package octez-libs
A package that contains multiple base libraries used by the Octez suite
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-octez-v20.1.tag.bz2
sha256=ddfb5076eeb0b32ac21c1eed44e8fc86a6743ef18ab23fff02d36e365bb73d61
sha512=d22a827df5146e0aa274df48bc2150b098177ff7e5eab52c6109e867eb0a1f0ec63e6bfbb0e3645a6c2112de3877c91a17df32ccbff301891ce4ba630c997a65
doc/src/octez-libs.plonk/permutation_gate.ml.html
Source file permutation_gate.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
(*****************************************************************************) (* *) (* MIT License *) (* Copyright (c) 2022 Nomadic Labs <contact@nomadic-labs.com> *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"),*) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included *) (* in all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (*****************************************************************************) open Kzg.Bls open Kzg.Utils open Identities module L = Plompiler.LibCircuit module Permutation_gate_impl (PP : Polynomial_protocol.S) = struct module PP = PP module Commitment = PP.PC.Commitment let z_name = "Z" let zg_name z_name = z_name ^ "g" let l1 = "L1" let ids_label = "Perm" let si_name, ss_name = let nb_digits = string_of_int Plompiler.Csir.nb_wires_arch |> String.length in let name prefix i = prefix ^ Csir.string_key_of_int ~nb_digits (i + 1) in (name "Si", name "Ss") let = [z_name] (* element preprocessed and known by both prover and verifier *) type public_parameters = { g_map_perm_PP : Poly.t SMap.t; cm_g_map_perm_PP : Commitment.t SMap.t; s_poly_map : Poly.t SMap.t; cm_s_poly_map : Commitment.t SMap.t; permutation : int array; } let srs_size ~zero_knowledge ~n = if zero_knowledge then n + 9 else n let one = Scalar.one let zero = Scalar.zero let mone = Scalar.negate one let quadratic_non_residues = Fr_generation.build_quadratic_non_residues @@ Plompiler.Csir.nb_wires_arch let get_k k = if k < Plompiler.Csir.nb_wires_arch then quadratic_non_residues.(k) else raise (Invalid_argument "Permutation.get_k : k must be lower than nb_wires_arch.") module Partition = struct module IntSet = Set.Make (Int) module IntMap = Map.Make (Int) type t = IntSet.t IntMap.t (* receives [wire_indices], an array of [int array], flattens its data into a concatenated array of indices [idxs] and outputs a map keyed by indices, pointing to the set of (integer) positions where the index appears in [idxs] *) let build_partition wire_indices = (* [add_IntMap i e map] adds [e] to the set bound to [i] in [map], if [i] is not bound, it binds [i] to the singleton set {e} *) let add_IntMap i e map = let set = Option.value (IntMap.find_opt i map) ~default:IntSet.empty in IntMap.add i (IntSet.add e set) map in let map, _i = Array.fold_left (fun (int_map, i) wire_indices_i -> let new_map, j = Array.fold_left (fun (map, j) h -> let new_map = add_IntMap h (i + j) map in (new_map, j + 1)) (int_map, 0) wire_indices_i in (new_map, i + j)) (IntMap.empty, 0) wire_indices in map (* returns a permutation in the form of [int array] which splits in cycles that involve the indices of each group in the given [partition], e.g. on input partition := { 0 -> { 0; 3; 4 } ; 1 -> { 1; 2 } } outputs permutation [| 3 2 1 4 0 |] *) let partition_to_permutation partition = let kn = IntMap.fold (fun _ set sum -> sum + IntSet.cardinal set) partition 0 in (* array initialisation *) let permutation = Array.make kn (-1) in let set_cycle_in_permutation _idx cycle = match IntSet.cardinal cycle with | 0 -> failwith "cycles_to_permutation_map_set : empty cycle" | 1 -> (* σ(e) = e *) let e = IntSet.choose cycle in permutation.(e) <- e | n -> let first = IntSet.min_elt cycle in let aux e (i, prec) = if i = 0 then (i + 1, e) else if i < n - 1 then ( permutation.(prec) <- e ; (i + 1, e)) else ( permutation.(prec) <- e ; permutation.(e) <- first ; (i + 1, e)) in ignore @@ IntSet.fold aux cycle (0, -1) in IntMap.iter set_cycle_in_permutation partition ; (* If cycles is a legit partition of [kn], no -1 should be left *) if Array.mem (-1) permutation then failwith "cycles is not a 'partition' of kn" else permutation end module Preprocessing = struct (* Returns the minimal (monic) polynomial L1 that satisfies L1(generator) = 1 and L1(h) = 0 for all h != generator in domain, where generator is the first non-trivial element in domain. *) let compute_l1 domain = let size_domain = Domain.length domain in let scalar_list = Array.append [|zero; one|] Array.(init (size_domain - 2) (fun _ -> zero)) in Evaluations.interpolation_fft2 domain scalar_list (* returns [sid_0, …, sid_k] *) let sid_list_non_quadratic_residues size = if size > Plompiler.Csir.nb_wires_arch then raise (Failure "sid_list_non_quadratic_residues: sid list too long") else List.init size (fun i -> Poly.of_coefficients [(get_k i, 1)]) let sid_map_non_quadratic_residues_prover size = if size > Plompiler.Csir.nb_wires_arch then raise (Failure "sid_map_non_quadratic_residues: sid map too long") else SMap.of_list (List.init size (fun i -> let k = get_k i in (si_name i, Poly.of_coefficients [(k, 1)]))) let evaluations_sid nb_sid evaluations = let domain_evals = Evaluations.find_evaluation evaluations "X" in SMap.of_list (List.init nb_sid (fun i -> let k = get_k i in (si_name i, Evaluations.mul_by_scalar k domain_evals))) let ssigma_map_non_quadratic_residues external_prefix permutation domain size = let n = Domain.length domain in let ssigma_map = SMap.of_list (List.init size (fun i -> let offset = i * n in let coeff_list = Array.init n (fun j -> let s_ij = permutation.(offset + j) in let coeff = get_k (s_ij / n) in let index = s_ij mod n in Scalar.mul coeff (Domain.get domain index)) in ( external_prefix ^ ss_name i, Evaluations.interpolation_fft2 domain coeff_list ))) in ssigma_map end module Permutation_poly = struct (* compute f' & g' = (f + β×Sid + γ) & (g + β×Sσ + γ) products with Z *) (* compute_prime computes the following z_name * (w_1 + beta * s_1 + gamma) * ... * (w_n + beta * s_n + gamma) - z_name could be either "Z" or "Zg" - evaluations contains "Z" but not "Zg" - if z_name = "Zg", we compute "Zg" as composition_gx of "Z" with 1 *) let compute_prime ~prefix res_evaluation tmp_evaluation tmp2_evaluation beta gamma evaluations wires_names s_names (z_name, this_z_name) n = let zg_name = zg_name z_name in let z_evaluation = Evaluations.find_evaluation evaluations (prefix z_name) in let _i, res_evaluation = let f_fold (i, acc_evaluation) wire_name s_name = let comp = if i = 0 && this_z_name = zg_name then 1 else 0 in let res_evaluation = (* tmp_evaluation <- wire_name + beta * s_name + gamma *) let evaluation_linear_i = Evaluations.linear ~res:tmp_evaluation ~evaluations ~poly_names:[wire_name; s_name] ~linear_coeffs:[one; beta] ~add_constant:gamma () in (* tmp2_evaluation <- acc_evaluation * evaluation_linear_i *) let acc_evaluation_new = Evaluations.mul_c ~res:tmp2_evaluation ~evaluations:[evaluation_linear_i; acc_evaluation] ~composition_gx:([0; comp], n) () in Evaluations.copy ~res:res_evaluation acc_evaluation_new in (i + 1, res_evaluation) in List.fold_left2 f_fold (0, z_evaluation) wires_names s_names in res_evaluation (* compute_Z performs the following steps in the two loops. ---------------------- | f_11 f_21 ... f_k1 | -> f_prod_1 (no need to compute as Z(g) is always one) | f_12 f_22 ... f_k2 | -> f_prod_2 = f_12 * f_22 * ... * f_k2 | ........... | -> ... | f_1n f_2n ... f_kn | -> f_prod_n = f_1n * f_2n * ... * f_kn -------------------- 1. compute f_res = [ f_prod_1; f_prod_2; ...; f_prod_n ] 2. compute g_res = [ g_prod_1; g_prod_2; ...; g_prod_n ] 3. compute f_over_g = [ f_prod_1 / g_prod_1; ...; f_prod_n / g_prod_n ] 4. apply fold_mul_array to f_over_g: [f_over_g_1; f_over_g_1 * f_over_g_2; ..; f_over_g_1 * f_over_g_2 * .. * f_over_n ] 5. as step 4 computes [Z(g); Z(g^2); ..; Z(g^n)], we need to do a rotate right by 1 (i.e., composition_gx with n - 1): [Z(g^n); Z(g); Z(g^2); ..; Z(g^{n-1})] *) let compute_Z s domain beta gamma values = let size_domain = Domain.length domain in let scalar_array_Z = let values_array = Array.of_list (SMap.values values) in let size_res = Evaluations.length values_array.(0) in assert (size_res = size_domain) ; let g_res = Array.init size_res (fun _ -> Scalar.zero) in let f_prev = ref Scalar.one in let f_res = ref Scalar.one in let tmp = Scalar.(copy one) in (* the first element of scalar_array_Z is always one *) for i = 1 to size_res - 1 do for j = 0 to Array.length values_array - 1 do let value_j_i = Evaluations.get values_array.(j) i in let v_gamma = Scalar.add gamma value_j_i in let f_coeff = let gi = Domain.get domain i in Scalar.( mul_inplace tmp gi (get_k j) ; mul_inplace gi tmp beta ; add_inplace gi gi v_gamma ; gi) in let g_coeff = let sj = s.((j * size_domain) + i) in let gj = Domain.get domain (sj mod size_domain) in Scalar.( mul_inplace tmp gj (get_k (Int.div sj size_domain)) ; mul_inplace gj tmp beta ; add_inplace gj gj v_gamma ; gj) in if j = 0 then ( f_res := f_coeff ; g_res.(i) <- g_coeff) else Scalar.( mul_inplace !f_res !f_res f_coeff ; mul_inplace g_res.(i) g_res.(i) g_coeff) done ; let f_over_g = Scalar.div_exn !f_res g_res.(i) in Scalar.( mul_inplace f_over_g f_over_g !f_prev ; g_res.(i) <- !f_prev ; f_prev := f_over_g) done ; g_res.(0) <- !f_prev ; g_res in Evaluations.interpolation_fft2 domain scalar_array_Z end (* The shared permutation argument consists of leveraging the fact that all proofs of the same circuit type share the same permutation for ensuring the copy-satisfiability. This allows us to run a single permutation argument on a linear combination of the wire polynomials of all same-circuit proofs. Namely, let a_i(X), b_i(X), c_i(X) be the wire polynomials of the i-th proof. Let delta be some scalar sampled after (and based on) a commitment to all a_i, b_i, c_i and consider batched polynomials: A(X) := \sum_i delta^{i-1} a_i(X) B(X) := \sum_i delta^{i-1} b_i(X) C(X) := \sum_i delta^{i-1} c_i(X) We will perform a single permutation argument for A, B and C. *) (* max degree needed is the degree of Perm.b, which is sum of wire’s degree plus z degree *) let polynomials_degree ~nb_wires = nb_wires + 1 let build_permutation wires = let partition = Partition.build_partition wires in Partition.partition_to_permutation partition (* d = polynomials’ max degree n = generator’s order Returns SRS of decent size, preprocessed polynomials for permutation and their commitments (g_map_perm, cm_g_map_perm (="L1" -> L₁, preprocessed polynomial for verify perm’s identity), s_poly_map, cm_s_poly_map) & those for PP (g_map_PP, cm_g_map_PP) permutation for ssigma_list computation is deducted of cycles Details for SRS size : max size needed is deg(T)+1 v polynomials all have degree 1 according to identities_list_perm[0], t has max degree of Z×fL×fR×fO ; interpolation makes polynomials of degree n-1, so Z has degree of X²×Zh = X²×(X^n - 1) which is n+2, and each f has degree of X×Zh so n+1 As a consequence, deg(T)-deg(Zs) = (n+2)+3(n+1) - n = 3n+5 (for gates’ identity verification, max degree is degree of qM×fL×fR which is (n-1)+(n+1)+(n+1) < 3n+5) *) let preprocessing ?(external_prefix = "") ~domain ~permutation ~nb_wires () = Preprocessing.ssigma_map_non_quadratic_residues external_prefix permutation domain nb_wires let common_preprocessing ~nb_wires ~domain ~evaluations = let sid_evals = Preprocessing.evaluations_sid nb_wires evaluations in let evaluations = SMap.union_disjoint evaluations sid_evals in let l1_map = SMap.singleton l1 @@ Preprocessing.compute_l1 domain in Evaluations.compute_evaluations_update_map ~evaluations l1_map let external_prefix_fun ext s = (* This is used to differenciate the case where the permutation gate is called by PlonK & the case where it’s used by an other gate (ie RC) Depending on that, we want to change Z, Ss & identities names *) if s = z_name && ext <> "" then ext ^ "Perm_" ^ s else ext ^ s (* Note that this function uses a sorted version of wires_names list ; having a sorted list avoids errors when the list is not sorted as the map used to create Z *) let prover_identities ?(external_prefix = "") ?(circuit_prefix = Fun.id) ~wires_names ~beta ~gamma ~n () = let e_pref = external_prefix_fun external_prefix in fun evaluations -> let sorted_wires_names = List.sort String.compare wires_names in let z_name = e_pref z_name in let raw_z_name = z_name in let zg_name = zg_name z_name in let z_evaluation = Evaluations.find_evaluation evaluations (circuit_prefix z_name) in let z_evaluation_len = Evaluations.length z_evaluation in let tmp_evaluation = Evaluations.create z_evaluation_len in let tmp2_evaluation = Evaluations.create z_evaluation_len in let id1_evaluation = Evaluations.create z_evaluation_len in let id2_evaluation = Evaluations.create z_evaluation_len in let wires_names = List.map circuit_prefix sorted_wires_names in let identity_zfg = let nb_wires = List.length wires_names in (* changes f (resp g) array to f'(resp g') array, and multiply them together and with z (resp zg) *) let f_evaluation = let sid_names = List.init nb_wires si_name in Permutation_poly.compute_prime ~prefix:circuit_prefix tmp_evaluation id2_evaluation tmp2_evaluation beta gamma evaluations wires_names sid_names (raw_z_name, z_name) n in let g_evaluation = let ss_names = List.init nb_wires (fun i -> circuit_prefix @@ e_pref (ss_name i)) in Permutation_poly.compute_prime ~prefix:circuit_prefix id2_evaluation id1_evaluation tmp2_evaluation beta gamma evaluations wires_names ss_names (raw_z_name, zg_name) n in Evaluations.linear_c ~res:id1_evaluation ~evaluations:[f_evaluation; g_evaluation] ~linear_coeffs:[one; mone] () in let identity_l1_z = let l1_evaluation = Evaluations.find_evaluation evaluations l1 in let z_mone_evaluation = Evaluations.linear_c ~res:tmp_evaluation ~evaluations:[z_evaluation] ~add_constant:mone () in Evaluations.mul_c ~res:id2_evaluation ~evaluations:[l1_evaluation; z_mone_evaluation] () in SMap.of_list [ (circuit_prefix (e_pref "Perm.a"), identity_l1_z); (circuit_prefix (e_pref "Perm.b"), identity_zfg); ] let verifier_identities ?(external_prefix = "") ?(circuit_prefix = Fun.id) ~nb_proofs ~generator ~n ~wires_names ~beta ~gamma ~delta () = let wires_names = List.sort String.compare wires_names in let e_pref = external_prefix_fun external_prefix in let prefix_j i = SMap.Aggregation.add_prefix ~no_sep:true ~n:nb_proofs ~i (circuit_prefix "") in let z_name = e_pref z_name in let ss_names = List.init (List.length wires_names) (fun i -> e_pref (ss_name i)) in fun x answers -> let get_ss i = get_answer answers X (circuit_prefix @@ List.nth ss_names i) in (* compute the delta-aggregated wire evaluations at x for each wire name *) let batched = let wire_j w j = get_answer answers X @@ prefix_j j w in List.map (fun w -> Fr_generation.batch delta (List.init nb_proofs (wire_j w))) wires_names in let z = get_answer answers X (circuit_prefix z_name) in let zg = get_answer answers GX (circuit_prefix z_name) in (* compute the first identity: (Z(x) - 1) * L1(x) *) let res1 = let l1 = let n = Z.of_int n in let l1_num = Scalar.(generator * sub (pow x n) one) in let l1_den = Scalar.(of_z n * sub x generator) in Scalar.div_exn l1_num l1_den in Scalar.(sub z one * l1) in (* compute the second identity *) let res2 = let z_factors = List.mapi Scalar.(fun i w -> w + (beta * get_k i * x) + gamma) batched in let zg_factors = List.mapi Scalar.(fun i w -> w + (beta * get_ss i) + gamma) batched in let multiply l = List.fold_left Scalar.mul (List.hd l) (List.tl l) in Scalar.sub (multiply @@ (z :: z_factors)) (multiply @@ (zg :: zg_factors)) in SMap.of_list [ (circuit_prefix (e_pref "Perm.a"), res1); (circuit_prefix (e_pref "Perm.b"), res2); ] let f_map_contribution ?(external_prefix = "") ~permutation ~values ~beta ~gamma ~domain () = SMap.singleton (external_prefix_fun external_prefix z_name) (Permutation_poly.compute_Z permutation domain beta gamma values) let cs ?(external_prefix = "") ~l1 ~ss_list ~beta ~gamma ~x ~z ~zg ~aggregated_wires () = let open L in let* perm_a = Num.custom ~qr:Scalar.(negate one) ~qm:Scalar.(one) z l1 in let* perm_b = let i = ref 0 in let* left, right = fold2M (fun (left, right) ss dw -> let* betaid = Num.mul ~qm:(get_k !i) beta x in let* bsigma = Num.mul beta ss in let* wid = Num.add_list (to_list [dw; betaid; gamma]) in let* wss = Num.add_list (to_list [dw; bsigma; gamma]) in let* left = Num.mul left wid in let* right = Num.mul right wss in incr i ; ret (left, right)) (z, zg) ss_list aggregated_wires in Num.add ~qr:Scalar.(negate one) left right in ret [ (external_prefix ^ "Perm.a", perm_a); (external_prefix ^ "Perm.b", perm_b); ] end module type S = sig module PP : Polynomial_protocol.S val srs_size : zero_knowledge:bool -> n:int -> int val polynomials_degree : nb_wires:int -> int val build_permutation : int array array -> int array (* external_prefix is an additionnal prefix for Ss, Z and identities names ; it is used by Range check gate *) val preprocessing : ?external_prefix:string -> domain:Domain.t -> permutation:int array -> nb_wires:int -> unit -> Poly.t SMap.t val common_preprocessing : nb_wires:int -> domain:Domain.t -> evaluations:Evaluations.t SMap.t -> Evaluations.t SMap.t val prover_identities : ?external_prefix:string -> ?circuit_prefix:(string -> string) -> wires_names:string list -> beta:Scalar.t -> gamma:Scalar.t -> n:int -> unit -> prover_identities val verifier_identities : ?external_prefix:string -> ?circuit_prefix:(string -> string) -> nb_proofs:int -> generator:Scalar.t -> n:int -> wires_names:string list -> beta:Scalar.t -> gamma:Scalar.t -> delta:Scalar.t -> unit -> verifier_identities val f_map_contribution : ?external_prefix:string -> permutation:int array -> values:Evaluations.t SMap.t -> beta:Scalar.t -> gamma:Scalar.t -> domain:Domain.t -> unit -> Poly.t SMap.t val cs : ?external_prefix:string -> l1:L.scalar L.repr -> ss_list:L.scalar L.repr list -> beta:L.scalar L.repr -> gamma:L.scalar L.repr -> x:L.scalar L.repr -> z:L.scalar L.repr -> zg:L.scalar L.repr -> aggregated_wires:L.scalar L.repr list -> unit -> (string * L.scalar L.repr) list L.t end module Permutation_gate (PP : Polynomial_protocol.S) : S with module PP = PP = Permutation_gate_impl (PP)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>