Source file batSplay.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
module List = struct include List include BatList end
module Enum = BatEnum
type 'a bst = Empty | Node of 'a bst * 'a * 'a bst
let size =
let rec count tr k = match tr with
| Empty -> k 0
| Node (l, _, r) ->
count l (fun m -> count r (fun n -> k (1 + m + n)))
in
fun tr -> count tr (fun n -> n)
let bst_append l r =
let rec cat = function
| Empty -> r
| Node (l, x, r) -> Node (l, x, cat r)
in
cat l
type 'a step =
| Left of 'a * 'a bst
| Right of 'a bst * 'a
type 'a cursor = C of 'a step list * 'a bst
let rec top' cx t = match cx with
| [] -> t
| (Left (p, pr) :: cx) ->
top' cx (Node (t, p, pr))
| (Right (pl, p) :: cx) ->
top' cx (Node (pl, p, t))
let top (C (cx, t)) = top' cx t
let rec csplay' cx l r = match cx with
| [] ->
(l, r)
| [Left (p, pr)] ->
(l, Node (r, p, pr))
| [Right (pl, px)] ->
(Node (pl, px, l), r)
| (Left (px, pr) :: Left (ppx, ppr) :: cx) ->
* zig zig *)
let r = Node (r, px, Node (pr, ppx, ppr)) in
csplay' cx l r
| (Left (px, pr) :: Right (ppl, ppx) :: cx) ->
* zig zag *)
let l = Node (ppl, ppx, l) in
let r = Node (r, px, pr) in
csplay' cx l r
| (Right (pl, px) :: Right (ppl, ppx) :: cx) ->
* zig zig *)
let l = Node (Node (ppl, ppx, pl), px, l) in
csplay' cx l r
| (Right (pl, px) :: Left (ppx, ppr) :: cx) ->
* zig zag *)
let l = Node (pl, px, l) in
let r = Node (r, ppx, ppr) in
csplay' cx l r
let csplay = function
| C (cx, Node (l, x, r)) ->
let l', r' = csplay' cx l r in
Node (l', x, r')
| _ -> raise Not_found
let rec cfind ?(cx=[]) ~sel = function
| Empty -> C (cx, Empty)
| Node (l, x, r) as node ->
let sx = sel x in
if sx = 0 then C (cx, node)
else if sx < 0 then cfind ~cx:(Left (x, r) :: cx) ~sel l
else cfind ~cx:(Right (l, x) :: cx) ~sel r
module StrongRef : sig
type +
##V>=4.12## !
'a t
val ref : 'a -> 'a t
val get : 'a t -> 'a
val set : 'a t -> 'a -> unit
end = struct
type 'a t = { ref : 'a }
type 'a mut = { mutable mut_ref : 'a }
let ref (x : 'a) = (Obj.magic { mut_ref = x } : 'a t)
let get r = r.ref
let set (r : 'a t) v = (Obj.magic r : 'a mut).mut_ref <- v
end
module Map (Ord : BatInterfaces.OrderedType) =
struct
type key = Ord.t
type 'a map = (key * 'a) bst
type 'a t = 'a map StrongRef.t
let sget = StrongRef.get
let sref = StrongRef.ref
let empty = sref Empty
let is_empty m =
let tr = sget m in
tr = Empty
let ksel j (k, _) = Ord.compare j k
let singleton' k v = Node (Empty, (k, v), Empty)
let singleton k v = sref (singleton' k v)
let add k v tr =
let tr = sget tr in
sref begin
csplay begin
match cfind ~sel:(ksel k) tr with
| C (cx, Node (l, (k, _), r)) -> C (cx, Node (l, (k, v), r))
| C (cx, Empty) -> C (cx, singleton' k v)
end
end
let modify k fn tr =
let tr = sget tr in
sref begin
csplay begin
match cfind ~sel:(ksel k) tr with
| C (cx, Node (l, (k, v), r)) -> C (cx, Node (l, (k, fn v), r))
| C (_cx, Empty) -> raise Not_found
end
end
let modify_def def k fn tr =
let tr = sget tr in
sref begin
csplay begin
match cfind ~sel:(ksel k) tr with
| C (cx, Node (l, (k, v), r)) -> C (cx, Node (l, (k, fn v), r))
| C (cx, Empty) -> C (cx, singleton' k (fn def))
end
end
let modify_opt k fn tr =
let tr = sget tr in
sref begin
try
match cfind ~sel:(ksel k) tr with
| C (cx, Node (l, (k, v), r)) -> begin
match fn (Some v) with
| Some v' -> csplay (C (cx, Node (l, (k, v'), r)))
| None -> bst_append l r
end
| C (cx, Empty) ->
match fn None with
| Some v -> csplay (C (cx, singleton' k v))
| None -> raise Exit
with Exit -> tr
end
let rebalance m tr =
StrongRef.set m tr
let find k m =
let tr = sget m in
let tr = csplay (cfind ~sel:(ksel k) tr) in
match tr with
| Node (_, (_, v), _) ->
rebalance m tr;
v
| _ -> raise Not_found
let find_opt k m =
try Some (find k m)
with Not_found -> None
let find_default def k m =
try find k m
with Not_found -> def
let rec find_first_helper_found f kv map = function
| Node (l, (k, v), r) ->
if f k
then find_first_helper_found f (k, v) map l
else find_first_helper_found f kv map r
| Empty ->
ignore(find (fst kv) map);
kv
let find_first f (map : 'a t) =
let rec loop_notfound f = function
| Node(l, (k, v), r) ->
if f k
then find_first_helper_found f (k, v) map l
else loop_notfound f r
| Empty -> raise Not_found in
loop_notfound f (sget map)
let find_first_opt f map =
let rec loop_notfound f = function
| Node(l, (k, v), r) ->
if f k
then Some (find_first_helper_found f (k, v) map l)
else loop_notfound f r
| Empty -> None in
loop_notfound f (sget map)
let rec find_last_helper_found f kv map = function
| Node (l, (k, v), r) ->
if f k
then find_last_helper_found f (k, v) map r
else find_last_helper_found f kv map l
| Empty ->
ignore(find (fst kv) map);
kv
let find_last f (map : 'a t) =
let rec loop_notfound f = function
| Node(l, (k, v), r) ->
if f k
then find_last_helper_found f (k, v) map r
else loop_notfound f l
| Empty -> raise Not_found in
loop_notfound f (sget map)
let find_last_opt f map =
let rec loop_notfound f = function
| Node(l, (k, v), r) ->
if f k
then Some (find_last_helper_found f (k, v) map r)
else loop_notfound f l
| Empty -> None in
loop_notfound f (sget map)
let cchange fn (C (cx, t)) = C (cx, fn t)
let remove k tr =
let tr = sget tr in
let replace = function
| Empty -> Empty
| Node (l, _, r) -> bst_append l r
in
let tr = top (cchange replace (cfind ~sel:(ksel k) tr)) in
sref tr
let remove_exn k tr =
let tr = sget tr in
let replace = function
| Empty -> raise Not_found
| Node (l, _, r) -> bst_append l r
in
let tr = top (cchange replace (cfind ~sel:(ksel k) tr)) in
sref tr
let update k1 k2 v2 tr =
if Ord.compare k1 k2 <> 0 then
add k2 v2 (remove k1 tr)
else
let tr = sget tr in
sref begin
csplay begin
match cfind ~sel:(ksel k1) tr with
| C (cx, Node (l, _kv, r)) -> C (cx, Node (l, (k2, v2), r))
| C (_cx, Empty) -> raise Not_found
end
end
let update_stdlib k f m =
match f (find_opt k m) with
| Some x -> add k x m
| None -> remove k m
let mem k m =
try ignore (find k m) ; true with Not_found -> false
let iter fn tr =
let tr = sget tr in
let rec visit = function
| Empty -> ()
| Node (l, (k, v), r) ->
visit l ;
fn k v ;
visit r
in
visit tr
let fold fn tr acc =
let tr = sget tr in
let rec visit acc = function
| Empty -> acc
| Node (l, (k, v), r) ->
let acc = visit acc l in
let acc = fn k v acc in
visit acc r
in
visit acc tr
let min_binding tr =
let tr = sget tr in
let rec bfind = function
| Node (Empty, kv, _) -> kv
| Node (l, _, _) -> bfind l
| Empty -> raise Not_found
in
bfind tr
let min_binding_opt tr =
let tr = sget tr in
let rec bfind = function
| Node (Empty, kv, _) -> Some kv
| Node (l, _, _) -> bfind l
| Empty -> None
in
bfind tr
let choose = min_binding
let choose_opt = min_binding_opt
let any tr = match sget tr with
| Empty -> raise Not_found
| Node (_, kv, _) -> kv
let pop_min_binding tr =
let mini = ref (choose tr) in
let rec bfind = function
| Node (Empty, kv, r) -> mini := kv; r
| Node (l, kv, r) -> Node (bfind l, kv, r)
| Empty -> assert(false)
in
(!mini, sref (bfind (sget tr)))
let max_binding tr =
let tr = sget tr in
let rec bfind = function
| Node (_, kv, Empty) -> kv
| Node (_, _, r) -> bfind r
| Empty -> raise Not_found
in
bfind tr
let max_binding_opt tr =
let tr = sget tr in
let rec bfind = function
| Node (_, kv, Empty) -> Some kv
| Node (_, _, r) -> bfind r
| Empty -> None
in
bfind tr
let pop_max_binding tr =
let maxi = ref (choose tr) in
let rec bfind = function
| Node (l, kv, Empty) -> maxi := kv; l
| Node (l, kv, r) -> Node (l, kv, bfind r)
| Empty -> assert(false)
in
(!maxi, sref (bfind (sget tr)))
let filter_map (f : key -> 'a -> 'b option) : 'a t -> 'b t =
let rec visit t cont = match t with
| Empty -> cont Empty
| Node (l, (k, v), r) ->
visit l begin fun l ->
let w = f k v in
visit r begin fun r ->
match w with
| None -> cont (bst_append l r)
| Some w ->
cont (Node (l, (k, w), r))
end
end
in
fun m -> visit (sget m) sref
let filterv f t =
filter_map (fun _ v -> if f v then Some v else None) t
let filter f t =
filter_map (fun k v -> if f k v then Some v else None) t
let map f t = filter_map (fun _ v -> Some (f v)) t
let mapi f t = filter_map (fun k v -> Some (f k v)) t
let partition (p : key -> 'a -> bool) : 'a t -> 'a t * 'a t =
let rec visit t cont = match t with
| Empty -> cont Empty Empty
| Node (l, ((k, v) as kv), r) ->
visit l begin fun l1 l2 ->
let b = p k v in
visit r begin fun r1 r2 ->
if b
then cont (Node (l1, kv, r1)) (bst_append l2 r2)
else cont (bst_append l1 r1) (Node (l2, kv, r2))
end
end
in
fun m ->
visit (sget m) (fun t1 t2 -> sref t1, sref t2)
type 'a enumeration =
| End
| More of key * 'a * (key * 'a) bst * 'a enumeration
let count_enum =
let rec count k = function
| End -> k
| More (_, _, tr, en) ->
count (1 + k + size tr) en
in
fun en -> count 0 en
let rec cons_enum m e = match m with
| Empty -> e
| Node (l, (k, v), r) ->
cons_enum l (More (k, v, r, e))
let rec rev_cons_enum m e = match m with
| Empty -> e
| Node (l, (k, v), r) ->
rev_cons_enum r (More (k, v, l, e))
let rec cons_enum_from k2 m e =
match m with
| Empty -> e
| Node (l, (k, v), r) ->
if Ord.compare k2 k <= 0
then cons_enum_from k2 l (More (k, v, r, e))
else cons_enum_from k2 r e
let compare cmp tr1 tr2 =
let tr1, tr2 = sget tr1, sget tr2 in
let rec aux e1 e2 = match (e1, e2) with
| (End, End) -> 0
| (End, _) -> -1
| (_, End) -> 1
| (More (v1, d1, r1, e1), More (v2, d2, r2, e2)) ->
let c = Ord.compare v1 v2 in
if c <> 0 then c else
let c = cmp d1 d2 in
if c <> 0 then c else
aux (cons_enum r1 e1) (cons_enum r2 e2)
in aux (cons_enum tr1 End) (cons_enum tr2 End)
let equal cmp tr1 tr2 =
let tr1, tr2 = sget tr1, sget tr2 in
let rec aux e1 e2 =
match (e1, e2) with
(End, End) -> true
| (End, _) -> false
| (_, End) -> false
| (More (v1, d1, r1, e1), More (v2, d2, r2, e2)) ->
Ord.compare v1 v2 = 0 && cmp d1 d2 &&
aux (cons_enum r1 e1) (cons_enum r2 e2)
in aux (cons_enum tr1 End) (cons_enum tr2 End)
let rec enum_bst cfn en =
let cur = ref en in
let next () = match !cur with
| End -> raise Enum.No_more_elements
| More (k, v, r, e) ->
cur := cfn r e ;
(k, v)
in
let count () = count_enum !cur in
let clone () = enum_bst cfn !cur in
Enum.make ~next ~count ~clone
let enum tr = enum_bst cons_enum (cons_enum (sget tr) End)
let backwards tr = enum_bst rev_cons_enum (rev_cons_enum (sget tr) End)
let keys m = Enum.map fst (enum m)
let values m = Enum.map snd (enum m)
let of_enum e = Enum.fold begin
fun acc (k, v) -> add k v acc
end empty e
let to_list m = List.of_enum (enum m)
let of_list l = of_enum (List.enum l)
let add_to_list x data m =
let add = function None -> Some [data] | Some l -> Some (data :: l) in
update_stdlib x add m
let custom_print ~first ~last ~sep kvpr out m =
Enum.print ~first ~last ~sep
(fun out (k, v) -> kvpr out k v)
out (enum m)
let print ?(first="{\n") ?(last="}\n") ?(sep=",\n") ?(kvsep=": ") kpr vpr out m =
custom_print ~first ~last ~sep
(fun out k v -> BatPrintf.fprintf out "%a%s%a" kpr k kvsep vpr v)
out m
let print_as_list kpr vpr out m =
print ~first:"[" ~last:"]" ~sep:"; " ~kvsep:", " kpr vpr out m
module Labels = struct
let add ~key ~data t = add key data t
let iter ~f t = iter (fun key data -> f ~key ~data) t
let map ~f t = map f t
let mapi ~f t = mapi (fun key data -> f ~key ~data) t
let fold ~f t ~init =
fold (fun key data acc -> f ~key ~data acc) t init
let compare ~cmp a b = compare cmp a b
let equal ~cmp a b = equal cmp a b
let filterv ~f = filterv f
let filter ~f = filter f
end
module Exceptionless = struct
let find k m = find_opt k m
let choose m = try Some (choose m) with Not_found -> None
let any m = try Some (any m) with Not_found -> None
end
module Infix = struct
let ( --> ) m k = find k m
let ( <-- ) m (k, v) = add k v m
end
let bindings m = List.of_enum (enum m)
let exist_bool b f m =
try
iter (fun k v -> if f k v = b then raise Exit) m;
false
with Exit -> true
let exists f m = exist_bool true f m
let for_all f m = not (exist_bool false f m)
let cardinal m = fold (fun _k _v -> succ) m 0
let split k m =
let tr = sget m in
let C (cx, center) = cfind ~sel:(ksel k) tr in
match center with
| Empty ->
let l, r = csplay' cx Empty Empty in
(sref l, None, sref r)
| Node (l, x, r) ->
let l', r' = csplay' cx l r in
rebalance m (Node (l', x, r'));
(sref l', Some (snd x), sref r')
let merge f m1 m2 =
* The implementation is a bit long, but has the important
property of applying `f` in increasing key order. *)
let e1 = enum m1 in
let e2 = enum m2 in
let maybe_push acc k maybe_v1 maybe_v2 =
match f k maybe_v1 maybe_v2 with
| None -> acc
| Some v -> Node (acc, (k, v), Empty) in
let push1 acc (k, v1) = maybe_push acc k (Some v1) None in
let push2 acc (k, v2) = maybe_push acc k None (Some v2) in
let rec none_known acc =
match Enum.peek e1, Enum.peek e2 with
| None, None -> acc
| None, Some kv2 ->
Enum.junk e2;
only_e2 acc kv2
| Some kv1, None ->
Enum.junk e1;
only_e1 acc kv1
| Some kv1, Some kv2 ->
Enum.junk e1; Enum.junk e2;
both_known acc kv1 kv2
and only_e1 acc kv1 =
Enum.fold push1 (push1 acc kv1) e1
and only_e2 acc kv2 =
Enum.fold push2 (push2 acc kv2) e2
and both_known acc ((k1, v1) as kv1) ((k2, v2) as kv2) =
let cmp = Ord.compare k1 k2 in
if cmp < 0 then begin
let acc = push1 acc kv1 in
match Enum.peek e1 with
| None -> only_e2 acc kv2
| Some kv1' ->
Enum.junk e1;
both_known acc kv1' kv2
end
else if cmp > 0 then begin
let acc = push2 acc kv2 in
match Enum.peek e2 with
| None -> only_e1 acc kv1
| Some kv2' ->
Enum.junk e2;
both_known acc kv1 kv2'
end
else begin
let acc = maybe_push acc k1 (Some v1) (Some v2) in
none_known acc
end
in
sref (none_known Empty)
let pop m = match sget m with
| Empty -> raise Not_found
| Node (l, kv, r) -> kv, sref (bst_append l r)
let add_seq s m =
BatSeq.fold_left
(fun m (k, v) -> add k v m)
m
s
let of_seq s =
add_seq s empty
let rec seq_of_iter m () =
match m with
| End -> BatSeq.Nil
| More(k, v, r, e) ->
BatSeq.Cons ((k, v), seq_of_iter (cons_enum r e))
let to_seq m =
seq_of_iter (cons_enum (sget m) End)
let to_rev_seq m =
seq_of_iter (rev_cons_enum (sget m) End)
let to_seq_from k m =
seq_of_iter (cons_enum_from k (sget m) End)
let union f m1 m2 =
fold
(fun k v m ->
match find_opt k m with
| Some v1 ->
(match f k v v1 with
| Some vmerged -> add k vmerged m
| None -> remove k m)
| None -> add k v m)
m1
m2
let extract k t =
let tr = sget tr in
let maybe_v = ref None in
let replace = function
| Empty -> Empty
| Node (l, (_, v), r) ->
maybe_v := Some v;
bst_append l r
in
let tr = top (cchange replace (cfind ~sel:(ksel k) tr)) in
* like in the `remove` case, we don't bother rebalancing *)
match !maybe_v with
| None -> raise Not_found
| Some v -> v, sref tr
end