package batteries

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file batLazyList.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
(*
 * LazyListLabels - lazily-computed lists
 * Copyright (C) 2008 David Teller
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version,
 * with the special exception on linking described in file LICENSE.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *)

##V>=5##module Pervasives = Stdlib

(*$inject
##V>=5##module Pervasives = Stdlib
*)

(** {6 Exceptions} *)

exception No_more_elements
exception Empty_list
exception Invalid_index of int
exception Different_list_size of string


(** {6  Types} *)
type 'a node_t =
  | Nil
  | Cons of 'a * 'a t
and 'a t =
  ('a node_t) Lazy.t

type 'a enumerable = 'a t
type 'a mappable = 'a t

(** {6 Access} *)

let lazy_from_val v =
##V<5##  Lazy.lazy_from_val v
##V>=5## Lazy.from_val v

let nil    =
  lazy_from_val Nil

let next l = Lazy.force l

let cons h t = lazy_from_val (Cons(h, t))

let ( ^:^ ) = cons

let get l = match next l with
  | Nil            -> None
  | Cons (x, rest) -> Some (x, rest)

let peek l = match next l with
  | Nil         -> None
  | Cons (x, _) -> Some x

(** {6 Constructors} *)

let from_while f =
  let rec aux () = lazy (
    match f () with
    | None   -> Nil
    | Some x -> Cons (x, aux ()) ) in aux ()

let from f =
  let f' () =
    try  Some (f ())
    with No_more_elements -> None
  in from_while f'

let seq data next cond =
  let rec aux data =
    if cond data then Cons (data, lazy (aux (next data)))
    else              Nil
  in lazy (aux data)

let unfold (data:'b) (next: 'b -> ('a * 'b) option) =
  let rec aux data = match next data with
    | Some(a,b) -> Cons(a, lazy (aux b))
    | None      -> Nil
  in lazy (aux data)

let from_loop (data:'b) (next:'b -> ('a * 'b)) : 'a t=
  let f' data =
    try  Some (next data)
    with No_more_elements -> None
  in unfold data f'

let init n f =
  let rec aux i =
    if i < n then lazy (Cons (f i, aux ( i + 1 ) ) )
    else          nil
  in if n < 0 then invalid_arg "LazyList.init"
  else          aux 0

let make n x =
  let rec aux i =
    if i < n then lazy (Cons (x, aux ( i + 1 ) ) )
    else          nil
  in if n < 0 then invalid_arg "LazyList.make"
  else          aux 0

(**
   {6  Iterators}
*)

let iter f l =
  let rec aux l = match next l with
    | Cons (x, t) -> (ignore (f x); aux t)
    | Nil -> ()
  in aux l

let iteri f l =
  let rec aux i l = match next l with
    | Cons (x, t) -> (f i x; aux (i + 1) t)
    | Nil -> ()
  in aux 0 l

let map f l =
  let rec aux rest =  match next rest with
    | Cons (x, (t : 'a t)) -> Cons (f x, lazy (aux t))
    | Nil                  -> Nil
  in lazy (aux l)

let mapi f l =
  let rec aux rest i =
    match next rest with
    | Cons (x, (t : 'a t)) -> Cons (f i x, lazy (aux t ( i + 1 ) ))
    | Nil -> Nil
  in lazy (aux l 0)

let fold_left f init l =
  let rec aux acc rest =
    match next rest with
    | Cons (x, t) -> aux (f acc x) t
    | Nil         -> acc
  in aux init l

let fold_right f init l =
  let rec aux rest = match next rest with
    | Cons (x, t) -> f x (aux t)
    | Nil -> init
  in aux l

let eager_fold_right f l init = fold_right f init l

let lazy_fold_right f l init =
  let rec aux rest = lazy begin
    match next rest with
    | Cons (x, t) -> f x (aux t)
    | Nil -> Lazy.force init
  end in
  aux l

(** {6 Finding}*)

let may_find p l =
  let rec aux l =
    match next l with
    | Nil         -> None
    | Cons (x, t) -> if p x then Some x else aux t
  in aux l

let may_rfind p l =
  let rec aux l acc =
    match next l with
    | Nil         -> acc
    | Cons (x, t) -> aux t (if p x then Some x else acc)
  in aux l None

let may_findi p l =
  let rec aux l i =
    match next l with
    | Nil                    -> None
    | Cons (x, _) when p i x -> Some (i, x)
    | Cons (_, t)            -> aux t (i+1)
  in aux l 0

let may_rfindi p l =
  let rec aux l acc i =
    match next l with
    | Nil         -> acc
    | Cons (x, t) -> aux t (if p i x then Some (i, x) else acc) (i+1)
  in aux l None 0

let find_exn p e l =
  BatOption.get_exn (may_find p l) e

let rfind_exn p e l =
  BatOption.get_exn (may_rfind p l) e

let find  p l = find_exn p Not_found l

let rfind p l = rfind_exn p Not_found l

let findi p l =
  BatOption.get_exn (may_findi p l) Not_found

let rfindi p l =
  BatOption.get_exn (may_rfindi p l) Not_found

let index_of e l =
  match may_findi (fun _ x -> e = x) l with
  | None        -> None
  | Some (i, _) -> Some i

let rindex_of e l =
  match may_rfindi (fun _ x -> e = x) l with
  | None        -> None
  | Some (i, _) -> Some i

let index_ofq e l =
  match may_findi (fun _ x -> e == x) l with
  | None        -> None
  | Some (i, _) -> Some i

let rindex_ofq e l =
  match may_rfindi (fun _ x -> e == x) l with
  | None        -> None
  | Some (i, _) -> Some i


(** {6  Common functions}*)
let length l = fold_left (fun n _ -> n + 1) 0 l

let is_empty l = match next l with
  | Nil    -> true
  | Cons _ -> false

let would_at_fail n =
  let rec aux l i = match next l with
    | Nil                    -> true
    | Cons (_, _) when i = 0 -> false
    | Cons (_, t)            -> aux t (i - 1)
  in aux n

let hd list =
  match next list with
  | Cons (x, _) -> x
  | Nil -> raise Empty_list

let first = hd


let last l =
  let rec aux acc l = match next l with
    | Nil        -> acc
    | Cons(x, t) -> aux (Some x) t
  in match aux None l with
  | None   -> raise Empty_list
  | Some x -> x

let tl list =
  match next list with
  | Cons (_, t) -> t
  | Nil -> raise Empty_list


let at list n =
  let rec aux list i =
    match ((next list), i) with
    | (Cons (x, _), 0) -> x
    | (Cons (_, t), _) -> aux t (i - 1)
    | (Nil, _) -> raise (Invalid_index n)
  in if n < 0 then raise (Invalid_index n) else aux list n

let nth = at

let rev list = fold_left (fun acc x -> lazy_from_val (Cons (x, acc))) nil list

(**Revert a list, convert it to a lazy list.
   Used as an optimisation.*)
let rev_of_list (list:'a list) = List.fold_left (fun acc x -> lazy_from_val (Cons (x, acc))) nil list

let eager_append (l1 : 'a t) (l2 : 'a t) =
  let rec aux list =
    match next list with
    | Cons (x, t) -> cons x (aux t)
    | Nil         -> l2
  in aux l1

let rev_append (l1 : 'a t) (l2 : 'a t) =
  let rec aux list acc =
    match next list with
    | Cons (x, t) -> aux t (lazy_from_val (Cons (x, acc)))
    | Nil -> acc
  in aux l1 l2

(**Revert a list, convert it to a lazy list and append it.
   Used as an optimisation.*)
let rev_append_of_list (l1 : 'a list) (l2 : 'a t) : 'a t =
  let rec aux list acc = match list with
    | []   -> acc
    | h::t -> aux t (cons h acc)
  in aux l1 l2

let append (l1 : 'a t) (l2 : 'a t) =
  let rec aux list =  match next list with
    | Cons (x, (t : 'a t)) -> Cons (x, lazy (aux t))
    | _                    -> Lazy.force l2
  in lazy (aux l1)

(*$T append
  to_list (append (of_list [1;2]) (of_list [3;4])) = [1;2;3;4]
  ignore (append (lazy (failwith "lazy cell")) nil); true
  hd (append (cons () nil) (lazy (failwith "lazy cell"))); true
*)

let ( ^@^ ) = append

let flatten (lol : ('a t) list) =
  ListLabels.fold_left ~init: nil ~f: append lol

let concat lol =
  lazy_fold_right (fun li rest -> Lazy.force (append li rest)) lol nil

(*$T concat
  to_list (concat (of_list (List.map of_list [[1;2]; [3]; [4;5]; []; [6]; []; []]))) = [1;2;3;4;5;6]
  ignore (concat (lazy (Cons ((let () = failwith "foo" in nil), nil)))); true
*)

(** {6  Combinatorics} *)

let combinations l =
  let rec gen l = match l with
    | [] -> cons [] nil
    | x::l' ->
      lazy (let tl = gen l' in
            let node = append tl (map (fun l -> x::l) tl) in
            Lazy.force node)
  in gen l

(*$T combinations
    List.sort Legacy.compare (to_list (combinations [1;2;3])) = \
   [[]; [1]; [1;2]; [1;2;3]; [1;3]; [2]; [2;3]; [3]]
     to_list (combinations []) = [[]]
     List.sort Legacy.compare (to_list (combinations [1])) = [[]; [1]]
*)

let permutations l =
  (* do a choice in [l]. [right] contain elements not to choose from. *)
  let rec choose_first among right = match among with
    | [] -> cons [] nil
    | [x] -> perms_starting_with x right
    | x::among' ->
      (* choose [x], or don't (in which case put it in [right]) *)
      append
        (perms_starting_with x (among' @ right))
        (choose_first among' (x::right))
  (* all permutations of [l], prefixed with [x] *)
  and perms_starting_with x l =
    map (fun l -> x :: l) (choose_first l [])
  in choose_first l []

(*$T permutations
    List.sort Legacy.compare (to_list (permutations [1;2;3])) = \
   [[1;2;3]; [1;3;2]; [2;1;3]; [2;3;1]; [3;1;2]; [3;2;1]]
     to_list (permutations []) = [[]]
     to_list (permutations [1]) = [[1]]
*)

(** {6  Conversions} *)

(**
   Eager conversion to list.
*)
let to_list l = fold_right (fun x acc -> x :: acc) [] l

(**
   Lazy conversion to stream.
*)
let to_stream l =
  let rec aux rest =
    match next rest with
    | Cons (x, t) -> Stream.icons x (Stream.slazy (fun _ -> aux t))
    | Nil -> Stream.sempty
  in aux l

(**
   Eager conversion to array.
*)
let to_array l = Array.of_list (to_list l)

let enum l =
  let rec aux l =
    let reference = ref l in
    BatEnum.make ~next:(fun () -> match next !reference with
      | Cons(x,t) -> reference := t; x
      | Nil       -> raise BatEnum.No_more_elements )
      ~count:(fun () -> length !reference)
      ~clone:(fun () -> aux !reference)
  in aux l

(**
   Lazy conversion from lists

   Albeit slower than eager conversion, this is the default mechanism for converting from regular
   lists to lazy lists.  This for two reasons :
   * if you're using lazy lists, total speed probably isn't as much an issue as start-up speed
   * this will let you convert regular infinite lists to lazy lists.
*)
let of_list l =
  let rec aux = function
    | []     -> nil
    | h :: t -> lazy (Cons (h, aux t))
  in aux l

(**
   Lazy conversion from stream.
*)
let of_stream s =
  let rec aux s =
    let (__strm : _ Stream.t) = s
    in
    match Stream.peek __strm with
    | Some h -> (Stream.junk __strm; lazy (Cons (h, aux s)))
    | None -> nil
  in aux s

(**
   Eager conversion from lists
*)
let eager_of_list l =
  ListLabels.fold_right ~init: nil ~f: (fun x acc -> lazy_from_val (Cons (x, acc))) l

(**
   Eager conversion from array
*)
let of_array l =
  ArrayLabels.fold_right ~init: nil ~f: (fun x acc -> lazy_from_val (Cons (x, acc))) l

(**
   Lazy conversion from enum
*)
let of_enum e =
  let rec aux () =
    lazy (match BatEnum.get e with
      | Some x -> Cons (x, aux () )
      | None   -> Nil )
  in
  aux ()

(**
   {6  Predicates}
*)
let filter f l =
  let rec next_true l = match next l with (*Compute the next accepted predicate without thunkification*)
    | Cons (x, l) when not (f x) -> next_true l
    | l                          -> l
  in
  let rec aux l = lazy(match next_true l with
    | Cons (x, l) -> Cons (x, aux l)
    | Nil         -> Nil)
  in aux l

let filter_map f l =
  let rec next_true l = match next l with (*Compute the next accepted predicate without thunkification*)
    | Cons (x, l) ->
      begin
        match f x with
        | Some v  -> Some (v, l)
        | None    -> next_true l
      end
    | Nil         -> None
  in
  let rec aux l = lazy(match next_true l with
    | Some (x, l) -> Cons (x, aux l)
    | None        -> Nil)
  in aux l
(*let filter f l =
  let rec aux rest =
    match next rest with
    | Cons (x, t) when f x -> Cons (x, lazy (aux t))
    | Cons (_, t)          -> aux t
    | Nil                  -> Nil
  in lazy (aux l)*)

let exists f l =
  let rec aux rest = match next rest with
    | Cons (x, _) when f x -> true
    | Cons (_, t)          -> aux t
    | Nil                  -> false
  in aux l

(*$T exists
  exists (fun x -> x = 3) (append (of_list [0;1;2]) (map (fun () -> 3) eternity))
  not (exists (fun x -> x < 0) (init 100 (fun i -> i)))
*)

let for_all f l =
  let rec aux rest = match next rest with
    | Cons (x, t) when f x -> aux t
    | Cons _               -> false
    | Nil                  -> true
  in aux l

(*$T for_all
  not (for_all (fun x -> x <> 3) (append (of_list [0;1;2]) (map (fun () -> 3) eternity)))
  for_all (fun x -> x >= 0) (init 100 (fun i -> i))
*)

let range a b =
  let rec increasing lo hi =
    if lo > hi then nil else lazy (Cons (lo, increasing (lo + 1) hi))
  in
  (*      and     decreasing lo hi = if lo > hi then
        nil
          else
        lazy (Cons hi (decreasing lo (hi - 1)))*)
  if b >= a then increasing a b else (*decreasing b a*) nil

let drop n l =
  let rec aux l i =
    if i = 0 then l
    else match next l with
      | Nil        -> raise (Invalid_index n)
      | Cons(_, t) -> aux t (i - 1)
  in aux l n

let split_at n li =
  let last_n = ref n in
  let last_li = ref li in
  let rec take n li =
    last_n := n;
    last_li := li;
    if n = 0 then lazy Nil
    else
      lazy
        (match (Lazy.force li) with
         | Nil -> Nil
         | Cons (x, xs) -> Cons (x, take (n - 1) xs))
  in
  take n li, lazy (Lazy.force (drop !last_n !last_li))

let split_nth = split_at

let mem   e = exists (( = ) e)

let memq  e = exists (( == ) e )

let assoc e l = snd (find (fun (a,_) -> a = e) l)

let assq  e l = snd (find (fun (a,_) -> a == e) l)

let mem_assoc e l = BatOption.is_some (may_find (fun (a, _) -> a = e) l)

let mem_assq e l = BatOption.is_some (may_find (fun (a, _) -> a == e) l)



(*  let rec aux rest = match next rest with
    | Cons (h, t) ->
        (match f h with
       | None   -> lazy (aux t)
       | Some x -> cons x (lazy (aux t)))
    | Nil -> Nil
    in lazy (aux l)*)

let unique ?(cmp = compare) l =
  let set      = ref (BatMap.PMap.create cmp) in
  let should_keep x =
    if BatMap.PMap.mem x !set then false
    else ( set := BatMap.PMap.add x true !set; true )
  in
  (* use a stateful filter to remove duplicate elements *)
  filter should_keep l

let unique_eq ?(eq = (=)) l =
  let rec next_true l = match next l with (*Compute the next accepted predicate without thunkification*)
    | Cons (x, l) when exists (eq x) l -> next_true l
    | l                                -> l
  in
  let rec aux l = lazy(match next_true l with
    | Cons (x, l) -> Cons (x, aux l)
    | Nil         -> Nil)
  in aux l

let remove_if p l =
  let rec aux acc l = match next l with
    | Nil                -> rev_of_list acc
    | Cons(h,t) when p h -> rev_append_of_list acc t
    | Cons(h,t)          -> aux (h::acc) t
  in aux [] l

let remove_all_such p l =
  filter_map (fun y -> if p y then None else Some y) l

let remove x l =
  remove_if ( ( = ) x ) l

let remove_all x l =
  remove_all_such ( ( = ) x ) l



(** An infinite list of nothing *)
let rec eternity = lazy (Cons ((), eternity))

let take n l = fst (split_at n l)

let drop_while p =
  let rec aux l = match next l with
    | Nil                -> nil
    | Cons(h,t) when p h -> aux t
    | Cons(_,_)          -> l
  in aux

(* TODO: make lazy *)
let take_while p =
  let rec aux acc l = match next l with
    | Cons(h,t) when p h -> aux (h::acc) t
    | Cons _ | Nil       -> rev_of_list acc
  in aux []

let sort ?(cmp=Pervasives.compare) l = of_list (List.sort cmp (to_list l))

let stable_sort cmp l = of_list (List.stable_sort cmp (to_list l))

let map2 f l1 l2 =
  let rec aux l1 l2 =
    match (next l1, next l2) with
    | (Cons (h1, t1), Cons(h2, t2)) -> lazy (Cons (f h1 h2, aux t1 t2))
    | (Nil, Nil)                    -> nil
    | (Cons _, Nil) | (Nil, Cons _) -> raise (Different_list_size "LazyList.map2")
  in aux l1 l2

let iter2 f l1 l2 =
  let rec aux l1 l2 =
    match (next l1, next l2) with
    | (Cons (h1, t1), Cons(h2, t2)) -> f h1 h2; aux t1 t2
    | (Nil, Nil)                    -> ()
    | (Cons _, Nil) | (Nil, Cons _) -> raise (Different_list_size "LazyList.iter2")
  in aux l1 l2

let fold_left2 f acc l1 l2 =
  let rec aux acc l1 l2 =
    match (next l1, next l2) with
    | (Cons (h1, t1), Cons(h2, t2)) -> aux (f acc h1 h2) t1 t2
    | (Nil, Nil)                    -> acc
    | (Cons _, Nil) | (Nil, Cons _) -> raise (Different_list_size "LazyList.fold_left2")
  in aux acc l1 l2

let fold_right2 f l1 l2 acc =
  let rec aux l1 l2 =
    match (next l1, next l2) with
    | (Cons (h1, t1), Cons(h2, t2)) -> f h1 h2 (aux t1 t2)
    | (Nil, Nil)                    -> acc
    | (Cons _, Nil) | (Nil, Cons _) -> raise (Different_list_size "LazyList.fold_right2")
  in aux l1 l2

let for_all2 p l1 l2 =
  let rec aux l1 l2 =
    match (next l1, next l2) with
    | (Cons (h1, t1), Cons(h2, t2)) -> p h1 h2 && (aux t1 t2)
    | (Nil, Nil)                    -> true
    | (Cons _, Nil) | (Nil, Cons _) -> raise (Different_list_size "LazyList.for_all2")
  in aux l1 l2

let equal eq l1 l2 =
  let rec aux l1 l2 =
    match (next l1, next l2) with
    | (Cons (h1, t1), Cons (h2, t2)) -> eq h1 h2 && (aux t1 t2)
    | (Nil, Nil)                    -> true
    | (Cons _, Nil) | (Nil, Cons _) -> false
  in aux l1 l2

(*$T equal
  equal (equal (=)) (init 3 (range 0)) (init 3 (range 0))
  not (equal (equal (=)) (of_list [(of_list [0; 1; 2])]) (of_list [(of_list [0; 42; 2])]))
  not (equal (=) (range 0 2) (range 0 3))
  not (equal (=) (range 0 3) (range 0 2))
*)

let exists2 p l1 l2 =
  let rec aux l1 l2 =
    match (next l1, next l2) with
    | (Cons (h1, t1), Cons(h2, t2)) -> p h1 h2 || (aux t1 t2)
    | (Nil, Nil)                    -> false
    | (Cons _, Nil) | (Nil, Cons _) -> raise (Different_list_size "LazyList.exists2")
  in aux l1 l2

let combine l1 l2 =
  let rec aux l1 l2 = match (next l1, next l2) with
    | (Cons(h1, t1), Cons(h2, t2)) -> lazy (Cons ((h1, h2), ( aux t1 t2 )))
    | (Nil,          Nil         ) -> nil
    | (Cons _, Nil) | (Nil, Cons _) -> raise (Different_list_size "LazyList.combine")
  in aux l1 l2

let uncombine l =
  let (l1, l2) = BatEnum.uncombine (enum l) in
  (of_enum l1, of_enum l2)
(*let uncombine l =
  let rec aux l = match next l with
    | Cons ((h1, h2), t) -> lazy (let (t1, t2) = aux t in
                    Cons (h1, t1), Cons(h2, t2))
    | Nil                -> lazy (Nil, Nil)
  in aux l*)

(*let uncombine l =
  unfold l (fun l -> match peek l with
          | None -> None
          | Cons (h1, h2), t*)


let print ?(first="[^") ?(last="^]") ?(sep="; ") print_a out t =
  BatEnum.print ~first ~last ~sep print_a out (enum t)

module Infix = struct
  let ( ^:^ ), ( ^@^ ) = ( ^:^ ), ( ^@^ )
end

module Exceptionless = struct
  (** Exceptionless counterparts for error-raising operations*)

  let find   = may_find
  let rfind  = may_rfind
  let findi  = may_findi
  let rfindi = may_rfindi

  let at list n =
    let rec aux list i =
      match (next list, i) with
      | (Cons (x, _), 0) -> `Ok x
      | (Cons (_, t), _) -> aux t (i - 1)
      | (Nil, _) -> `Invalid_index n
    in if n < 0 then `Invalid_index n else aux list n

  let assoc a (l:'a t) =
    try  Some (assoc a l)
    with Not_found -> None

  let assq a l =
    try  Some (assq a l)
    with Not_found -> None

  let split_at n l =
    try  `Ok (split_at n l)
    with Not_found -> `Invalid_index n
end

module Labels = struct
  let iter ~f x         = iter f x
  let iter2 ~f x        = iter2 f x
  let iteri ~f x        = iteri f x
  let map   ~f x        = map   f x
  let map2  ~f x        = map2  f x
  let mapi   ~f x       = mapi  f x
  let filter ~f         = filter f
  let exists ~f         = exists f
  let exists2 ~f        = exists2 f
  let for_all ~f        = for_all f
  let for_all2 ~f       = for_all2 f
  let filter_map ~f     = filter_map f
  let find ~f           = find f
  let findi ~f          = findi f
  let rfind ~f          = rfind f
  let rfindi ~f         = rfindi f
  let find_exn ~f       = find_exn f
  let rfind_exn ~f      = rfind_exn f
  let remove_if ~f      = remove_if f
  let remove_all_such ~f= remove_all_such f
  let take_while      ~f= take_while f
  let drop_while      ~f= drop_while f
  let fold_left ~f ~init  = fold_left f init
  let fold_right ~f ~init = fold_right f init
  let fold_left2 ~f ~init = fold_left2 f init
  let fold_right2 ~f l1 l2 ~init = fold_right2 f l1 l2 init

  module Exceptionless = struct
    let find   ~f = Exceptionless.find f
    let rfind  ~f = Exceptionless.rfind f
    let findi  ~f = Exceptionless.findi f
    let rfindi ~f = Exceptionless.rfindi f

    let assq      = Exceptionless.assq
    let assoc     = Exceptionless.assoc
    let at        = Exceptionless.at
    let split_at  = Exceptionless.split_at

  end

end
OCaml

Innovation. Community. Security.