package octez-libs
A package that contains multiple base libraries used by the Octez suite
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-octez-v20.1.tag.bz2
sha256=ddfb5076eeb0b32ac21c1eed44e8fc86a6743ef18ab23fff02d36e365bb73d61
sha512=d22a827df5146e0aa274df48bc2150b098177ff7e5eab52c6109e867eb0a1f0ec63e6bfbb0e3645a6c2112de3877c91a17df32ccbff301891ce4ba630c997a65
doc/src/octez-libs.plonk/main_protocol.ml.html
Source file main_protocol.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
(*****************************************************************************) (* *) (* MIT License *) (* Copyright (c) 2022 Nomadic Labs <contact@nomadic-labs.com> *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"),*) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included *) (* in all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (*****************************************************************************) (** aPlonK is a {e PlonK}-based proving system. As such, it provides a way to create {e succinct cryptographic proofs} about a given predicate, which can be then verified with a low computational cost. In this system, a predicate is represented by an {e arithmetic circuit}, i.e. a collection of arithmetic {e gates} operating over a {e prime field}, connected through {e wires} holding {e scalars} from this field. For example, the following diagram illustrates a simple circuit checking that the addition of two scalars ([w1] and [w2]) is equal to [w0]. Here, the [add] gate can be seen as taking two inputs and producing an output, while the [eq] gate just takes two inputs and asserts they're equal. {[ (w0)│ w1│ w2│ │ └───┐ ┌───┘ │ ┌─┴───┴─┐ │ │ add │ │ └───┬───┘ └──────┐ ┌───┘w3 ┌─┴───┴─┐ │ eq │ └───────┘ ]} The wires of a circuit are called {e prover inputs}, since the prover needs an assignment of all wires to produce a proof. The predicate also declares a subset of the wires called {e verifier inputs}. In our example, wire [w0] is the only verifier input, which is indicated by the parenthesis. A proof for a given [w0] would prove the following statement: [∃ w1, w2, w3: w3 = w1 + w2 ∧ w0 = w3] This means that the verifier only needs a (typically small) subset of the inputs alongside the (succinct) proof to check the validity of the statement. A more interesting example would be to replace the [add] gate by a more complicated hash circuit. This would prove the knowledge of the pre-image of a hash. A simplified view of aPlonk's API consists of the following three functions: {[ val setup : circuit -> srs -> (prover_public_parameters, verifier_public_parameters) val prove : prover_public_parameters -> prover_inputs -> private_inputs -> proof val verify : verifier_public_parameters -> verifier_inputs -> proof -> bool ]} In addition to the prove and verify, the interface provides a function to setup the system. The setup function requires a {e Structured Reference String}. Two large SRSs were generated by the ZCash and Filecoin projects and are both used in aPlonK. Notice also that the circuit is used during setup only and, independently from its size, the resulting {e verifier_public_parameters} will be a succinct piece of data that will be posted on-chain to allow verification and they are bound to the specific circuit that generated them. The {e prover_public_parameters}'s size is linear in the size of the circuit. *) open Kzg.Bls open Kzg.Utils open Identities include Main_protocol_intf module Make_impl (PP : Polynomial_protocol.S) = struct module RangeCheck = Range_check_gate.Range_check_gate (PP) module Perm = Permutation_gate.Permutation_gate (PP) module Plook = Plookup_gate.Plookup_gate (PP) module Gates = Custom_gates module Commitment = PP.PC.Commitment module Input_commitment = Input_commitment.Make (PP.PC.Commitment) module PP = PP exception Entry_not_in_table = Plook.Entry_not_in_table exception Rest_not_null = Poly.Rest_not_null type scalar = Scalar.t [@@deriving repr] type circuit_map = (Circuit.t * int) SMap.t type proof = { perm_and_plook : Commitment.t; wires_cm : Commitment.t; pp_proof : PP.proof; } [@@deriving repr] type circuit_prover_input = { witness : scalar array; input_commitments : Input_commitment.t list; } [@@deriving repr] type prover_inputs = circuit_prover_input list SMap.t [@@deriving repr] type public_inputs = scalar array list [@@deriving repr] type circuit_verifier_input = { nb_proofs : int; public : public_inputs; commitments : Input_commitment.public list list; } [@@deriving repr] type verifier_inputs = circuit_verifier_input SMap.t [@@deriving repr] let check_circuit_name map = SMap.iter (fun name _ -> if name = "" then () else if Char.compare name.[0] '9' <= 0 then failwith (Printf.sprintf "check_circuit_name : circuit name (= '%s')" name ^ " must not begin with '\\', '#', '$', '%', '&', ''', '(', ')', \ '*', '+', ',', '-', '.', '/' or a digit.") else if String.contains name SMap.Aggregation.sep.[0] then failwith (Printf.sprintf "check_circuit_name : circuit name (= '%s') mustn't contain '%s'" name SMap.Aggregation.sep)) map let check_circuits circuits_map inputs = check_circuit_name inputs ; SMap.( iter (fun k _ -> if not (mem k circuits_map) then failwith (Printf.sprintf "check_circuits : circuit %s not found in public parameters." k))) inputs (* Returns the wire names as a string list *) let wire_names nb_wires = List.init nb_wires Plompiler.Csir.wire_name (* Convert the wire arrays into maps, keyed as in [wire_names] *) let name_wires wires_array = SMap.map (List.map (fun array -> let n = Array.length array in List.combine (wire_names n) (Array.to_list array) |> SMap.of_list)) wires_array type gate_randomness = {beta : scalar; gamma : scalar; delta : scalar} let build_gates_randomness transcript = let betas_gammas, transcript = Fr_generation.random_fr_list transcript 3 in ( { beta = List.hd betas_gammas; gamma = List.nth betas_gammas 1; delta = List.nth betas_gammas 2; }, transcript ) module Prover = struct (* - n : upper-bound on the number of constraints in a circuit - domain : n powers of an n-th root of unity - pp_public_parameters : polynomial protocol prover parameters - g_map : preprocessed polynomials for each circuit, prefixed with the circuit name ; note that this is circuit specific, but we need them together in order to commit to the whole g_map once. - g_prover_aux : auxiliary information returned when commiting to g_map. Note that the rest of the commitment is not needed by the prover. - evaluations : FFT evaluations of commonly used polynomials for all circuits, e.g. L1, Si1, Si2, Si3, X (Lnp1 for plookup). Each evaluation is on a domain that may be bigger than [domain] the size is [4n] for most polynomials and [8n] for some of them. For that, there must exist a [8n]-th root of unity in the scalar field. These evaluations does not contain g_map’s. - zk : true if we want to hide witness polynomial by adding multiple of (X^n - 1). This increases polynomials degree & may increase the the size of the evaluations domain & FFTs. - nb_of_t_chunks : number of T polynomials returned by PP - eval_points : used for the PC query ; note that the input commitments are not here, their eval_points have to be added at proof/verification time *) type common_prover_pp = { n : int; domain : Domain.t; pp_public_parameters : PP.prover_public_parameters; g_map : Poly.t SMap.t; g_prover_aux : Commitment.prover_aux; evaluations : Evaluations.t SMap.t; zk : bool; nb_of_t_chunks : int; eval_points : eval_point list list; } [@@deriving repr] (* - circuit_size : number of constraints in the circuit - input_com_sizes : the size of each input_commitment - public_input_size : the size of the public inputs - gates : map from selector names to an array of selector coefficients (one selector coefficient per constraint). The length of such array is the domain size (also n). If there are fewer constraints than n, the array is padded with 0's, except qpub, that should be [||] if there are public inputs. - tables : [tables] is a list of scalar arrays, one per wire, so the list length is Plompiler.Csir.nb_wires_arch. Each array is the concatenation of one of the columns of all Plookup tables. (One column per wire, tables which use fewer columns are completed with dummy ones). Each scalar array is a concatenation of tables - wires : an array where each of the components corresponds to a wire in the architecture and contains an array of indices (one index per constraint representing the variable that such wire takes at that constraint). Again, the length of such array is the domain size (i.e. n). If there are fewer constraints than n, the array is padded with the last array element. - permutation: indices corresponding to a permutation that preserves [wires]. Its length is [n * Plompiler.Csir.nb_wires_arch] and should be maximal in the sense that it splits in as many cycles as there are variables in the circuit. - evaluations : similar as the common_pp evaluations, but for the circuit-specific polynomials (selectors, Ss_i, plookup polys), that are contained in common_pp.g_map. - alpha : scalar used by plookup. - ultra : flag to specify whether plookup is being used. *) type circuit_prover_pp = { circuit_size : int; input_com_sizes : int list; public_input_size : int; gates : Scalar.t array SMap.t; tables : Scalar.t array list; wires : int array array; permutation : int array; rc_permutations : int array SMap.t; evaluations : Evaluations.t SMap.t; alpha : Scalar.t option; ultra : bool; range_checks : (int * int) list SMap.t; } [@@deriving repr] type public_parameters = { common_pp : common_prover_pp; circuits_map : circuit_prover_pp SMap.t; transcript : Kzg.Utils.Transcript.t; } [@@deriving repr] (* [build_all_wire_keys nb_proofs nb_wires] returns a list of prefixed wires name *) let build_all_wires_keys pp nb_proofs_map nb_wires = let names = wire_names nb_wires in List.concat_map (fun (circuit_name, n) -> let wires_keys = List.concat_map (SMap.Aggregation.build_all_names circuit_name n) names in let c = SMap.find circuit_name pp.circuits_map in let rc_keys = SMap.mapi (fun wire _ -> let n = SMap.find circuit_name nb_proofs_map in List.concat_map (SMap.Aggregation.build_all_names circuit_name n) (RangeCheck.z_names wire)) c.range_checks |> SMap.values |> List.concat in wires_keys @ rc_keys) @@ SMap.bindings nb_proofs_map (* TODO #5551 Handle Plookup *) (* For the distributed_prover *) let build_all_keys_z pp = List.concat_map (fun (c_name, c) -> let perm = List.map (SMap.Aggregation.add_prefix c_name) Perm.shared_z_names in if SMap.is_empty c.range_checks then perm else perm @ (SMap.mapi (fun wire _ -> List.map (SMap.Aggregation.add_prefix c_name) (RangeCheck.shared_z_names wire)) c.range_checks |> SMap.values |> List.concat)) (SMap.bindings pp.circuits_map) let enforce_wire_values wire_indices wire_values = try Array.map (fun l -> let w_array = Array.map (fun index -> wire_values.(index)) l in Evaluations.of_array (Array.length w_array - 1, w_array)) wire_indices with Invalid_argument _ -> failwith "Compute_wire_polynomial : x's length does not match with circuit. \ Either your witness is too short, or some indexes are greater than \ the witness size." let blind ~pp f_map = let nb_extra_blinds = List.fold_left (fun acc e -> max acc (List.length e)) 0 pp.common_pp.eval_points in let blind_list_map l = List.map (fun unblinded -> if pp.common_pp.zk then let blinded = SMap.map (Poly.blind ~nb_blinds:(1 + nb_extra_blinds) pp.common_pp.n) unblinded |> SMap.to_pair in (fst blinded, Some (snd blinded)) else (unblinded, None)) l |> List.split in SMap.map blind_list_map f_map |> SMap.to_pair let update_wires_with_rc_1 ?shifts_map pp (all_f_wires, f_wires, f_blinds, wires_list_map) = let rc_z_evals, rc_map = SMap.mapi (fun name w_list -> let circuit_pp = SMap.find name pp.circuits_map in if SMap.is_empty circuit_pp.range_checks then ([], []) else List.map (fun values -> RangeCheck.f_map_contribution_1 ~range_checks:circuit_pp.range_checks ~domain:pp.common_pp.domain ~values) w_list |> List.split) wires_list_map |> SMap.filter (fun _ x -> x <> ([], [])) |> SMap.to_pair in let rc_map, rc_blinds = blind ~pp rc_map in let all_rc_z = SMap.Aggregation.gather_maps ?shifts_map rc_map in let wires_list_map = SMap.Aggregation.add_map_list_map wires_list_map rc_z_evals in let f_wires = SMap.Aggregation.add_map_list_map f_wires rc_map in let all_f_wires = SMap.union_disjoint all_f_wires all_rc_z in let f_blinds = SMap.mapi (fun k l1 -> match SMap.find_opt k rc_blinds with | Some l2 -> List.map2 (fun a -> function | Some b -> Some (SMap.union_disjoint (Option.get a) b) | None -> None) l1 l2 | None -> l1) f_blinds in (all_f_wires, f_wires, f_blinds, wires_list_map) (* returns informations about wires, including commitment, blinds & different useful representations of wires *) let commit_to_wires ?all_keys ?shifts_map pp (inputs_map : circuit_prover_input list SMap.t) = (* wires values map list map *) let wires_list_map = SMap.mapi (fun name input -> let circuit_pp = SMap.find name pp.circuits_map in List.map (fun w -> enforce_wire_values circuit_pp.wires w.witness) input) inputs_map |> name_wires in (* wire-polynomials array list map & there blinds *) let f_wires, f_blinds = let f_wires = SMap.map (List.map (SMap.map (Evaluations.interpolation_fft pp.common_pp.domain))) wires_list_map in blind ~pp f_wires in (* all wire-polynomials gathered in a map *) let all_f_wires = SMap.Aggregation.gather_maps ?shifts_map f_wires in let all_f_wires, f_wires, f_blinds, wires_list_map = update_wires_with_rc_1 ?shifts_map pp (all_f_wires, f_wires, f_blinds, wires_list_map) in let cm_wires, cm_aux_wires = Commitment.commit ?all_keys (PP.PC.Public_parameters.get_commit_parameters pp.common_pp.pp_public_parameters) all_f_wires in (wires_list_map, f_wires, f_blinds, all_f_wires, cm_wires, cm_aux_wires) (* For each circuits, compute the shared Z polynomial *) let build_f_map_perm pp {beta; gamma; _} batched_wires = SMap.mapi (fun name values -> let circuit_pp = SMap.find name pp.circuits_map in (* Removing everything that is not wires *) let values = let wires_names = wire_names Plompiler.Csir.nb_wires_arch |> List.map String.capitalize_ascii in SMap.filter (fun k _ -> List.mem k wires_names) values in let zs = Perm.f_map_contribution ~permutation:circuit_pp.permutation ~values ~beta ~gamma ~domain:pp.common_pp.domain () in if pp.common_pp.zk then SMap.map (fun f -> fst (Poly.blind ~nb_blinds:3 pp.common_pp.n f)) zs else zs) batched_wires |> SMap.Aggregation.smap_of_smap_smap (* For each circuit, computes Plookup-specific polynomials *) let build_f_map_plook ?shifts_map pp rd wires_list_map = SMap.mapi (fun name w_list -> let circuit_pp = SMap.find name pp.circuits_map in if not circuit_pp.ultra then [] else List.map (fun wires -> let plook_map = Plook.f_map_contribution ~wires ~gates:circuit_pp.gates ~tables:circuit_pp.tables ~alpha:circuit_pp.alpha ~beta:rd.beta ~gamma:rd.gamma ~domain:pp.common_pp.domain in if pp.common_pp.zk then SMap.map (fun f -> fst (Poly.blind ~nb_blinds:3 pp.common_pp.n f)) plook_map else plook_map) w_list) wires_list_map |> SMap.Aggregation.gather_maps ?shifts_map let build_f_map_rc_2 pp rd batched_values = SMap.mapi (fun name values -> let circuit_pp = SMap.find name pp.circuits_map in if SMap.is_empty circuit_pp.range_checks then SMap.empty else let zs = RangeCheck.f_map_contribution_2 ~permutations:circuit_pp.rc_permutations ~beta:rd.beta ~gamma:rd.gamma ~domain:pp.common_pp.domain ~values in if pp.common_pp.zk then SMap.map (* 3 blinds because the polynomial is evaluated at x and gx *) (fun f -> fst (Poly.blind ~nb_blinds:3 pp.common_pp.n f)) zs else zs) batched_values |> SMap.Aggregation.smap_of_smap_smap let format_input_com (inputs_map : circuit_prover_input list SMap.t) = SMap.mapi (fun name l -> let n = List.length l in List.mapi (fun i w -> (* For each proof, transforms the list of inputs commitments into a map of the form {com_label0 -> ic0 ; com_label1 -> ic1 ; …} *) (List.mapi (fun j ic -> let name = SMap.Aggregation.add_prefix ~n ~i name (Gates.com_label ^ string_of_int j) in ( Input_commitment.(SMap.singleton name ic.prover_aux.poly), ic.prover_aux.pc_prover_aux ))) w.input_commitments) l |> List.concat) inputs_map |> SMap.values |> List.concat let build_evaluations pp f_map = (* rebuild g_maps’ evaluations *) let evaluations = SMap.fold (fun _ pp evals -> SMap.union_disjoint pp.evaluations evals) pp.circuits_map pp.common_pp.evaluations in Evaluations.compute_evaluations_update_map ~evaluations f_map let build_perm_rc2_identities pp rd = SMap.mapi (fun circuit_name circuit_pp -> (* Using the batched wires *) let wires_names = List.map String.capitalize_ascii (wire_names @@ Array.length circuit_pp.wires) in let circuit_prefix = SMap.Aggregation.add_prefix circuit_name in let perm_id = Perm.prover_identities ~circuit_prefix ~wires_names ~beta:rd.beta ~gamma:rd.gamma ~n:pp.common_pp.n () in let range_checks = circuit_pp.range_checks in if SMap.is_empty range_checks then perm_id else let rc2_ids = RangeCheck.prover_identities_2 ~range_checks ~circuit_prefix ~beta:rd.beta ~gamma:rd.gamma ~domain_size:pp.common_pp.n () in merge_prover_identities [perm_id; rc2_ids]) pp.circuits_map |> SMap.values |> merge_prover_identities let build_gates_plook_rc1_identities ?shifts_map pp rd inputs_map = let identities_map = SMap.mapi (fun circuit_name inputs_list -> let circuit_pp = SMap.find circuit_name pp.circuits_map in let wires_names = wire_names @@ Array.length circuit_pp.wires in (* Identities that must be computed for each proof *) let shift, nb_proofs = match shifts_map with | None -> (0, List.length inputs_list) | Some shifts_map -> SMap.find circuit_name shifts_map in let circuit_prefix = SMap.Aggregation.add_prefix circuit_name in let proof_prefix i = SMap.Aggregation.add_prefix ~n:nb_proofs ~i:(i + shift) circuit_name in let gates_identities = List.mapi (fun i inputs -> let input_coms_size = List.fold_left ( + ) 0 circuit_pp.input_com_sizes in let public_inputs = Array.sub inputs.witness input_coms_size circuit_pp.public_input_size in Gates.aggregate_prover_identities ~circuit_prefix ~input_coms_size ~proof_prefix:(proof_prefix i) ~gates:circuit_pp.gates ~public_inputs ~domain:pp.common_pp.domain ()) inputs_list in (* for plookup and rc, we do a mapi on the input_list & ignore the input (instead of doing a List.init nb_proofs) because for the distributed prover, the number of inputs given will differ from nb_proofs *) let plookup_identities = if not circuit_pp.ultra then [] else List.mapi (fun i _ -> Plook.prover_identities ~circuit_prefix ~proof_prefix:(proof_prefix i) ~wires_names ~alpha:circuit_pp.alpha ~beta:rd.beta ~gamma:rd.gamma ~n:pp.common_pp.n ()) inputs_list in let rc1_identities = let range_checks = circuit_pp.range_checks in if SMap.is_empty range_checks then [] else List.mapi (fun i _ -> RangeCheck.prover_identities_1 ~range_checks ~circuit_prefix ~proof_prefix:(proof_prefix i) ~domain_size:pp.common_pp.n ()) inputs_list in merge_prover_identities (rc1_identities @ plookup_identities @ gates_identities)) inputs_map in merge_prover_identities (SMap.values identities_map) let prove_parameters ~pp_prove pp ~inputs_map = let wires_list_map, f_wires, f_blinds, all_f_wires, cm_wires, cm_aux_wires = commit_to_wires pp inputs_map in (* compute beta & gamma (common for all proofs) *) let transcript = Transcript.expand Commitment.t cm_wires pp.transcript in let rd, transcript = build_gates_randomness transcript in let batched_wires = Perm.Shared_argument.build_batched_wires_values ~delta:rd.delta ~wires:wires_list_map () in (* The new batched_wires is used for the RC shared perm argument *) let f_map_contributions = let f_map_perm = build_f_map_perm pp rd batched_wires in let f_map_plook = build_f_map_plook pp rd wires_list_map in let f_map_rc2 = build_f_map_rc_2 pp rd batched_wires in SMap.union_disjoint_list [f_map_perm; f_map_plook; f_map_rc2] in let input_com_secrets = format_input_com inputs_map in let identities = let gates_plook_rc1_ids = build_gates_plook_rc1_identities pp rd inputs_map in let perm_rc2_ids = build_perm_rc2_identities pp rd in merge_prover_identities [perm_rc2_ids; gates_plook_rc1_ids] in let eval_points = pp.common_pp.eval_points @ List.map (Fun.const [X]) input_com_secrets in (* Here we introduced the use_batched_wires because f_wires does not contain rc stuff, which will be missing if batched wires polys are deduced from f_wires *) let batched_wires_polys = Perm.Shared_argument.build_batched_witness_polys ~use_batched_wires: (SMap.exists (fun _ c -> not (SMap.is_empty c.range_checks)) pp.circuits_map) ~zero_knowledge:pp.common_pp.zk ~domain:pp.common_pp.domain ~delta:rd.delta ~batched_wires ~f:(f_wires, f_blinds) () in let evaluations = build_evaluations pp (SMap.union_disjoint_list (all_f_wires :: f_map_contributions :: batched_wires_polys :: List.map fst input_com_secrets)) in let cm_perm_plook_rc, perm_plook_rc_prv_aux = PP.PC.commit pp.common_pp.pp_public_parameters f_map_contributions in let transcript = Transcript.expand Commitment.t cm_perm_plook_rc transcript in let secrets = [ (pp.common_pp.g_map, pp.common_pp.g_prover_aux); (f_map_contributions, perm_plook_rc_prv_aux); (all_f_wires, cm_aux_wires); ] @ input_com_secrets in let generator = Domain.get pp.common_pp.domain 1 in let pp_proof, _transcript = pp_prove pp.common_pp.pp_public_parameters transcript ~n:pp.common_pp.n ~generator ~secrets ~eval_points ~evaluations ~identities ~nb_of_t_chunks:pp.common_pp.nb_of_t_chunks in (pp_proof, (cm_perm_plook_rc, cm_wires, rd)) end module Verifier = struct (* - n : upper-bound on the number of constraints in a circuit - generator : primitive n-th root of unity - pp_public_parameters : polynomial protocol verifier parameters - cm_g : commitment to the preprocessed polynomials - eval_points : used for the PC query ; note that the input commitments are not here, their eval_points have to be added at proof/verification time *) type common_verifier_pp = { n : int; generator : Scalar.t; pp_public_parameters : PP.verifier_public_parameters; cm_g : Commitment.t; eval_points : eval_point list list; } [@@deriving repr] (* - gates : map of selector names ; they are binded to unit because we just need their name for the verification - alpha : scalar used by plookup. - ultra : flag to specify whether plookup is being used. - input_com_sizes : the size of each input_commitment *) type circuit_verifier_pp = { gates : unit SMap.t; alpha : Scalar.t option; ultra : bool; input_com_sizes : int list; range_checks : bool SMap.t; } [@@deriving repr] let circuit_verifier_pp_of_circuit_prover_pp (prover_pp : Prover.circuit_prover_pp) = { gates = SMap.map (Fun.const ()) prover_pp.gates; alpha = prover_pp.alpha; ultra = prover_pp.ultra; input_com_sizes = prover_pp.input_com_sizes; range_checks = SMap.map (fun l -> l <> []) prover_pp.range_checks; } let build_identities circuits_map (n, generator) rd inputs_map = let identities_map = SMap.mapi (fun circuit_name {nb_proofs; public = pi_list; _} -> assert (List.compare_length_with pi_list nb_proofs = 0) ; let circuit_pp = SMap.find circuit_name circuits_map in let circuit_prefix = SMap.Aggregation.add_prefix circuit_name in let proof_prefix i = SMap.Aggregation.add_prefix ~n:nb_proofs ~i circuit_name in let wires_names = wire_names Plompiler.Csir.nb_wires_arch in let perm_identities = Perm.verifier_identities ~circuit_prefix ~wires_names ~nb_proofs ~generator ~n ~beta:rd.beta ~gamma:rd.gamma ~delta:rd.delta () in let gates_identities = List.mapi (fun i public_inputs -> Gates.aggregate_verifier_identities ~circuit_prefix ~input_com_sizes:circuit_pp.input_com_sizes ~gates:circuit_pp.gates ~public_inputs ~generator ~size_domain:n () ~proof_prefix:(proof_prefix i)) pi_list in let plookup_identities = if not circuit_pp.ultra then [] else List.init nb_proofs (fun i -> Plook.verifier_identities ~circuit_prefix ~wires_names ~generator ~n ~alpha:circuit_pp.alpha ~beta:rd.beta ~gamma:rd.gamma ~proof_prefix:(proof_prefix i) ()) in let range_checks = circuit_pp.range_checks in if SMap.is_empty range_checks then merge_verifier_identities (perm_identities :: (plookup_identities @ gates_identities)) else let rc1_identities = List.init nb_proofs (fun i -> RangeCheck.verifier_identities_1 ~range_checks ~circuit_prefix ~proof_prefix:(proof_prefix i) ()) in let rc2_identities = RangeCheck.verifier_identities_2 ~range_checks ~circuit_prefix ~nb_proofs ~beta:rd.beta ~gamma:rd.gamma ~delta:rd.delta ~domain_size:n ~generator () in merge_verifier_identities (perm_identities :: rc2_identities :: (rc1_identities @ plookup_identities @ gates_identities))) inputs_map in merge_verifier_identities (SMap.values identities_map) let format_input_com (inputs_map : verifier_inputs) = SMap.mapi (fun name {commitments = l; _} -> let n = List.length l in List.mapi (fun i ic -> let rename j s = SMap.Aggregation.add_prefix ~n ~i name s ^ string_of_int j in List.mapi (fun j -> Commitment.rename (rename j)) ic) l |> List.concat) inputs_map |> SMap.values |> List.concat (* Assumes the same circuit, i.e. the public parameters are fixed *) let verify_parameters ((common_pp, circuits_map), transcript) inputs_map proof = (* The transcript is the same as the provers's transcript since the proof is already aggregated *) let transcript = Transcript.expand Commitment.t proof.wires_cm transcript in (* Get the same randomness for all proofs *) (* Step 1a : compute beta & gamma *) let rd, transcript = build_gates_randomness transcript in (* Step 3 : compute verifier’s identities *) let identities = build_identities circuits_map (common_pp.n, common_pp.generator) rd inputs_map in let input_commitments = format_input_com inputs_map in let commitments = [common_pp.cm_g; proof.perm_and_plook; proof.wires_cm] @ input_commitments in let eval_points = common_pp.eval_points @ List.map (Fun.const [X]) input_commitments in let transcript = Transcript.expand Commitment.t proof.perm_and_plook transcript in (transcript, identities, rd, commitments, eval_points) end type prover_public_parameters = Prover.public_parameters = { common_pp : Prover.common_prover_pp; circuits_map : Prover.circuit_prover_pp SMap.t; transcript : Transcript.t; } [@@deriving repr] type verifier_public_parameters = { common_pp : Verifier.common_verifier_pp; circuits_map : Verifier.circuit_verifier_pp SMap.t; transcript : Transcript.t; } [@@deriving repr] module Preprocess = struct let eval_points (circuits_map : Prover.circuit_prover_pp SMap.t) = let open Prover in let used_ultra = SMap.exists (fun _ c -> c.ultra) circuits_map in (* We need gX evaluation for wires if there is a next gate, or if there is a range check gate (RC.Z needs to be evaluated at X & gX and is committed with wires) *) let gx_wires = SMap.exists (fun _ c -> Gates.exists_gx_composition ~gates:c.gates || c.range_checks <> SMap.empty) circuits_map in let g_points = if used_ultra then [X; GX] else [X] in let f_points = if gx_wires then [X; GX] else [X] in [g_points; [X; GX]; f_points] let degree_evaluations ~nb_wires ~gates ~ultra = let min_deg = (* minimum size needed for permutation gate ; if we are in the gate case, nb_wires = 0 => min_perm = 1 which is the minimum degree anyway *) let min_perm = Perm.polynomials_degree ~nb_wires in if ultra then max (Plook.polynomials_degree ()) min_perm else min_perm in max min_deg (Gates.aggregate_polynomials_degree ~gates) let domain_evaluations ~zero_knowledge ~n len_evals = let zk_factor = if zero_knowledge then if n <= 2 then 4 else 2 else 1 in let len_evals = zk_factor * len_evals * n in Domain.build_power_of_two Z.(log2up (of_int len_evals)) (* Function preprocessing the circuit wires and selector polynomials; Inputs: - n: the number of constraints in the circuits + the number of public inputs - domain: the interpolation domain for polynomials of size n - l, the number of public inputs + the number of elements committed in input_commitments Outputs: - interpolated_gates: selector polynomials, prepended with 0/1s for the public inputs, interpolated on the domain - extended_gates: gates with "q_pub" selector if there is public_inputs - extended_wires: circuits wires prepended with wires corresponding to the public inputs - extended_tables: formatted tables - adapted_range_checks: range check with indexes shifted regarding public_inputs *) let preprocessing n domain (c : Circuit.t) = let l = List.fold_left ( + ) c.public_input_size c.input_com_sizes in let ql_name = Plompiler.Csir.linear_selector_name 0 in (* Updating selectors for public inputs. *) let gates = (* Define ql if undefined as it is the gate taking the public input in. *) if l > 0 && (not @@ SMap.mem ql_name c.gates) then SMap.add ql_name (Array.init c.circuit_size (fun _ -> Scalar.zero)) c.gates else c.gates in (* other preprocessed things in article are computed in prove of permutations *) let extended_gates = (* Adding 0s/1s for public inputs & input_commitments *) SMap.mapi (fun label gate -> let length_poly = Array.length gate in Array.init n (fun i -> if i < l && label = ql_name then Scalar.one else if l <= i && i < l + length_poly then gate.(i - l) else Scalar.zero)) gates in let extended_gates, _, _ = List.fold_left (fun (acc, i, k) size -> let acc = SMap.add ("qcom" ^ string_of_int i) (Array.init n (fun j -> if j >= k && j < k + size then Scalar.(negate one) else Scalar.zero)) acc in (acc, i + 1, k + size)) (extended_gates, 0, 0) c.input_com_sizes in let interpolated_gates = SMap.map (Evaluations.interpolation_fft2 domain) extended_gates in let extended_gates = if c.public_input_size = 0 then extended_gates else SMap.add_unique "qpub" [||] extended_gates in let extended_wires = let li_array = Array.init l (fun i -> i) in (* Adding public inputs and resizing *) Array.map (fun w -> pad_array (Array.append li_array w) n) c.wires in let adapted_range_checks = SMap.map (List.map (fun (i, n) -> (l + i, n))) c.range_checks in let extended_tables = if not c.ultra then [] else Plook.format_tables ~tables:c.tables ~nb_columns:Plompiler.Csir.nb_wires_arch ~length_not_padded:c.table_size ~length_padded:n in ( interpolated_gates, extended_gates, extended_wires, extended_tables, adapted_range_checks ) let preprocess_map domain domain_evals n circuits_map = (* Preprocessing wires, gates and tables *) SMap.fold (fun circuit_name (circuit, _) (prv, vrf, all_g_maps) -> (* Generating alpha for Plookup *) let alpha = if Circuit.(circuit.ultra) then Some (Scalar.random ()) else None in let gates_poly, gates, wires, tables, range_checks = preprocessing n domain circuit in (* Generating permutation *) let permutation = Perm.build_permutation wires in let rc_permutations = RangeCheck.build_permutations ~range_checks ~size_domain:n in let g_map_perm = Perm.preprocessing ~domain ~nb_wires:Plompiler.Csir.nb_wires_arch ~permutation () in let g_map_plook = if circuit.ultra then Plook.preprocessing ~domain ~tables ~alpha () else SMap.empty in let g_map_range_check = RangeCheck.preprocessing ~permutations:rc_permutations ~range_checks:circuit.range_checks ~domain in let circuit_g_map = SMap.union_disjoint_list [g_map_plook; g_map_perm; gates_poly; g_map_range_check] |> SMap.Aggregation.prefix_map circuit_name in let evaluations = Evaluations.compute_evaluations ~domain:domain_evals circuit_g_map in let prover_pp = Prover. { circuit_size = circuit.circuit_size; input_com_sizes = circuit.input_com_sizes; public_input_size = circuit.public_input_size; gates; tables; wires; evaluations; permutation; rc_permutations; alpha; ultra = circuit.ultra; range_checks; } in let verifier_pp = let gates = SMap.map (fun _ -> ()) gates in Verifier. { gates; alpha; ultra = circuit.ultra; input_com_sizes = circuit.input_com_sizes; range_checks = SMap.map (fun rc -> rc <> []) range_checks; } in ( SMap.add_unique circuit_name prover_pp prv, SMap.add_unique circuit_name verifier_pp vrf, SMap.union_disjoint all_g_maps circuit_g_map )) circuits_map SMap.(empty, empty, empty) let compute_sizes circuit_name ( Circuit. { public_input_size; input_com_sizes; circuit_size; table_size; nb_lookups; ultra; gates; range_checks; _; }, nb_proofs ) = (* Computing domain *) (* For TurboPlonk, we want a domain of size a power of two higher than or equal to the number of constraints plus public inputs. As for UltraPlonk, a domain of size stricly higher than the number of constraints (to be sure we pad the last lookup). For range-checks, we want to ensure that the domain size is greater than the "size" of the "biggest" range-checks *) let nb_max_constraints = let base_size = circuit_size + List.fold_left ( + ) public_input_size input_com_sizes + if ultra then 1 else 0 in let size_with_rc, biggest_rc_wire = SMap.fold (fun wire r (acc, rc_wire) -> let sum_bounds = (List.fold_left (fun sum (_, bound) -> sum + bound)) 0 r in if sum_bounds > acc then (sum_bounds, wire) else (acc, rc_wire)) range_checks (base_size, "") in (* if the circuit size has been increased because of the range checks we raise a warning *) let _print_warning = match biggest_rc_wire with | "" -> () | w -> Printf.printf "\n\ WARNING: Circuit %s's size has been increased to %d (initial \ size was %d) because of the range-checks on the %s wire." circuit_name size_with_rc base_size w in size_with_rc in (* For UltraPlonk, we want a domain of size a power of two higher than the number of records and strictly higher than the number of lookups *) let nb_rec_look = if ultra then max (nb_lookups + 1) table_size else 0 in let max_nb = max nb_max_constraints nb_rec_look in let log = Z.(log2up (of_int max_nb)) in let n = Int.shift_left 1 log in let pack_size = (* L1, Ssi, selectors, ultra stuff *) let nb_g_map_polys = let ultra_polys = if ultra then 2 else 0 in 1 + Plompiler.Csir.nb_wires_arch + SMap.cardinal gates + ultra_polys in let nb_extra_polys = if ultra then 5 else 1 in let online = max Plompiler.Csir.nb_wires_arch nb_extra_polys * nb_proofs in (* 5 stands for the max number of T polynomials, if we split T *) let offline = max nb_g_map_polys 5 in (* Multiply by 2 to have more than needed, just in case *) 2 * max online offline in (log, n, pack_size) let get_sizes ~zero_knowledge circuits_map = let log, n, total_pack, some_ultra = SMap.fold (fun k (c, nb_proofs) (acc_log, acc_n, acc_pack_size, acc_ultra) -> let log, n, pack_size = compute_sizes k (c, nb_proofs) in ( max acc_log log, max acc_n n, acc_pack_size + pack_size, acc_ultra || c.ultra )) circuits_map (0, 0, 0, false) in let degree_evals = SMap.fold (fun _ ((c : Circuit.t), _) acc_deg_eval -> let deg_eval = degree_evaluations ~nb_wires:Plompiler.Csir.nb_wires_arch ~gates:c.gates ~ultra:c.ultra in max acc_deg_eval deg_eval) circuits_map 0 in let domain_evals = domain_evaluations ~zero_knowledge ~n degree_evals in let domain = Domain.build_power_of_two log in let total_pack = 1 lsl Z.(log2up (of_int total_pack)) in (* Each t chunk should be of degree [n]. We remove 1 because t is divided by (X^n - 1) *) let nb_of_t_chunks = degree_evals + (if zero_knowledge then 1 else 0) - 1 in (domain, n, total_pack, domain_evals, some_ultra, nb_of_t_chunks) let setup_circuits ~zero_knowledge circuits_map ~srs = let domain, n, pack_size, domain_evals, some_ultra, nb_of_t_chunks = get_sizes ~zero_knowledge circuits_map in let evaluations = (* Add X evaluations, which is the domain needed for other evaluations *) let evaluations = SMap.singleton "X" (Evaluations.of_domain domain_evals) in (* Add L₁, Sid₁, Sid₂, Sid₃, Sid₄, Sid₅ *) let evaluations = Perm.common_preprocessing ~nb_wires:Plompiler.Csir.nb_wires_arch ~domain ~evaluations in (* if ultra add L_n_plus_1 *) if some_ultra then Plook.common_preprocessing ~n ~domain ~evaluations else evaluations in let pp_prv, pp_vrf, g_map = preprocess_map domain domain_evals n circuits_map in (* Generating public parameters *) let pp_prover, pp_verifier, transcript = PP.setup ~setup_params:pack_size ~srs in let cm_g, g_prover_aux = PP.PC.commit pp_prover g_map in let eval_points = eval_points pp_prv in let common_prv = Prover. { n; domain; pp_public_parameters = pp_prover; evaluations; g_map; g_prover_aux; zk = zero_knowledge; nb_of_t_chunks; eval_points; } in let common_vrf = Verifier. { n; generator = Domain.get domain 1; pp_public_parameters = pp_verifier; cm_g; eval_points; } in ( ({common_pp = common_prv; circuits_map = pp_prv; transcript} : prover_public_parameters), {common_pp = common_vrf; circuits_map = pp_vrf; transcript} ) end let to_verifier_inputs (pp : prover_public_parameters) = let extract name (secrets : circuit_prover_input list) : circuit_verifier_input = let c = SMap.find name pp.circuits_map in let ic_size = List.fold_left ( + ) 0 c.input_com_sizes in let public = List.map (fun s -> Array.sub s.witness ic_size c.public_input_size) secrets in let nb_proofs = List.length public in let commitments = if List.exists (fun c -> c.input_commitments <> []) secrets then List.map (fun s -> List.map (fun (c : Input_commitment.t) -> c.public) s.input_commitments) secrets else [] in {nb_proofs; public; commitments} in SMap.mapi extract let input_commit ?size ?shift (pp : prover_public_parameters) secret = Input_commitment.commit ?size ?shift (PP.PC.Public_parameters.get_commit_parameters pp.common_pp.pp_public_parameters) pp.common_pp.n secret let update_prover_public_parameters repr x (pp : prover_public_parameters) = {pp with transcript = Transcript.expand repr x pp.transcript} let update_verifier_public_parameters repr x (pp : verifier_public_parameters) = {pp with transcript = Transcript.expand repr x pp.transcript} (* [filter_pp_circuits pp inputs_map] returns [pp] without the circuits that don’t appear in [inputs_map]’s keys *) let filter_prv_pp_circuits (pp : prover_public_parameters) inputs_map = check_circuits pp.circuits_map inputs_map ; {pp with circuits_map = SMap.sub_map inputs_map pp.circuits_map} let filter_vrf_pp_circuits pp inputs_map = check_circuits pp.circuits_map inputs_map ; {pp with circuits_map = SMap.sub_map inputs_map pp.circuits_map} let setup ~zero_knowledge circuits_map ~srs = check_circuit_name circuits_map ; Preprocess.setup_circuits ~zero_knowledge circuits_map ~srs (* inputs is a map between circuit names to list of public inputs *) let prove (pp : prover_public_parameters) ~inputs = check_circuit_name pp.circuits_map ; (* add the verifier inputs to the transcript *) let pp = { pp with transcript = Transcript.expand verifier_inputs_t (to_verifier_inputs pp inputs) pp.transcript; } in let pp_proof, (perm_and_plook, wires_cm, _) = Prover.prove_parameters ~pp_prove:PP.prove (filter_prv_pp_circuits pp inputs) ~inputs_map:inputs in {perm_and_plook; wires_cm; pp_proof} let verify pp ~inputs proof = check_circuit_name pp.circuits_map ; let circuits_map = SMap.sub_map inputs pp.circuits_map in (* add the verifier inputs to the transcript *) let transcript = let inputs = SMap.map (fun i -> if List.exists (fun c -> c <> []) i.commitments then i else {i with commitments = []}) inputs in Transcript.expand verifier_inputs_t inputs pp.transcript in let transcript, identities, _, commitments, eval_points = Verifier.verify_parameters ((pp.common_pp, circuits_map), transcript) inputs proof in PP.verify pp.common_pp.pp_public_parameters transcript ~n:pp.common_pp.n ~generator:pp.common_pp.generator ~commitments ~identities ~eval_points proof.pp_proof |> fst let scalar_encoding = Data_encoding.( conv Scalar.to_bytes Scalar.of_bytes_exn (Fixed.bytes Scalar.size_in_bytes)) let data_encoding_of_repr repr = Data_encoding.conv (Plompiler.Utils.to_bytes repr) (Plompiler.Utils.of_bytes repr) Data_encoding.bytes let proof_encoding = data_encoding_of_repr proof_t let verifier_public_parameters_encoding = data_encoding_of_repr verifier_public_parameters_t module Internal_for_tests = struct let mutate_vi verifier_inputs = (* TODO we could do a more randomized search *) let key, {nb_proofs; public; commitments} = SMap.choose verifier_inputs in match public with | head :: tail -> if head = [||] then None (* empty public inputs *) else let new_head = Array.copy head in new_head.(0) <- Scalar.(add one new_head.(0)) ; let public = new_head :: tail in let inputs = {nb_proofs; public; commitments} in Some (SMap.add key inputs verifier_inputs) | [] -> failwith "mutate_vi : all circuits should have verifier inputs." end end module Make : functor (PP : Polynomial_protocol.S) -> S with type public_inputs = Scalar.t array list = Make_impl include Make (Polynomial_protocol)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>