, b)
let three_node ~monoid a b c =
Three (monoid.combine (monoid.combine (measure_node a) (measure_node b)) (measure_node c), a, b, c)
let three ~monoid ~measure a b c =
Three (monoid.combine (monoid.combine (measure a) (measure b)) (measure c), a, b, c)
let four_node ~monoid a b c d =
Four (monoid.combine (monoid.combine (measure_node a) (measure_node b)) (monoid.combine (measure_node c) (measure_node d)), a, b, c, d)
let four ~monoid ~measure a b c d =
Four (monoid.combine (monoid.combine (measure a) (measure b)) (monoid.combine (measure c) (measure d)), a, b, c, d)
-----------------------------*)
let cons_digit_node ~monoid d x =
match d with
| One (v, a) -> Two (monoid.combine (measure_node x) v, x, a)
| Two (v, a, b) -> Three (monoid.combine (measure_node x) v, x, a, b)
| Three (v, a, b, c) -> Four (monoid.combine (measure_node x) v, x, a, b, c)
| Four _ -> assert false
let cons_digit ~monoid ~measure d x =
match d with
| One (v, a) -> Two (monoid.combine (measure x) v, x, a)
| Two (v, a, b) -> Three (monoid.combine (measure x) v, x, a, b)
| Three (v, a, b, c) -> Four (monoid.combine (measure x) v, x, a, b, c)
| Four _ -> assert false
let snoc_digit_node ~monoid d x =
match d with
| One (v, a) -> Two (monoid.combine v (measure_node x), a, x)
| Two (v, a, b) -> Three (monoid.combine v (measure_node x), a, b, x)
| Three (v, a, b, c) -> Four (monoid.combine v (measure_node x), a, b, c, x)
| Four _ -> assert false
let snoc_digit ~monoid ~measure d x =
match d with
| One (v, a) -> Two (monoid.combine v (measure x), a, x)
| Two (v, a, b) -> Three (monoid.combine v (measure x), a, b, x)
| Three (v, a, b, c) -> Four (monoid.combine v (measure x), a, b, c, x)
| Four _ -> assert false
let rec cons_aux : 'a 'm.
monoid:'m monoid -> (('a, 'm) node, 'm) fg -> ('a, 'm) node -> (('a, 'm) node, 'm) fg =
fun ~monoid t a ->
match t with
| Nil ->
Single a
| Single b ->
deep ~monoid (one_node a) Nil (one_node b)
| Deep (_, Four (_, b, c, d, e), m, sf) ->
deep ~monoid (two_node ~monoid a b) (cons_aux ~monoid m (node3_node ~monoid c d e)) sf
| Deep (v, pr, m, sf) ->
Deep (monoid.combine (measure_node a) v, cons_digit_node ~monoid pr a, m, sf)
let cons ~monoid ~measure t a =
match t with
| Nil ->
Single a
| Single b ->
deep ~monoid (one ~measure a) Nil (one ~measure b)
| Deep (_, Four (_, b, c, d, e), m, sf) ->
deep ~monoid (two ~monoid ~measure a b) (cons_aux ~monoid m (node3 ~monoid ~measure c d e)) sf
| Deep (v, pr, m, sf) ->
Deep (monoid.combine (measure a) v, cons_digit ~monoid ~measure pr a, m, sf)
let rec snoc_aux : 'a 'm.
monoid:'m monoid -> (('a, 'm) node, 'm) fg -> ('a, 'm) node -> (('a, 'm) node, 'm) fg =
fun ~monoid t a ->
match t with
| Nil ->
Single a
| Single b ->
deep ~monoid (one_node b) Nil (one_node a)
| Deep (_, pr, m, Four (_, b, c, d, e)) ->
deep ~monoid pr (snoc_aux ~monoid m (node3_node ~monoid b c d)) (two_node ~monoid e a)
| Deep (v, pr, m, sf) ->
Deep (monoid.combine v (measure_node a), pr, m, snoc_digit_node ~monoid sf a)
let snoc ~monoid ~measure t a =
match t with
| Nil ->
Single a
| Single b ->
deep ~monoid (one ~measure b) Nil (one ~measure a)
| Deep (_, pr, m, Four (_, b, c, d, e)) ->
deep ~monoid pr (snoc_aux ~monoid m (node3 ~monoid ~measure b c d)) (two ~measure ~monoid e a)
| Deep (v, pr, m, sf) ->
Deep (monoid.combine v (measure a), pr, m, snoc_digit ~monoid ~measure sf a)
let to_tree_digit_node ~monoid d =
match d with
| One (_, a) -> Single a
| Two (v, a, b) -> Deep (v, one_node a, Nil, one_node b)
| Three (v, a, b, c) -> Deep (v, two_node ~monoid a b, Nil, one_node c)
| Four (v, a, b, c, d) -> Deep (v, three_node ~monoid a b c, Nil, one_node d)
let to_tree_digit ~monoid ~measure d =
match d with
| One (_, a) -> Single a
| Two (v, a, b) -> Deep (v, one ~measure a, Nil, one ~measure b)
| Three (v, a, b, c) -> Deep (v, two ~monoid ~measure a b, Nil, one ~measure c)
| Four (v, a, b, c, d) -> Deep (v, three ~monoid ~measure a b c, Nil, one ~measure d)
let to_tree_list ~monoid ~measure = function
| [] -> Nil
| [a] -> Single a
| [a; b] -> deep ~monoid (one ~measure a) Nil (one ~measure b)
| [a; b; c] -> deep ~monoid (two ~monoid ~measure a b) Nil (one ~measure c)
| [a; b; c; d] -> deep ~monoid (three ~monoid ~measure a b c) Nil (one ~measure d)
| _ -> assert false
let to_digit_node = function
| Node2 (v, a, b) -> Two (v, a, b)
| Node3 (v, a, b, c) -> Three (v, a, b, c)
let to_digit_list ~monoid ~measure = function
| [a] -> one ~measure a
| [a; b] -> two ~monoid ~measure a b
| [a; b; c] -> three ~monoid ~measure a b c
| [a; b; c; d] -> four ~monoid ~measure a b c d
| _ -> assert false
let to_digit_list_node ~monoid = function
| [a] -> one_node a
| [a; b] -> two_node ~monoid a b
| [a; b; c] -> three_node ~monoid a b c
| [a; b; c; d] -> four_node ~monoid a b c d
| _ -> assert false
let head_digit = function
| One (_, a)
| Two (_, a, _)
| Three (_, a, _, _)
| Four (_, a, _, _, _) -> a
let last_digit = function
| One (_, a)
| Two (_, _, a)
| Three (_, _, _, a)
| Four (_, _, _, _, a) -> a
let tail_digit_node ~monoid = function
| One _ -> assert false
| Two (_, _, a) -> one_node a
| Three (_, _, a, b) -> two_node ~monoid a b
| Four (_, _, a, b, c) -> three_node ~monoid a b c
let tail_digit ~monoid ~measure = function
| One _ -> assert false
| Two (_, _, a) -> one ~measure a
| Three (_, _, a, b) -> two ~monoid ~measure a b
| Four (_, _, a, b, c) -> three ~monoid ~measure a b c
let init_digit_node ~monoid = function
| One _ -> assert false
| Two (_, a, _) -> one_node a
| Three (_, a, b, _) -> two_node ~monoid a b
| Four (_, a, b, c, _) -> three_node ~monoid a b c
let init_digit ~monoid ~measure = function
| One _ -> assert false
| Two (_, a, _) -> one ~measure a
| Three (_, a, b, _) -> two ~monoid ~measure a b
| Four (_, a, b, c, _) -> three ~monoid ~measure a b c
type ('a, 'rest) view =
| Vnil
| Vcons of 'a * 'rest
let rec view_left_aux : 'a 'm.
monoid:'m monoid -> (('a, 'm) node, 'm) fg -> (('a, 'm) node, (('a, 'm) node, 'm) fg) view =
fun ~monoid -> function
| Nil -> Vnil
| Single x -> Vcons (x, Nil)
| Deep (_, One (_, a), m, sf) ->
let vcons =
match view_left_aux ~monoid m with
| Vnil -> to_tree_digit_node ~monoid sf
| Vcons (a, m') -> deep ~monoid (to_digit_node a) m' sf in
Vcons (a, vcons)
| Deep (_, pr, m, sf) ->
let vcons = deep ~monoid (tail_digit_node ~monoid pr) m sf in
Vcons (head_digit pr, vcons)
let view_left ~monoid ~measure = function
| Nil -> Vnil
| Single x -> Vcons (x, Nil)
| Deep (_, One (_, a), m, sf) ->
let vcons =
match view_left_aux ~monoid m with
| Vnil -> to_tree_digit ~monoid ~measure sf
| Vcons (a, m') -> deep ~monoid (to_digit_node a) m' sf in
Vcons (a, vcons)
| Deep (_, pr, m, sf) ->
let vcons = deep ~monoid (tail_digit ~monoid ~measure pr) m sf in
Vcons (head_digit pr, vcons)
let rec view_right_aux : 'a 'm.
monoid:'m monoid -> (('a, 'm) node, 'm) fg -> (('a, 'm) node, (('a, 'm) node, 'm) fg) view =
fun ~monoid -> function
| Nil -> Vnil
| Single x -> Vcons (x, Nil)
| Deep (_, pr, m, One (_, a)) ->
let vcons =
match view_right_aux ~monoid m with
| Vnil -> to_tree_digit_node ~monoid pr
| Vcons (a, m') -> deep ~monoid pr m' (to_digit_node a) in
Vcons (a, vcons)
| Deep (_, pr, m, sf) ->
let vcons = deep ~monoid pr m (init_digit_node ~monoid sf) in
Vcons (last_digit sf, vcons)
let view_right ~monoid ~measure = function
| Nil -> Vnil
| Single x -> Vcons (x, Nil)
| Deep (_, pr, m, One (_, a)) ->
let vcons =
match view_right_aux ~monoid m with
| Vnil -> to_tree_digit ~monoid ~measure pr
| Vcons (a, m') -> deep ~monoid pr m' (to_digit_node a) in
Vcons (a, vcons)
| Deep (_, pr, m, sf) ->
let vcons = deep ~monoid pr m (init_digit ~monoid ~measure sf) in
Vcons (last_digit sf, vcons)
let head_exn = function
| Nil -> raise Empty
| Single a -> a
| Deep (_, pr, _, _) -> head_digit pr
let head = function
| Nil -> None
| Single a -> Some a
| Deep (_, pr, _, _) -> Some (head_digit pr)
let last_exn = function
| Nil -> raise Empty
| Single a -> a
| Deep (_, _, _, sf) -> last_digit sf
let last = function
| Nil -> None
| Single a -> Some a
| Deep (_, _, _, sf) -> Some (last_digit sf)
let tail ~monoid ~measure t =
match view_left ~monoid ~measure t with
| Vnil -> None
| Vcons (_, tl) -> Some tl
let tail_exn ~monoid ~measure t =
match view_left ~monoid ~measure t with
| Vnil -> raise Empty
| Vcons (_, tl) -> tl
let front ~monoid ~measure t =
match view_left ~monoid ~measure t with
| Vnil -> None
| Vcons (hd, tl) -> Some (tl, hd)
let front_exn ~monoid ~measure t =
match view_left ~monoid ~measure t with
| Vnil -> raise Empty
| Vcons (hd, tl) -> (tl, hd)
let init ~monoid ~measure t =
match view_right ~monoid ~measure t with
| Vnil -> None
| Vcons (_, tl) -> Some tl
let init_exn ~monoid ~measure t =
match view_right ~monoid ~measure t with
| Vnil -> raise Empty
| Vcons (_, tl) -> tl
let rear ~monoid ~measure t =
match view_right ~monoid ~measure t with
| Vnil -> None
| Vcons (hd, tl) -> Some (tl, hd)
let rear_exn ~monoid ~measure t =
match view_right ~monoid ~measure t with
| Vnil -> raise Empty
| Vcons (hd, tl) -> (tl, hd)
let nodes =
let add_digit_to digit l =
match digit with
| One (_, a) -> a :: l
| Two (_, a, b) -> a :: b :: l
| Three (_, a, b, c) -> a :: b :: c :: l
| Four (_, a, b, c, d) -> a :: b :: c :: d :: l in
let rec nodes_aux ~monoid ~measure ts sf2 =
match ts, sf2 with
| [], One _ -> assert false
| [], Two (_, a, b)
| [a], One (_, b) -> [node2 ~monoid ~measure a b]
| [], Three (_, a, b, c)
| [a], Two (_, b, c)
| [a; b], One (_, c) -> [node3 ~monoid ~measure a b c]
| [], Four (_, a, b, c, d)
| [a], Three (_, b, c, d)
| [a; b], Two (_, c, d)
| [a; b; c], One (_, d) -> [node2 ~monoid ~measure a b; node2 ~monoid ~measure c d]
| a :: b :: c :: ts, _ -> node3 ~monoid ~measure a b c :: nodes_aux ~monoid ~measure ts sf2
| [a], Four (_, b, c, d, e)
| [a; b], Three (_, c, d, e) -> [node3 ~monoid ~measure a b c; node2 ~monoid ~measure d e]
| [a; b], Four (_, c, d, e, f) -> [node3 ~monoid ~measure a b c; node3 ~monoid ~measure d e f] in
fun ~monoid ~measure sf1 ts sf2 ->
let ts = add_digit_to sf1 ts in
nodes_aux ~monoid ~measure ts sf2
let rec app3 : 'a 'm.
monoid:'m monoid -> measure:('a -> 'm) -> ('a, 'm) fg -> 'a list -> ('a, 'm) fg -> ('a, 'm) fg =
fun ~monoid ~measure t1 elts t2 ->
match t1, t2 with
| Nil, _ ->
List.fold_right (fun elt acc -> cons ~monoid ~measure acc elt) elts t2
| _, Nil ->
List.fold_left (fun acc elt -> snoc ~monoid ~measure acc elt) t1 elts
| Single x1, _ ->
cons ~monoid ~measure (List.fold_right (fun elt acc -> cons ~monoid ~measure acc elt) elts t2) x1
| _, Single x2 ->
snoc ~monoid ~measure (List.fold_left (fun acc elt -> snoc ~monoid ~measure acc elt) t1 elts) x2
| Deep (_, pr1, m1, sf1), Deep (_, pr2, m2, sf2) ->
deep ~monoid pr1 (app3 ~monoid ~measure:measure_node m1 (nodes ~monoid ~measure sf1 elts pr2) m2) sf2
let append ~monoid ~measure t1 t2 = app3 ~monoid ~measure t1 [] t2
------------------------------*)
let reverse_digit_node ~monoid rev_a = function
| One (_, a) -> one_node (rev_a a)
| Two (_, a, b) -> two_node ~monoid (rev_a b) (rev_a a)
| Three (_, a, b, c) -> three_node ~monoid (rev_a c) (rev_a b) (rev_a a)
| Four (_, a, b, c, d) -> four_node ~monoid (rev_a d) (rev_a c) (rev_a b) (rev_a a)
let reverse_digit ~monoid ~measure = function
| One _ as d -> d
| Two (_, a, b) -> two ~monoid ~measure b a
| Three (_, a, b, c) -> three ~monoid ~measure c b a
| Four (_, a, b, c, d) -> four ~monoid ~measure d c b a
let reverse_node_node ~monoid rev_a = function
| Node2 (_, a, b) -> node2_node ~monoid (rev_a b) (rev_a a)
| Node3 (_, a, b, c) -> node3_node ~monoid (rev_a c) (rev_a b) (rev_a a)
let reverse_node ~monoid ~measure = function
| Node2 (_, a, b) -> node2 ~monoid ~measure b a
| Node3 (_, a, b, c) -> node3 ~monoid ~measure c b a
let rec reverse_aux : 'a 'm.
monoid:'m monoid -> (('a, 'm) node -> ('a, 'm) node) -> (('a, 'm) node, 'm) fg -> (('a, 'm) node, 'm) fg =
fun ~monoid reverse_a -> function
| Nil -> Nil
| Single a -> Single (reverse_a a)
| Deep (_, pr, m, sf) ->
let rev_pr = reverse_digit_node ~monoid reverse_a pr in
let rev_sf = reverse_digit_node ~monoid reverse_a sf in
let rev_m = reverse_aux ~monoid (reverse_node_node ~monoid (reverse_a)) m in
deep ~monoid rev_sf rev_m rev_pr
let reverse ~monoid ~measure = function
| Nil
| Single _ as t -> t
| Deep (_, pr, m, sf) ->
let rev_pr = reverse_digit ~monoid ~measure pr in
let rev_sf = reverse_digit ~monoid ~measure sf in
let rev_m = reverse_aux ~monoid (reverse_node ~monoid ~measure) m in
deep ~monoid rev_sf rev_m rev_pr
--------------------------------*)
type ('a, 'rest) split = Split of 'rest * 'a * 'rest
let split_digit ~monoid ~measure p i = function
| One (_, a) -> Split ([], a, [])
| Two (_, a, b) ->
let i' = monoid.combine i (measure a) in
if p i' then Split ([], a, [b]) else
Split ([a], b, [])
| Three (_, a, b, c) ->
let i' = monoid.combine i (measure a) in
if p i' then Split ([], a, [b; c]) else
let i'' = monoid.combine i' (measure b) in
if p i'' then Split ([a], b, [c]) else
Split ([a; b], c, [])
| Four (_, a, b, c, d) ->
let i' = monoid.combine i (measure a) in
if p i' then Split ([], a, [b; c; d]) else
let i'' = monoid.combine i' (measure b) in
if p i'' then Split ([a], b, [c; d]) else
let i''' = monoid.combine i'' (measure c) in
if p i''' then Split ([a; b], c, [d]) else
Split ([a; b; c], d, [])
let deep_left ~monoid ~measure pr m sf =
match pr with
| [] -> (
match view_left ~monoid ~measure:measure_node m with
| Vnil -> to_tree_digit ~monoid ~measure sf
| Vcons (a, m') -> deep ~monoid (to_digit_node a) m' sf
)
| _ ->
deep ~monoid (to_digit_list ~monoid ~measure pr) m sf
let deep_right ~monoid ~measure pr m sf =
match sf with
| [] -> (
match view_right ~monoid ~measure:measure_node m with
| Vnil -> to_tree_digit ~monoid ~measure pr
| Vcons (a, m') -> deep ~monoid pr m' (to_digit_node a)
)
| _ ->
deep ~monoid pr m (to_digit_list ~monoid ~measure sf)
let rec split_tree : 'a 'm.
monoid:'m monoid -> measure:('a -> 'm) -> ('m -> bool) -> 'm -> ('a, 'm) fg -> ('a, ('a, 'm) fg) split =
fun ~monoid ~measure p i -> function
| Nil -> raise Empty
| Single x -> Split (Nil, x, Nil)
| Deep (_, pr, m, sf) ->
let vpr = monoid.combine i (measure_digit pr) in
if p vpr then
let Split (l, x, r) = split_digit ~monoid ~measure p i pr in
Split (to_tree_list ~monoid ~measure l, x, deep_left ~monoid ~measure r m sf)
else
let vm = monoid.combine vpr (measure_t_node ~monoid m) in
if p vm then
let Split (ml, xs, mr) = split_tree ~monoid ~measure:measure_node p vpr m in
let Split (l, x, r) = split_digit ~monoid ~measure p (monoid.combine vpr (measure_t_node ~monoid ml)) (to_digit_node xs) in
Split (deep_right ~monoid ~measure pr ml l, x, deep_left ~monoid ~measure r mr sf)
else
let Split (l, x, r) = split_digit ~monoid ~measure p vm sf in
Split (deep_right ~monoid ~measure pr m l, x, to_tree_list ~monoid ~measure r)
let split ~monoid ~measure f t =
match t with
| Nil -> (Nil, Nil)
| _ ->
if f (measure_t ~monoid ~measure t) then
let Split (l, x, r) = split_tree ~monoid ~measure f monoid.zero t in
(l, cons ~monoid ~measure r x)
else
(t, Nil)
let lookup_digit ~monoid ~measure p i = function
| One (_, a) -> monoid.zero, a
| Two (_, a, b) ->
let m_a = measure a in
let i' = monoid.combine i m_a in
if p i' then monoid.zero, a else m_a, b
| Three (_, a, b, c) ->
let m_a = measure a in
let i' = monoid.combine i m_a in
if p i' then monoid.zero, a else
let m_b = measure b in
let i'' = monoid.combine i' m_b in
if p i'' then m_a, b else monoid.combine m_a m_b, c
| Four (_, a, b, c, d) ->
let m_a = measure a in
let i' = monoid.combine i m_a in
if p i' then monoid.zero, a else
let m_b = measure b in
let i'' = monoid.combine i' m_b in
if p i'' then m_a, b else
let m_c = measure c in
let i''' = monoid.combine i'' m_c in
if p i''' then monoid.combine m_a m_b, c else monoid.combine (monoid.combine m_a m_b) m_c, d
let lookup_node ~monoid ~measure p i = function
| Node2 (_, a, b) ->
let m_a = measure a in
let i' = monoid.combine i m_a in
if p i' then monoid.zero, a else m_a, b
| Node3 (_, a, b, c) ->
let m_a = measure a in
let i' = monoid.combine i m_a in
if p i' then monoid.zero, a else
let m_b = measure b in
let i'' = monoid.combine i' m_b in
if p i'' then m_a, b else monoid.combine m_a m_b, c
let rec lookup_tree : 'a 'm. monoid:'m monoid -> measure:('a -> 'm) -> ('m -> bool) -> 'm -> ('a, 'm) fg -> 'm * 'a =
fun ~monoid ~measure p i -> function
| Nil -> raise Empty
| Single x -> monoid.zero, x
| Deep (_, pr, m, sf) ->
let m_pr = measure_digit pr in
let vpr = monoid.combine i m_pr in
if p vpr then lookup_digit ~monoid ~measure p i pr else
let m_m = measure_t_node ~monoid m in
let vm = monoid.combine vpr m_m in
if p vm then
let v_left, node = lookup_tree ~monoid ~measure:measure_node p vpr m in
let v, x = lookup_node ~monoid ~measure p (monoid.combine vpr v_left) node in
monoid.combine (monoid.combine m_pr v_left) v, x
else
let v, x = lookup_digit ~monoid ~measure p vm sf in
monoid.combine (monoid.combine m_pr m_m) v, x
let lookup ~monoid ~measure p t =
snd (lookup_tree ~monoid ~measure p monoid.zero t)
-----------------------------*)
type ('a, 'm) iter =
| End
| Next of 'a * ('a, 'm) iter
| Digit of ('a, 'm) digit * ('a, 'm) iter
| Fg of (('a, 'm) node, 'm) iter * ('a, 'm) iter
let rec to_iter : 'a. ('a, 'm) fg -> ('a, 'm) iter -> ('a, 'm) iter =
fun t k ->
match t with
| Nil -> k
| Single a -> Next (a, k)
| Deep (_, pr, m, sf) -> Digit (pr, Fg (to_iter m End, Digit (sf, k)))
let rec to_iter_backwards : 'a. ('a, 'm) fg -> ('a, 'm) iter -> ('a, 'm) iter =
fun t k ->
match t with
| Nil -> k
| Single a -> Next (a, k)
| Deep (_, pr, m, sf) -> Digit (sf, Fg (to_iter_backwards m End, Digit (pr, k)))
let rec iter_next : 'a . ('a, 'm) iter -> ('a * ('a, 'm) iter) option = function
| End -> None
| Next (v, k) -> Some (v, k)
| Digit (One (_, a), k) -> Some (a, k)
| Digit (Two (_, a, b), k) -> Some (a, Next (b, k))
| Digit (Three (_, a, b, c), k) -> Some (a, Next (b, Next (c, k)))
| Digit (Four (_, a, b, c, d), k) -> Some (a, Next (b, Next (c, Next (d, k))))
| Fg (node_iter, k) ->
match iter_next node_iter with
| None -> iter_next k
| Some (Node2 (_, a, b), k_node) -> Some (a, Next (b, Fg (k_node, k)))
| Some (Node3 (_, a, b, c), k_node) -> Some (a, Next (b, Next (c, Fg (k_node, k))))
let rec iter_next_backwards : 'a . ('a, 'm) iter -> ('a * ('a, 'm) iter) option = function
| End -> None
| Next (v, k) -> Some (v, k)
| Digit (One (_, a), k) -> Some (a, k)
| Digit (Two (_, a, b), k) -> Some (b, Next (a, k))
| Digit (Three (_, a, b, c), k) -> Some (c, Next (b, Next (a, k)))
| Digit (Four (_, a, b, c, d), k) -> Some (d, Next (c, Next (b, Next (a, k))))
| Fg (node_iter, k) ->
match iter_next_backwards node_iter with
| None -> iter_next_backwards k
| Some (Node2 (_, a, b), k_node) -> Some (b, Next (a, Fg (k_node, k)))
| Some (Node3 (_, a, b, c), k_node) -> Some (c, Next (b, Next (a, Fg (k_node, k))))
let enum t =
BatEnum.unfold (to_iter t End) iter_next
let backwards t =
BatEnum.unfold (to_iter_backwards t End) iter_next_backwards
let of_enum ~monoid ~measure enum =
BatEnum.fold (fun t elt -> snoc ~monoid ~measure t elt) empty enum
let of_backwards ~monoid ~measure enum =
BatEnum.fold (fun t elt -> cons ~monoid ~measure t elt) empty enum
let to_list t =
BatList.of_backwards (backwards t)
let to_list_backwards t =
BatList.of_backwards (enum t)
let of_list ~monoid ~measure l =
List.fold_left (fun t elt -> snoc ~monoid ~measure t elt) empty l
let of_list_backwards ~monoid ~measure l =
List.fold_left (fun t elt -> cons ~monoid ~measure t elt) empty l
let iter f t =
fold_left (fun () elt -> f elt) () t
let iter_right f t =
fold_right (fun () elt -> f elt) () t
let map ~monoid ~measure f t =
fold_left (fun acc elt -> snoc ~monoid ~measure acc (f elt)) empty t
let map_right ~monoid ~measure f t =
fold_right (fun acc elt -> cons ~monoid ~measure acc (f elt)) empty t
---------------------------------*)
let measure = measure_t
let size t = fold_left (fun acc _ -> acc + 1) 0 t
let print ?first ?last ?sep f oc x =
BatEnum.print ?first ?last ?sep f oc (enum x)
let compare cmp t1 t2 =
let rec loop cmp iter1 iter2 =
match iter_next iter1, iter_next iter2 with
| None, None -> 0
| Some _, None -> 1
| None, Some _ -> -1
| Some (e1, iter1), Some (e2, iter2) ->
let c = cmp e1 e2 in
if c <> 0 then c
else loop cmp iter1 iter2
in loop cmp (to_iter t1 End) (to_iter t2 End)
let equal eq t1 t2 =
let rec loop eq iter1 iter2 =
match iter_next iter1, iter_next iter2 with
| None, None -> true
| Some _, None -> false
| None, Some _ -> false
| Some (e1, iter1), Some (e2, iter2) ->
eq e1 e2 && loop eq iter1 iter2
in loop eq (to_iter t1 End) (to_iter t2 End)
* this function does as of_list, but, by using concatenation,
* it generates trees with some Node2 (which are never generated
* by of_list) *)
let of_list_for_test ~monoid ~measure l =
let i = Random.int (List.length l + 1) in
let l1, l2 = BatList.split_at i l in
append ~monoid ~measure (of_list ~monoid ~measure l1) (of_list ~monoid ~measure l2)
end
type nat = int
let nat_plus_monoid = {
zero = 0;
combine = (+);
}
let size_measurer = fun _ -> 1
type ('a, 'm) fg = ('a, nat) Generic.fg
type 'a t = ('a, nat) fg
let last_exn = Generic.last_exn
st_exn
(Q.list Q.int) (fun l -> \
(try Some (last_exn (of_list_for_test l)) with Empty -> None) \
= (try Some (BatList.last l) with Invalid_argument _ -> None))
*)
let head_exn = Generic.head_exn
ad_exn
(Q.list Q.int) (fun l -> \
(try Some (head_exn (of_list_for_test l)) with Empty -> None) \
= (try Some (BatList.hd l) with Failure _ -> None))
*)
let last = Generic.last
let head = Generic.head
let singleton = Generic.singleton
let empty = Generic.empty
let is_empty = Generic.is_empty
_empty
(Q.list Q.int) (fun l -> is_empty (verify_measure (of_list_for_test l)) = (l = []))
*)
let fold_left = Generic.fold_left
let fold_right = Generic.fold_right
let enum = Generic.enum
let backwards = Generic.backwards
let to_list = Generic.to_list
let to_list_backwards = Generic.to_list_backwards
let iter = Generic.iter
let iter_right = Generic.iter_right
type ('wrapped_type, 'a, 'm) wrap = 'wrapped_type
let cons t x = Generic.cons ~monoid:nat_plus_monoid ~measure:size_measurer t x
let snoc t x = Generic.snoc ~monoid:nat_plus_monoid ~measure:size_measurer t x
let front t = Generic.front ~monoid:nat_plus_monoid ~measure:size_measurer t
let tail t = Generic.tail ~monoid:nat_plus_monoid ~measure:size_measurer t
let init t = Generic.init ~monoid:nat_plus_monoid ~measure:size_measurer t
let rear t = Generic.rear ~monoid:nat_plus_monoid ~measure:size_measurer t
let front_exn t = Generic.front_exn ~monoid:nat_plus_monoid ~measure:size_measurer t
let tail_exn t = Generic.tail_exn ~monoid:nat_plus_monoid ~measure:size_measurer t
let init_exn t = Generic.init_exn ~monoid:nat_plus_monoid ~measure:size_measurer t
let rear_exn t = Generic.rear_exn ~monoid:nat_plus_monoid ~measure:size_measurer t
let append t1 t2 = Generic.append ~monoid:nat_plus_monoid ~measure:size_measurer t1 t2
let measure t = Generic.measure ~monoid:nat_plus_monoid ~measure:size_measurer t
let size = measure
let reverse t = Generic.reverse ~monoid:nat_plus_monoid ~measure:size_measurer t
let split f t = Generic.split ~monoid:nat_plus_monoid ~measure:size_measurer f t
let split_at t i =
if i < 0 || i >= size t then
invalid_arg "FingerTree.split_at: Index out of bounds";
split (fun index -> i < index) t
let lookup f t = Generic.lookup ~monoid:nat_plus_monoid ~measure:size_measurer f t
let get t i =
if i < 0 || i >= size t then
invalid_arg "FingerTree.get: Index out of bounds";
lookup (fun index -> i < index) t
let set t i v =
if i < 0 || i >= size t then
invalid_arg "FingerTree.set: Index out of bounds";
let left, right = split_at t i in
append (snoc left v) (tail_exn right)
let update t i f =
set t i (f (get t i))
let of_enum e = Generic.of_enum ~monoid:nat_plus_monoid ~measure:size_measurer e
let of_list l = Generic.of_list ~monoid:nat_plus_monoid ~measure:size_measurer l
let of_backwards e = Generic.of_backwards ~monoid:nat_plus_monoid ~measure:size_measurer e
let of_list_backwards l = Generic.of_list_backwards ~monoid:nat_plus_monoid ~measure:size_measurer l
let of_list_for_test l = Generic.of_list_for_test ~monoid:nat_plus_monoid ~measure:size_measurer l
let map f t = Generic.map ~monoid:nat_plus_monoid ~measure:size_measurer f t
let map_right f t = Generic.map_right ~monoid:nat_plus_monoid ~measure:size_measurer f t
let print = Generic.print
let compare = Generic.compare
let equal = Generic.equal
let check_measures t =
Generic.check_measures ~monoid:nat_plus_monoid ~measure:size_measurer ~eq:BatInt.(=) t
let verify_measure t =
if not (check_measures t) then failwith "Invariants not verified";
t
let invariants t =
assert (check_measures t)