package octez-libs
A package that contains multiple base libraries used by the Octez suite
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-octez-v20.1.tag.bz2
sha256=ddfb5076eeb0b32ac21c1eed44e8fc86a6743ef18ab23fff02d36e365bb73d61
sha512=d22a827df5146e0aa274df48bc2150b098177ff7e5eab52c6109e867eb0a1f0ec63e6bfbb0e3645a6c2112de3877c91a17df32ccbff301891ce4ba630c997a65
doc/src/octez-libs.plompiler/csir.ml.html
Source file csir.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
(*****************************************************************************) (* *) (* MIT License *) (* Copyright (c) 2022 Nomadic Labs <contact@nomadic-labs.com> *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"),*) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included *) (* in all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (*****************************************************************************) let nb_wires_arch = 6 let wire_prefix = "w" let string_key_of_int ~nb_digits i = let s = string_of_int i in wire_prefix ^ String.make (nb_digits - String.length s) '0' ^ s let wire_name i = if i < 0 || i >= nb_wires_arch then raise @@ Failure "wire_name: i must be in the range [0, nb_wires_arch)" ; string_key_of_int ~nb_digits:(String.length @@ string_of_int (nb_wires_arch - 1)) i let int_of_wire_name s = let n = String.length wire_prefix in try if String.sub s 0 n <> wire_prefix then failwith "int_of_wire_name : invalid wire name." ; int_of_string (String.sub s n (String.length s - n)) with _ -> failwith "int_of_wire_name : invalid wire name." let linear_selector_name i = "q_" ^ wire_name i let add_next_wire_suffix s = s ^ "g" module Scalar = struct include Bls12_381.Fr type scalar = t let mone = negate one let string_of_scalar s = if String.length (to_string s) < 10 then to_string s else if String.length (to_string (negate s)) < 10 then "-" ^ to_string (negate s) else "H" ^ (to_z s |> Z.hash |> string_of_int) let equal a b = Bytes.equal (to_bytes a) (to_bytes b) (* TODO https://gitlab.com/nomadic-labs/privacy-team/-/issues/183 Duplicated in plonk/bls.ml *) let t : t Repr.t = Repr.(map (bytes_of (`Fixed size_in_bytes)) of_bytes_exn to_bytes) end (* If multiple tables are used, they all need to have the same number of wires, so any smaller one will be padded. *) module Table : sig type t [@@deriving repr] val empty : t val size : t -> int type entry = Scalar.t array type partial_entry = Scalar.t option array val mem : entry -> t -> bool val find : partial_entry -> t -> entry option val to_list : t -> Scalar.t array list val of_list : Scalar.t array list -> t end = struct (* Rows are variables, columns are entries in the table. If the table is full it would be |domain|^#variables e.g. 2^5=32 Example OR gate: [ [|0; 0; 1; 1|] ; [|0; 1; 0; 1|] ; [|0; 1; 1; 1|] ; [|0; 0; 0; 0|] ; ... [|0; 0; 0; 0|] ; ] *) type entry = Scalar.t array type partial_entry = Scalar.t option array type t = Scalar.t array array [@@deriving repr] let empty = [||] let size table = Array.length table.(0) (* Function returning the first table corresponding to the input partial entry. A partial entry is found on the table at row i if it coincides with the table values in all specified (i.e., not None) columns *) let find_entry_i : partial_entry -> t -> int -> entry option = fun pe table i -> let match_partial_entry o s = Option.(value ~default:true @@ map (Scalar.eq s) o) in if match_partial_entry pe.(0) table.(0).(i) && match_partial_entry pe.(1) table.(1).(i) && match_partial_entry pe.(2) table.(2).(i) then Some (Array.map (fun x -> x.(i)) table) else None let find pe table = (* TODO make it a binary search *) let sz = size table in let rec aux i = match i with | 0 -> find_entry_i pe table 0 | _ -> let o = find_entry_i pe table i in if Option.is_some o then o else aux (i - 1) in aux (sz - 1) let mem : entry -> t -> bool = fun entry table -> match find (Array.map (fun x -> Some x) entry) table with | Some _ -> true | None -> false let to_list table = Array.to_list table let of_list table = Array.of_list table end let table_or = Table.of_list @@ Scalar. [ [|zero; zero; one; one|]; [|zero; one; zero; one|]; [|zero; one; one; one|]; ] let table_xor = Table.of_list @@ Scalar. [ [|zero; zero; one; one|]; [|zero; one; zero; one|]; [|zero; one; one; zero|]; ] let table_band = Table.of_list @@ Scalar. [ [|zero; zero; one; one|]; [|zero; one; zero; one|]; [|zero; zero; zero; one|]; ] (* There are three ways to define a lookup table for a unary operation when nb_wires_arch = 3. Let z := f x, then: 1. x 0 z 2. x x z 3. x z 0 In this module, we choose option 1. *) let table_bnot = Table.of_list @@ Scalar.[[|zero; one|]; [|zero; zero|]; [|one; zero|]] let generate_lookup_table_op1 ~nb_bits (f : int -> int) = let n = 1 lsl nb_bits in let x = Array.init n (fun i -> i) in let y = Array.init n (fun _i -> 0) in let z = Array.map f x in List.map (Array.map Scalar.of_int) [x; y; z] let generate_lookup_table_op2 ~nb_bits (f : int -> int -> int) = let n = 1 lsl nb_bits in let x = List.init n (fun i -> Array.init n (fun _j -> i)) |> Array.concat in let y = List.init n (fun _i -> Array.init n (fun j -> j)) |> Array.concat in let z = Array.map2 f x y in List.map (Array.map Scalar.of_int) [x; y; z] let table_bnot4 = let nb_bits = 4 in let mask4 = (1 lsl nb_bits) - 1 in Table.of_list @@ generate_lookup_table_op1 ~nb_bits (fun x -> Int.(logand (lognot x) mask4)) let table_xor4 = Table.of_list @@ generate_lookup_table_op2 ~nb_bits:4 Int.logxor let table_band4 = Table.of_list @@ generate_lookup_table_op2 ~nb_bits:4 Int.logand let rotate_right ~nb_bits x y b = let a = x + (y lsl nb_bits) in let r = Int.logor (a lsr b) (a lsl ((2 * nb_bits) - b)) in let mask = (1 lsl nb_bits) - 1 in Int.logand r mask let table_rotate_right4_1 = (* x0x1x2x3 y0y1y2y3 -> x1x2x3y0 *) let nb_bits = 4 in Table.of_list @@ generate_lookup_table_op2 ~nb_bits (fun x y -> rotate_right ~nb_bits x y 1) let table_rotate_right4_2 = (* x0x1x2x3 y0y1y2y3 -> x2x3y0y1 *) let nb_bits = 4 in Table.of_list @@ generate_lookup_table_op2 ~nb_bits (fun x y -> rotate_right ~nb_bits x y 2) let table_rotate_right4_3 = (* x0x1x2x3 y0y1y2y3 -> x3y0y1y2 *) let nb_bits = 4 in Table.of_list @@ generate_lookup_table_op2 ~nb_bits (fun x y -> rotate_right ~nb_bits x y 3) module Tables = Map.Make (String) let table_registry = let t = Tables.add "or" table_or Tables.empty in let t = Tables.add "xor" table_xor t in let t = Tables.add "band" table_band t in let t = Tables.add "bnot" table_bnot t in let t = Tables.add "bnot4" table_bnot4 t in let t = Tables.add "xor4" table_xor4 t in let t = Tables.add "band4" table_band4 t in let t = Tables.add "rotate_right4_1" table_rotate_right4_1 t in let t = Tables.add "rotate_right4_2" table_rotate_right4_2 t in let t = Tables.add "rotate_right4_3" table_rotate_right4_3 t in t module CS = struct let q_list ?q_table ~qc ~linear ~linear_g ~qm ~qx2b ~qx5a ~qx5c ~qecc_ws_add ~qecc_ed_add ~qecc_ed_cond_add ~qbool ~qcond_swap ~q_anemoi ~q_mod_add ~q_mod_mul ~q_plookup () = let base = [ ("qc", qc); ("qm", qm); ("qx2b", qx2b); ("qx5a", qx5a); ("qx5c", qx5c); ("qecc_ws_add", qecc_ws_add); ("qecc_ed_add", qecc_ed_add); ("qecc_ed_cond_add", qecc_ed_cond_add); ("qbool", qbool); ("qcond_swap", qcond_swap); ("q_anemoi", q_anemoi); ("q_plookup", q_plookup); ] @ List.map (fun (label, q) -> ("q_mod_add_" ^ label, q)) q_mod_add @ List.map (fun (label, q) -> ("q_mod_mul_" ^ label, q)) q_mod_mul @ List.map (fun (i, q) -> (linear_selector_name i, q)) linear @ List.map (fun (i, q) -> (linear_selector_name i |> add_next_wire_suffix, q)) linear_g in Option.(map (fun q -> ("q_table", q)) q_table |> to_list) @ base type selector_tag = | Linear | Arithmetic | ThisConstr | NextConstr | Wire of int [@@deriving repr] let all_selectors = let linear = List.init nb_wires_arch (fun i -> (i, [ThisConstr; Linear; Arithmetic; Wire i])) in let linear_g = List.init nb_wires_arch (fun i -> (i, [NextConstr; Linear; Arithmetic; Wire i])) in q_list ~qc:[ThisConstr; Arithmetic] ~linear ~linear_g ~qm:[ThisConstr; Arithmetic; Wire 0; Wire 1] ~qx2b:[ThisConstr; Arithmetic; Wire 1] ~qx5a:[ThisConstr; Arithmetic; Wire 0] ~qx5c:[ThisConstr; Arithmetic; Wire 2] ~qecc_ws_add:[ThisConstr; NextConstr; Wire 0; Wire 1; Wire 2] ~qecc_ed_add:[ThisConstr; NextConstr; Wire 0; Wire 1; Wire 2] ~qecc_ed_cond_add: [ThisConstr; NextConstr; Wire 0; Wire 1; Wire 2; Wire 3; Wire 4] ~qbool:[ThisConstr; Wire 0] ~qcond_swap:[ThisConstr; Wire 0; Wire 1; Wire 2; Wire 3; Wire 4] ~q_anemoi:[ThisConstr; NextConstr; Wire 1; Wire 2; Wire 3; Wire 4] ~q_mod_add: (List.map (fun label -> (label, [ThisConstr; NextConstr] @ List.init 6 (fun i -> Wire i))) (* We list all the labels defined in the MOD_ARITH instantiations at the end of [lib_plompiler/gadget_mod_arith.ml] for which we want to enable addition. *) ["25519"; "64"]) ~q_mod_mul: (List.map (fun label -> (label, [ThisConstr; NextConstr] @ List.init 6 (fun i -> Wire i))) (* We list all the labels defined in the MOD_ARITH instantiations at the end of [lib_plompiler/gadget_mod_arith.ml] for which we want to enable multiplication. *) ["25519"; "64"]) ~q_plookup:[ThisConstr; Wire 0; Wire 1; Wire 2; Wire 3; Wire 4] ~q_table:[ThisConstr; Wire 0; Wire 1; Wire 2; Wire 3; Wire 4] () let = List.filter (fun (_, ) -> List.for_all (fun t -> List.mem t sel_tags) tags) all_selectors |> List.map fst let this_constr_selectors = selectors_with_tags [ThisConstr] let next_constr_selectors = selectors_with_tags [NextConstr] let this_constr_linear_selectors = selectors_with_tags [ThisConstr; Linear] let next_constr_linear_selectors = selectors_with_tags [NextConstr; Linear] let arithmetic_selectors = selectors_with_tags [Arithmetic] type raw_constraint = { wires : int array; sels : (string * Scalar.t) list; precomputed_advice : (string * Scalar.t) list; label : string list; } [@@deriving repr] type gate = raw_constraint array [@@deriving repr] type t = gate list [@@deriving repr] let new_constraint ~wires ?qc ?(linear = []) ?(linear_g = []) ?qm ?qx2b ?qx5a ?qx5c ?qecc_ws_add ?qecc_ed_add ?qecc_ed_cond_add ?qbool ?qcond_swap ?q_anemoi ?(q_mod_add = []) ?(q_mod_mul = []) ?q_plookup ?q_table ?(precomputed_advice = []) ?(labels = []) label = let sels = List.filter_map (fun (l, x) -> Option.bind x (fun c -> Some (l, c))) (q_list ~qc ~linear:(List.map (fun (i, x) -> (i, Some x)) linear) ~linear_g:(List.map (fun (i, x) -> (i, Some x)) linear_g) ~qm ~qx2b ~qx5a ~qx5c ~qecc_ws_add ~qecc_ed_add ~qecc_ed_cond_add ~qbool ~qcond_swap ~q_anemoi ~q_mod_add:(List.map (fun (i, x) -> (i, Some x)) q_mod_add) ~q_mod_mul:(List.map (fun (i, x) -> (i, Some x)) q_mod_mul) ~q_plookup ~q_table ()) in let wires = let pad_length = nb_wires_arch - List.length wires in wires @ List.init pad_length (Fun.const 0) |> Array.of_list in {wires; sels; precomputed_advice; label = label :: labels} let get_sel sels s = match List.find_opt (fun (x, _) -> s = x) sels with | None -> Scalar.zero | Some (_, c) -> c let to_string_raw_constraint {wires; sels; precomputed_advice; label} : string = let pp_sel (s, c) = s ^ ":" ^ Scalar.string_of_scalar c in let selectors = String.concat " " (List.map pp_sel sels) in let precomputed_advice = String.concat " " (List.map pp_sel precomputed_advice) in let wires_str = Array.mapi (fun i w -> Format.sprintf "%s:%i" (wire_name i) w) wires in Format.sprintf "%s %s | %s [%s]" (String.concat " " @@ Array.to_list wires_str) selectors precomputed_advice (String.concat " ; " label) let to_string_gate g = String.concat "\n" @@ Array.to_list @@ Array.map to_string_raw_constraint g let to_string cs = List.fold_left (fun acc con -> acc ^ to_string_gate con ^ "\n\n") "" cs let is_linear_raw_constr constr = let linear_selectors = ("qc" :: this_constr_linear_selectors) @ next_constr_linear_selectors in let is_linear_sel (s, _q) = List.mem s linear_selectors in List.for_all is_linear_sel constr.sels let rename_wires_constr ~rename constr = {constr with wires = Array.map rename constr.wires} let rename_wires ~rename gate = Array.map (rename_wires_constr ~rename) gate let is_arithmetic_raw_constr constr = let is_arithmetic_sel (s, _q) = List.mem s arithmetic_selectors in List.for_all is_arithmetic_sel constr.sels let boolean_raw_constr constr = let module SMap = Map.Make (String) in let ql_name = linear_selector_name 0 in if (* We do equality through maps as a way to sort the list *) SMap.equal Scalar.equal (SMap.of_seq @@ List.to_seq constr.sels) (SMap.of_seq @@ List.to_seq [("qm", Scalar.one); (ql_name, Scalar.mone)]) && constr.wires.(0) = constr.wires.(1) then Some constr.wires.(0) else None let used_selectors gate i = let this_sels = gate.(i).sels in let prev_sels = if i = 0 then [] else gate.(i - 1).sels in List.filter (fun (s, _) -> List.mem s this_constr_selectors) this_sels @ List.filter (fun (s, _) -> List.mem s next_constr_selectors) prev_sels let wires_of_constr_i gate i = let selectors = Array.init nb_wires_arch (fun i -> selectors_with_tags [Wire i]) in let intersect names = List.exists (fun (s, _q) -> List.mem s names) in let sels = used_selectors gate i in (* We treat qecc_ed_cond_add exceptionally until we have a better interface on unused wires *) let relax = List.map fst sels = ["qecc_ed_cond_add"] && gate.(i).sels = [] in if relax then ( selectors.(0) <- [] ; selectors.(1) <- [] ; selectors.(2) <- []) ; (* We treat q_anemoi exceptionally until we have a better interface on unused wires *) let relax = List.map fst sels = ["q_anemoi"] && gate.(i).sels = [] in if relax then ( selectors.(0) <- [] ; selectors.(1) <- [] ; selectors.(2) <- []) ; List.map2 (fun wsels w -> if intersect wsels sels then w else -1) (Array.to_list selectors) (gate.(i).wires |> Array.to_list) let gate_wires gate = List.init (Array.length gate) (wires_of_constr_i gate) |> List.concat |> List.sort_uniq Int.compare |> List.filter (fun x -> x >= 0) (* the relationship of this function wrt is_linear_raw_constr is a bit weird *) let linear_terms constr = if not @@ is_linear_raw_constr constr then raise @@ Invalid_argument "constraint is non-linear" else let module SMap = Map.Make (String) in let linear_terms_map = ("qc", -1) :: List.init nb_wires_arch (fun i -> (linear_selector_name i, constr.wires.(i))) |> List.to_seq |> SMap.of_seq in List.map (fun (sel_name, coeff) -> (coeff, SMap.find sel_name linear_terms_map)) constr.sels |> List.filter (fun (q, _) -> not @@ Scalar.is_zero q) let mk_linear_constr (wires, sels) = { wires = Array.of_list wires; sels; precomputed_advice = []; label = ["linear"]; } let mk_bool_constr wire = let wires = Array.init nb_wires_arch (Fun.const 0) in wires.(0) <- wire ; { wires; sels = [("qbool", Scalar.one)]; precomputed_advice = []; label = ["bool"]; } let raw_constraint_equal c1 c2 = Array.for_all2 ( = ) c1.wires c2.wires && c1.label = c2.label && List.for_all2 (fun (name, coeff) (name', coeff') -> name = name' && Scalar.eq coeff coeff') c1.sels c2.sels end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>