package octez-libs
A package that contains multiple base libraries used by the Octez suite
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-octez-v20.1.tag.bz2
sha256=ddfb5076eeb0b32ac21c1eed44e8fc86a6743ef18ab23fff02d36e365bb73d61
sha512=d22a827df5146e0aa274df48bc2150b098177ff7e5eab52c6109e867eb0a1f0ec63e6bfbb0e3645a6c2112de3877c91a17df32ccbff301891ce4ba630c997a65
doc/src/octez-libs.plonk/circuit.ml.html
Source file circuit.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
(*****************************************************************************) (* *) (* MIT License *) (* Copyright (c) 2022 Nomadic Labs <contact@nomadic-labs.com> *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"),*) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included *) (* in all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (*****************************************************************************) open Plompiler.Csir module SMap = Kzg.SMap (* We assert here that all modules/selectors have been used. The "+2" is to take into account lookup selectors which are not defined in plonk/gates/custom_gates.ml The "-1" is to remove the Public_gate, which is not used *) let () = assert ( List.compare_length_with CS.all_selectors Custom_gates.(nb_custom_gates - 1 - nb_input_com + 2) = 0) let gates_to_string m = SMap.fold (fun k v s -> s ^ k ^ " " ^ String.concat "," (List.map Scalar.to_string v) ^ "\n") m "" module Circuit : sig type t = private { wires : int array array; gates : Scalar.t array SMap.t; tables : Scalar.t array list list; public_input_size : int; input_com_sizes : int list; circuit_size : int; table_size : int; nb_lookups : int; ultra : bool; range_checks : (int * int) list SMap.t; } val make_gates : ?qc:Scalar.t list -> ?linear:(int * Scalar.t list) list -> ?linear_g:(int * Scalar.t list) list -> ?qm:Scalar.t list -> ?qx2b:Scalar.t list -> ?qx5a:Scalar.t list -> ?qx5c:Scalar.t list -> ?qecc_ws_add:Scalar.t list -> ?qecc_ed_add:Scalar.t list -> ?qecc_ed_cond_add:Scalar.t list -> ?qbool:Scalar.t list -> ?qcond_swap:Scalar.t list -> ?q_anemoi:Scalar.t list -> ?q_mod_add:(string * Scalar.t list) list -> ?q_mod_mul:(string * Scalar.t list) list -> ?q_plookup:Scalar.t list -> ?q_table:Scalar.t list -> ?precomputed_advice:Scalar.t list SMap.t -> unit -> Scalar.t list SMap.t val make : wires:int list array -> gates:Scalar.t list SMap.t -> ?tables:Scalar.t array list list -> public_input_size:int -> ?input_com_sizes:int list -> ?range_checks:(int * int) list SMap.t -> unit -> t val get_nb_of_constraints : t -> int (* /////////////////////////////////////////////////////////////////////// *) val get_selectors : t -> string list val sat : LibCircuit.cs_result -> Scalar.t array -> bool val to_plonk : Plompiler.LibCircuit.cs_result -> t end = struct type t = { wires : int array array; gates : Scalar.t array SMap.t; tables : Scalar.t array list list; public_input_size : int; input_com_sizes : int list; circuit_size : int; table_size : int; nb_lookups : int; ultra : bool; range_checks : (int * int) list SMap.t; } let get_selectors circuit = SMap.keys circuit.gates let make_gates ?(qc = []) ?(linear = []) ?(linear_g = []) ?(qm = []) ?(qx2b = []) ?(qx5a = []) ?(qx5c = []) ?(qecc_ws_add = []) ?(qecc_ed_add = []) ?(qecc_ed_cond_add = []) ?(qbool = []) ?(qcond_swap = []) ?(q_anemoi = []) ?(q_mod_add = []) ?(q_mod_mul = []) ?(q_plookup = []) ?(q_table = []) ?(precomputed_advice = SMap.empty) () = if q_anemoi <> [] && SMap.(is_empty precomputed_advice) then failwith "Make_gates : q_anemoi must come with advice selectors." ; (* Filtering and mapping selectors with labels. *) let gate_list = CS.q_list ~qc ~linear ~linear_g ~qm ~qx2b ~qx5a ~qx5c ~qecc_ws_add ~qecc_ed_add ~qecc_ed_cond_add ~qbool ~qcond_swap ~q_anemoi ~q_mod_add ~q_mod_mul ~q_plookup () in let add_map map (label, q) = match q with | [] -> map | l -> if List.for_all Scalar.is_zero l then map else SMap.add label q map in let base = if q_table = [] then SMap.empty else SMap.singleton "q_table" q_table in List.fold_left add_map base (gate_list @ SMap.bindings precomputed_advice) (* If public_input_size is greater than 0, selector ql will be added if not already present. Wires and gates cannot be empty and must all have the same length. *) let make ~wires ~gates ?(tables = []) ~public_input_size ?(input_com_sizes = []) ?(range_checks = SMap.empty) () = if Array.length wires = 0 then raise @@ Invalid_argument "Make Circuit: empty wires." ; if SMap.is_empty gates then raise @@ Invalid_argument "Make Circuit: empty gates." ; (* We infer the circuit size from the length of the first wire *) let circuit_size = List.length wires.(0) in if Int.equal circuit_size 0 then raise (Invalid_argument "Make Circuit: empty circuit.") ; let wires = Array.map Array.of_list wires in let nb_wires = Array.length wires in (* Check that all wires have same size *) Array.iter (fun l -> if Array.length l <> circuit_size then raise (Invalid_argument "Make Circuit: different length wires.")) wires ; (* Add missing wires if omitted to have exactly [Csir.nb_wires_arch] *) let unused_wires = Array.init (Plompiler.Csir.nb_wires_arch - Array.length wires) (fun _ -> Array.init circuit_size (Fun.const 0)) in let wires = Array.concat [wires; unused_wires] in (* Filter out null gates *) let gates = SMap.filter_map (fun label -> function | [] -> None | q -> if label = "q_table" then Some (Array.of_list q) else if List.exists (fun s -> not (Scalar.is_zero s)) q then Some (Array.of_list q) else None) gates in (* Check that all selectors have the same size, and that they are available. *) let () = SMap.iter (fun label q -> if Array.length q = circuit_size then () else raise (Invalid_argument "Make Circuit: different length gates.") ; if List.mem label (List.map fst CS.all_selectors) || String.starts_with ~prefix:Custom_gates.qadv_label label then () else raise (Invalid_argument "Make Circuit: unknown gates.")) gates in (* Check all tables' columns have the same size. *) let () = List.iter (fun l -> let sub_table_size = Array.length (List.hd l) in if List.compare_length_with l nb_wires > 0 then raise (Invalid_argument "Make Circuit: table(s) with too many columns.") ; List.iter (fun t -> if Array.length t != sub_table_size then raise (Invalid_argument "Make Circuit: table(s) with columns of different length.") else ()) l) tables in (* Check all range indexes are contained in the array & all range check’s wires are in wires *) let () = SMap.iter (fun wire_name r -> if Plompiler.Csir.int_of_wire_name wire_name >= Plompiler.Csir.nb_wires_arch then raise (Invalid_argument "Make Circuit: inconsistent range checks keys.") ; (List.iter (fun (i, _) -> if i >= circuit_size then raise (Invalid_argument "Make Circuit: inconsistent range checks indices."))) r) range_checks in (* Remove empty range-check lists from the range-check map & sort lists by index in ascending order *) let range_checks = SMap.filter_map (fun _ -> function | [] -> None | l -> Some (List.sort (fun (a, _) (b, _) -> Int.compare a b) l)) range_checks in let table_size = if tables = [] then 0 else List.fold_left (fun acc t -> acc + Array.length (List.hd t)) 0 tables in (* Determining if UltraPlonk or TurboPlonk needs to be used. *) let ultra = SMap.mem "q_plookup" gates in let nb_lookups = if not ultra then 0 else let q_plookup = SMap.find "q_plookup" gates in Array.fold_left (fun acc qi -> if Scalar.is_zero qi then acc else acc + 1) 0 q_plookup in if ultra && not (SMap.mem "q_table" gates) then raise (Invalid_argument "Make Circuit: expected table selector.") ; if ultra && tables = [] then raise (Invalid_argument "Make Circuit: tables empty.") ; if (not ultra) && (tables != [] || SMap.mem "q_table" gates) then raise (Invalid_argument "Make Circuit: table(s) given with no lookups.") ; let gates = (* Define ql if undefined as it is the gate taking the public input in. *) let ql_name = Plompiler.Csir.linear_selector_name 0 in if List.fold_left ( + ) public_input_size input_com_sizes > 0 && (not @@ SMap.mem ql_name gates) then SMap.add ql_name (Array.init circuit_size (fun _ -> Scalar.zero)) gates else gates in { circuit_size; wires; gates; tables; public_input_size; input_com_sizes; table_size; nb_lookups; ultra; range_checks; } let get_nb_of_constraints cs = Array.length cs.wires.(0) (* ////////////////////////////////////////////////////////// *) let sat_rc (cs : Plompiler.LibCircuit.cs_result) trace = let consts = Array.concat cs.cs in List.for_all (* [k] is the current wire (defined by its index) that has to be range-checked. *) (fun (k, l) -> (* [i] corresponds to the position in the wire that has to be range checked. *) List.for_all (fun (i, nb_bits) -> (* [w_idx] indicates the element of the trace that correspond to this position in this wire *) let w_idx = consts.(i).wires.(k) in Z.compare (S.to_z trace.(w_idx)) Z.(one lsl nb_bits) < 0) l) cs.range_checks let sat_gate identities gate trace tables = let open CS in let nb_cs = Array.length gate in let identities = (* For each constraint *) List.init nb_cs (fun i -> (* Retrieving its values as well as the next constraint's values *) let j = (i + 1) mod nb_cs in let ci, cj = (gate.(i), gate.(j)) in let wires = Array.map (fun w -> trace.(w)) ci.wires in let wires_g = Array.map (fun w -> trace.(w)) cj.wires in (* Folding on selectors *) List.fold_left (fun id_map (s_name, q) -> match s_name with | "q_plookup" -> id_map | "q_table" -> (* We assume there can be only one lookup per gate *) let entry : Table.entry = wires in let sub_table = List.nth tables (Scalar.to_z q |> Z.to_int) in let b = Table.mem entry sub_table in let id = [|(if b then Scalar.zero else Scalar.one)|] in SMap.add "q_table" id id_map | _ -> (* Retrieving the selector's identity name and equations *) let s_id_name, _ = Custom_gates.get_ids s_name in let s_ids = SMap.find s_id_name id_map in let precomputed_advice = SMap.of_list ci.precomputed_advice in (* Updating the identities with the equations' output *) List.iteri (fun i s -> s_ids.(i) <- Scalar.(s_ids.(i) + s)) ((Custom_gates.get_eqs s_name) ~precomputed_advice ~q ~wires ~wires_g ()) ; SMap.add s_id_name s_ids id_map) identities ci.sels) in (* Checking all identities are verified, i.e. the map contains only 0s *) List.for_all (SMap.for_all (fun _id_name id -> let b = Array.for_all Scalar.is_zero id in (* if Bool.not b then Printf.printf "\nIdentity '%s' not satisfied" id_name else () ; *) b)) identities let sat (cs : Plompiler.LibCircuit.cs_result) trace = (* We initialise a map with all ids used in the circuit *) let identities = List.fold_left (fun map m -> let id, nb_ids = Custom_gates.get_ids m in if SMap.mem id map then map else SMap.add id (Array.init nb_ids (fun _ -> Scalar.zero)) map) (SMap.singleton "q_table" [|Scalar.zero|]) Custom_gates.gates_list in let exception Constraint_not_satisfied of string in (* Checking range-checks. *) if not (sat_rc cs trace) then false else try (* We check in each gate, constraint by constraint, that all ids are satisfied *) List.iteri (fun i gate -> (* Printf.printf "\n\nGate %i: %s" i (Plompiler.Csir.CS.to_string_gate gate); *) if not @@ sat_gate identities gate trace cs.tables then (* just to exit the iter *) raise (Constraint_not_satisfied (Printf.sprintf "\nGate #%i not satisfied." i))) cs.cs ; true with Constraint_not_satisfied _ -> false let to_plonk (cs : Plompiler.LibCircuit.cs_result) = let open CS in let constraints = List.rev Array.(to_list @@ concat cs.cs) in assert (constraints <> []) ; let add_wires ws wires = if Array.length wires = 0 then Array.map (fun w -> [w]) ws else Array.map2 (fun w l -> w :: l) ws wires in let add_selectors sels map pad = (* Add to the map all new selectors with the coresponding padding (array of [pad] zeroes). *) let map = List.fold_left (fun map (k, _) -> if SMap.mem k map then map else let zeros = List.init pad (fun _ -> Scalar.zero) in SMap.add k zeros map) map sels in (* Extend every binding in the map by either add the coefficient or pad with a zero. *) SMap.fold (fun label qq map -> let q = match List.find_opt (fun (s, _) -> s = label) sels with | None -> Scalar.zero | Some (_, coeff) -> coeff in SMap.add label (q :: qq) map) map map in List.fold_left (fun (acc_wires, selectors_map, advice_map, pad) {wires; sels; precomputed_advice; label} -> ignore label ; let acc_wires = add_wires wires acc_wires in let selectors_map = add_selectors sels selectors_map pad in let advice_map = add_selectors precomputed_advice advice_map pad in (acc_wires, selectors_map, advice_map, pad + 1)) SMap.([||], empty, empty, 0) constraints |> fun (wires, selectors, advice, _) -> let gates = SMap.union_disjoint selectors advice in let tables = List.map Table.to_list cs.tables in let range_checks = List.fold_left (fun acc (w, rc) -> SMap.add (Plompiler.Csir.wire_name w) rc acc) SMap.empty cs.range_checks in make ~wires ~gates ~range_checks ~public_input_size:cs.public_input_size ~input_com_sizes:cs.input_com_sizes ~tables () end include Circuit
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>