package octez-libs
A package that contains multiple base libraries used by the Octez suite
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-octez-v20.1.tag.bz2
sha256=ddfb5076eeb0b32ac21c1eed44e8fc86a6743ef18ab23fff02d36e365bb73d61
sha512=d22a827df5146e0aa274df48bc2150b098177ff7e5eab52c6109e867eb0a1f0ec63e6bfbb0e3645a6c2112de3877c91a17df32ccbff301891ce4ba630c997a65
doc/src/octez-libs.plonk/polynomial_protocol.ml.html
Source file polynomial_protocol.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
(*****************************************************************************) (* *) (* MIT License *) (* Copyright (c) 2022 Nomadic Labs <contact@nomadic-labs.com> *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"),*) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included *) (* in all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (*****************************************************************************) open Kzg.Bls open Kzg.Utils open Identities (** A polynomial protocol allows a prover to convince a verifier of the fact that certain algebraic identites between polynomials (polynomials that have been previously committed) hold when evaluated over a set of points. (In our implementation such set of points must be a subgroup of roots of unity.) For example, let K be a field and let H be a subset of K. Let f1(X), f2(X) and f3(X) be univariate polynomials over K and let C1, C2 and C3 be polynomial commitments to f1, f2 and f3, respectively. A polynomial protocol allows a prover to argue knowledge of: {[ PoK{ (f1, f2, f3) : Ci = Com(fi) ∀ i /\ f1(x) * f2(x) = f3(x) ∀ x ∈ H } ]} This can be accomplished by evaluating polynomial commitments at a single point ξ (uniformly sampled from K). For that, note that the above polynomial identity holds for every x ∈ H iff polynomial (f1 * f2 - f3) is divisible by Zh, the minimal (monic) polynomial that vanishes over set H. Thus, the prover can commit to polynomial T := (f1 * f2 - f3) / Zh and evaluate polynomial commitments C1, C2, C3, T at ξ (chosen after T). Let c1, c2, c3, t be such evaluations. The verifier can then check that t * Zh(ξ) = c1 * c2 - c3. A general polynomial protocol should allow for multiple identities involving addition, multiplication and composition of polynomials. See {{: https://eprint.iacr.org/2019/953.pdf }2019/953 Section 4.1} for more details. *) (** Functor building an implementation of a polynomial protocol given a polynomial commitment scheme [PC]. *) module Make_impl (PC : Kzg.Interfaces.Polynomial_commitment) = struct module PC = PC type prover_public_parameters = PC.Public_parameters.prover [@@deriving repr] type verifier_public_parameters = PC.Public_parameters.verifier [@@deriving repr] type proof = { cm_t : PC.Commitment.t; pc_proof : PC.proof; pc_answers : PC.answer list; } [@@deriving repr] (** [split_t n t nb_of_t_chunks] splits [t] polynomial in [nb_of_t_chunks] polynomials of at most [n] coefficients (and at most degree [n]-1), except the last one that may have more coeffictients depending on [t]’s degree *) let split_t n t nb_of_t_chunks = let nb_digits = String.length @@ string_of_int (nb_of_t_chunks - 1) in List.mapi (fun i t_i -> ("T_" ^ Csir.string_key_of_int ~nb_digits i, t_i)) (Poly.split ~nb_chunks:nb_of_t_chunks n t) |> SMap.of_list (* [compute_t ~n ~alpha evaluations] returns a polynomial T splitted in chunks, where [T(X) = (sum_i alpha^i evaluations[i]) / (X^n - 1)] and the returned chunks [{ 'T_0' -> T0; 'T_1' -> T1; 'T_2' -> T2 }] are such that [T = T0 + X^n T1 + X^{2n} T2]. *) let compute_t ~n ~alpha ~nb_of_t_chunks evaluated_identities = let nb_ids = SMap.cardinal evaluated_identities in let evaluations = SMap.values evaluated_identities in let alphas = Fr_generation.powers nb_ids alpha |> Array.to_list in let s_eval = Evaluations.linear_c ~evaluations ~linear_coeffs:alphas () in let s_deg = Evaluations.degree s_eval in let domain = Domain.build_power_of_two (Z.log2up (Z.of_int (s_deg + 1))) in let s = Evaluations.interpolation_fft domain s_eval in let t, rem = Poly.division_xn s n Scalar.(negate one) in if Poly.is_zero rem then split_t n t nb_of_t_chunks else raise @@ Poly.Rest_not_null "T is not divisible by Zh" let eval_and_batch_ids (alpha, x) pc_answers identities = let answers = let f _key m1 m2 = Some (SMap.union_disjoint m1 m2) in List.fold_left (SMap.union f) SMap.empty pc_answers in identities x answers |> SMap.values |> Fr_generation.batch alpha let verify_t n x ids_batch t_evals = let t_eval = Fr_generation.batch (Scalar.pow x (Z.of_int n)) t_evals in let zh = Scalar.(sub (pow x (Z.of_int n)) one) in Scalar.(eq ids_batch (t_eval * zh)) let setup ~setup_params ~srs = PC.Public_parameters.setup setup_params srs (* This function is the common code between prove & Aggregation.PP.prove *) let prove_aux pc_public_parameters transcript n generator secrets eval_points evaluations identities nb_of_t_chunks = let alpha, transcript = Fr_generation.random_fr transcript in let evaluated_ids = identities evaluations in let t = compute_t ~n ~alpha ~nb_of_t_chunks evaluated_ids in let cm_t, t_prover_aux = PC.commit pc_public_parameters t in let transcript = Transcript.expand PC.Commitment.t cm_t transcript in let x, transcript = Fr_generation.random_fr transcript in let prover_aux_list = t_prover_aux :: List.map snd secrets in let polys_list = t :: List.map fst secrets in let eval_points = [X] :: eval_points in let query_list = List.map (convert_eval_points ~generator ~x) eval_points in let answer_list = List.map2 PC.evaluate polys_list query_list in ( (alpha, x, answer_list, cm_t), polys_list, prover_aux_list, query_list, transcript ) let prove pc_public_parameters transcript ~n ~generator ~secrets ~eval_points ~evaluations ~identities ~nb_of_t_chunks = let ( (_, _, answer_list, cm_t), polys_list, prover_aux_list, query_list, transcript ) = prove_aux pc_public_parameters transcript n generator secrets eval_points evaluations identities nb_of_t_chunks in let pc_proof, transcript = PC.prove pc_public_parameters transcript polys_list prover_aux_list query_list answer_list in ({cm_t; pc_proof; pc_answers = answer_list}, transcript) type pp_commit_to_t_r = Evaluations.t SMap.t [@@deriving repr] (* This function is the common code between verify & Aggregation.PP.verify *) let verify_aux transcript generator commitments eval_points proof = let alpha, transcript = Fr_generation.random_fr transcript in let transcript = Transcript.expand PC.Commitment.t proof.cm_t transcript in let x, transcript = Fr_generation.random_fr transcript in let cm_list = proof.cm_t :: commitments in let eval_points = [X] :: eval_points in let query_list = List.map (convert_eval_points ~generator ~x) eval_points in (alpha, x, transcript, cm_list, query_list) let verify pc_public_parameters transcript ~n ~generator ~commitments ~eval_points ~identities proof = let alpha, x, transcript, cmts, query_list = verify_aux transcript generator commitments eval_points proof in let pc_verif, transcript = PC.verify pc_public_parameters transcript cmts query_list proof.pc_answers proof.pc_proof in let ids_batch = eval_and_batch_ids (alpha, x) proof.pc_answers identities in let t_verif = let t_evals = List.hd proof.pc_answers |> SMap.find (string_of_eval_point X) |> SMap.values in verify_t n x ids_batch t_evals in (pc_verif && t_verif, transcript) end (** Output signature of the functor [Polynomial_protocol.Make]. *) module type S = sig (** Underlying polynomial commitment scheme on which the polynomial protocol is based. Input of the functor [Polynomial_protocol.Make]. *) module PC : Kzg.Interfaces.Polynomial_commitment (** The type of prover public parameters. *) type prover_public_parameters = PC.Public_parameters.prover [@@deriving repr] (** The type of verifier public parameters. *) type verifier_public_parameters = PC.Public_parameters.verifier [@@deriving repr] (** The type for proofs, containing a commitment to the polynomial T that asserts the satisfiability of the identities over the subset of interest, as well as a [PC] proof and a list of [PC] answers. *) type proof = { cm_t : PC.Commitment.t; pc_proof : PC.proof; pc_answers : PC.answer list; } [@@deriving repr] (** The polynomial commitment setup function, requires a labeled argument of setup parameters for the underlying [PC] and a labeled argument containing the path location of a set of SRS files. *) val setup : setup_params:PC.Public_parameters.setup_params -> srs:Srs.t * Srs.t -> prover_public_parameters * verifier_public_parameters * Transcript.t (** The prover function. Takes as input the [prover_public_parameters], an initial [transcript] (possibly including a context if this [prove] is used as a building block of a bigger protocol), the size [n] of subgroup H, the canonical [generator] of subgroup H, a list of [secrets] including polynomials that have supposedly been committed (and a verifier received such commitments) as well as prover auxiliary information generated during the committing process, a list of evaluation point lists specifying the evaluation points where each secret needs to be evaluated at, a map of the above-mentioned polynomials this time in FFT [evaluations] form, for efficient polynomial multiplication, and some [prover_identities] that are supposedly satisfied by the secret polynomials. Outputs a proof and an updated transcript. *) val prove : prover_public_parameters -> Transcript.t -> n:int -> generator:Scalar.t -> secrets:(Poly.t SMap.t * PC.Commitment.prover_aux) list -> eval_points:eval_point list list -> evaluations:Evaluations.t SMap.t -> identities:prover_identities -> nb_of_t_chunks:int -> proof * Transcript.t (** The verifier function. Takes as input the [verifier_public_parameters], an initial [transcript] (that should coincide with the initial transcript used by [prove]), the size [n] of subgroup H, the canonical [generator] of subgroup H, a list of [commitments] to the secret polynomials by the prover, a list of evaluation points as in [prove], some [verifier_identities], and a [proof]. Outputs a [bool] value representing acceptance or rejection. *) val verify : verifier_public_parameters -> Transcript.t -> n:int -> generator:Scalar.t -> commitments:PC.Commitment.t list -> eval_points:eval_point list list -> identities:verifier_identities -> proof -> bool * Transcript.t end module Make : functor (PC : Kzg.Interfaces.Polynomial_commitment) -> S with module PC = PC = Make_impl include Make (Kzg.Polynomial_commitment)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>