package octez-libs
A package that contains multiple base libraries used by the Octez suite
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-octez-v20.1.tag.bz2
sha256=ddfb5076eeb0b32ac21c1eed44e8fc86a6743ef18ab23fff02d36e365bb73d61
sha512=d22a827df5146e0aa274df48bc2150b098177ff7e5eab52c6109e867eb0a1f0ec63e6bfbb0e3645a6c2112de3877c91a17df32ccbff301891ce4ba630c997a65
doc/src/octez-libs.plonk/plookup_gate.ml.html
Source file plookup_gate.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
(*****************************************************************************) (* *) (* MIT License *) (* Copyright (c) 2022 Nomadic Labs <contact@nomadic-labs.com> *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"),*) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included *) (* in all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (*****************************************************************************) open Kzg.Bls open Kzg.Utils open Identities let nb_plookup_wires = 3 module Plookup_gate_impl (PP : Polynomial_protocol.S) = struct module PP = PP exception Entry_not_in_table of string let q_label = "q_plookup" let q_table = "q_table" let f = "f_plookup" let fg = "fg_plookup" let z = "z_plookup" let t = "table" let h1 = "h1" let h2 = "h2" let zg = "zg_plookup" let tg = "tg_plookup" let h1g = "h1g" let h2g = "h2g" let l1 = "L1" let ln_p_1 = "L_n_plus_1" let x_m_1 = "x_minus_1" let x = "X" type public_parameters = (PP.prover_public_parameters * PP.verifier_public_parameters) * Scalar.t array list * Poly.t SMap.t let zero = Scalar.zero let one = Scalar.one let mone = Scalar.negate one (* alpha is a randomness used for Plookup *) let get_alpha = function | Some alpha -> alpha | None -> failwith "Plookup alpha is undefined" let gate_identity ~circuit_prefix ~prefix ~n ~generator ~wires_names ~alpha ~beta ~gamma : verifier_identities = fun x answers -> let q_label_name = circuit_prefix q_label in let q_table_name = circuit_prefix q_table in let t_name = circuit_prefix t in let z_name = prefix z in let f_name = prefix f in let h1_name = prefix h1 in let h2_name = prefix h2 in let wires_names = List.sub (List.map (fun x -> prefix x) wires_names) 0 nb_plookup_wires in let ( @- ) a b = Scalar.sub a b in let one_p_b = Scalar.(one + beta) in let g_one_p_b = Scalar.(gamma * one_p_b) in let g_one_p_b_2 = Scalar.square g_one_p_b in let q = get_answer answers X q_label_name in let z = get_answer answers X z_name in let f = get_answer answers X f_name in let t_val = get_answer answers X t_name in let h1 = get_answer answers X h1_name in let h2 = get_answer answers X h2_name in let zg = get_answer answers GX z_name in let fg = get_answer answers GX f_name in let tg = get_answer answers GX t_name in let h1g = get_answer answers GX h1_name in let h2g = get_answer answers GX h2_name in let l1, ln_p_1 = let n = Z.of_int n in let xn_1 = Scalar.(sub (pow x n) one / of_z n) in (Scalar.(generator * xn_1 / sub x generator), Scalar.(xn_1 / sub x one)) in let z_m_1 = Scalar.(z @- one) in let x_m_1 = Scalar.(x @- one) in (* Identity: L1(x)·[Z(x) - 1] = 0 *) let id_a = Scalar.(l1 * z_m_1) in (* Identity: Ln+1(x)·[h1(x) - h2(gx)] = 0 *) let id_c = Scalar.(ln_p_1 * sub h1 h2g) in (* Identity: Ln+1(x)·[Z(x) - 1] = 0 *) let id_d = Scalar.(ln_p_1 * z_m_1) in (* Identity: (x - g^{n+1})·Z(x)·(1 + β)·[γ + f(x)]·[γ(1 + β) + t(x) + β·t(gx)] = (x - g^{n+1})·Z(g·x)·[γ(1 + β) + h1(x) + β·h1(gx)]·[γ(1 + β) + h2(x) + β·h2(gx)] *) (* Note that g^{n+1} equals 1 *) (* Developping the left part of the equality *) let l_g_a = Scalar.(g_one_p_b_2 * x_m_1 * z) in let l_g_b = Scalar.(g_one_p_b * x_m_1 * t_val * z) in let l_g_c = Scalar.(beta * g_one_p_b * x_m_1 * z * tg) in let l_f_a = Scalar.(g_one_p_b * one_p_b * x_m_1 * z * f) in let l_f_b = Scalar.(one_p_b * x_m_1 * t_val * z * f) in let l_f_c = Scalar.(beta * one_p_b * x_m_1 * z * f * tg) in (* Developping the right part of the equality *) let ra_a_a = Scalar.(g_one_p_b_2 * x_m_1 * zg) in let ra_a_b = Scalar.(g_one_p_b * x_m_1 * h2 * zg) in let ra_a_c = Scalar.(g_one_p_b * beta * x_m_1 * zg * h2g) in let ra_b_a = Scalar.(g_one_p_b * x_m_1 * h1 * zg) in let ra_b_b = Scalar.(x_m_1 * h1 * h2 * zg) in let ra_b_c = Scalar.(beta * x_m_1 * h1 * zg * h2g) in let ra_c_a = Scalar.(g_one_p_b * beta * x_m_1 * h1g * zg) in let ra_c_b = Scalar.(beta * x_m_1 * h1g * h2 * zg) in let ra_c_c = Scalar.(square beta * x_m_1 * h1g * zg * h2g) in let id_b = Scalar.( (l_g_a + l_g_b + l_g_c + l_f_a + l_f_b + l_f_c) @- ra_a_a + ra_a_b + ra_a_c + ra_b_a + ra_b_b + ra_b_c + ra_c_a + ra_c_b + ra_c_c) in let identities = SMap.of_list @@ List.map (fun (key, id) -> (key, Scalar.mul q id)) [ (prefix "Plookup.a", id_a); (prefix "Plookup.b", id_b); (prefix "Plookup.c", id_c); (prefix "Plookup.d", id_d); ] in let id_ultra = let q_table = get_answer answers X q_table_name in let wire_values = List.map (fun w -> get_answer answers X w) wires_names in let prod = Fr_generation.batch alpha (q_table :: wire_values) in Scalar.(q * (prod @- fg)) in SMap.add (prefix "Plookup.ultra") id_ultra identities let prover_identities_aux ~circuit_prefix ~prefix ~wires_names ~alpha ~beta ~gamma n : prover_identities = fun evaluations -> let q = circuit_prefix q_label in let q_table = circuit_prefix q_table in let t = circuit_prefix t in let z = prefix z in let h1 = prefix h1 in let h2 = prefix h2 in let f = prefix f in let wires_names = List.sub (List.map (fun x -> prefix x) wires_names) 0 nb_plookup_wires in let fs = q_table :: wires_names in let z = Evaluations.find_evaluation evaluations z in let q = Evaluations.find_evaluation evaluations q in let l1 = Evaluations.find_evaluation evaluations l1 in let ln_p_1 = Evaluations.find_evaluation evaluations ln_p_1 in let eval_length = Evaluations.length q in let id1_evaluation = Evaluations.create eval_length in let id2_evaluation = Evaluations.create eval_length in let id3_evaluation = Evaluations.create eval_length in let id4_evaluation = Evaluations.create eval_length in let tmp_evaluation = Evaluations.create eval_length in let idb = let one_p_b = Scalar.(one + beta) in let g_one_p_b = Scalar.(gamma * one_p_b) in (* res <- γ·(1 + β) + e(x) + β·e(gx) *) let g_one_p_b_plus_e_plus_beta_p_eg res e = Evaluations.linear ~res ~evaluations ~poly_names:[e; e] ~add_constant:g_one_p_b ~composition_gx:([0; 1], n) ~linear_coeffs:[one; beta] () in (* id1_evaluation <- (x - 1) *) let x_mone = Evaluations.linear ~res:id1_evaluation ~evaluations ~poly_names:[x] ~add_constant:mone () in (* id2_evaluation <- (1 + β)·f(x) + γ·(1 + β) *) let f_expr = Evaluations.linear ~res:id2_evaluation ~evaluations ~poly_names:[f] ~linear_coeffs:[one_p_b] ~add_constant:g_one_p_b () in (* id3_evaluation <- γ·(1 + β) + t(x) + β·t(gx) *) let t_expr = g_one_p_b_plus_e_plus_beta_p_eg id3_evaluation t in (* id4_evaluation <- z(x)·(x - 1)·((1 + β)·f(x) + γ·(1 + β))·(γ·(1 + β) + t(x) + β·t(gx)) *) let left_term = Evaluations.mul_c ~res:id4_evaluation ~evaluations:[z; x_mone; f_expr; t_expr] () in (* id2_evaluation <- γ·(1 + β) + h1(x) + β·h1(gx) *) let h1_expr = g_one_p_b_plus_e_plus_beta_p_eg id2_evaluation h1 in (* id3_evaluation <- γ·(1 + β) + h2(x) + β·h2(gx) *) let h2_expr = g_one_p_b_plus_e_plus_beta_p_eg id3_evaluation h2 in (* tmp_evaluation <- z(gx)·(x - 1)·(γ·(1 + β) + h1(x) + β·h1(gx))·(γ·(1 + β) + h2(x) + β·h2(gx)) *) let right_term = Evaluations.mul_c ~res:tmp_evaluation ~evaluations:[z; x_mone; h1_expr; h2_expr] ~composition_gx:([1; 0; 0; 0], n) () in let id_b = Evaluations.linear_c ~res:id1_evaluation ~evaluations:[left_term; right_term] ~linear_coeffs:[one; mone] () in Evaluations.mul_c ~res:id2_evaluation ~evaluations:[q; id_b] () in (* tmp_evaluation <- (z - 1) *) let z_mone = Evaluations.linear_c ~res:tmp_evaluation ~evaluations:[z] ~add_constant:mone () in let ida = Evaluations.mul_c ~res:id1_evaluation ~evaluations:[q; l1; z_mone] () in let idd = Evaluations.mul_c ~res:id4_evaluation ~evaluations:[q; ln_p_1; z_mone] () in let idc = (* tmp_evaluation <- (h1(x) - h2(gx)) *) let h1_minus_h2g = Evaluations.linear ~res:tmp_evaluation ~evaluations ~poly_names:[h1; h2] ~linear_coeffs:[one; mone] ~composition_gx:([0; 1], n) () in Evaluations.mul_c ~res:id3_evaluation ~evaluations:[q; ln_p_1; h1_minus_h2g] () in let base = [ida; idb; idc; idd] in let ids = let id_agg = let id5_evaluation = Evaluations.create eval_length in (* id5_evaluation <- fs1 + alpha * fs2 + alpha^2 * fs3 + .. *) let s = let alpha_array = Fr_generation.powers (List.length fs) alpha in Evaluations.linear ~res:id5_evaluation ~evaluations ~poly_names:fs ~linear_coeffs:(Array.to_list alpha_array) () in (* tmp_evaluation <- (s - f) *) let s_minus_f = let f = Evaluations.find_evaluation evaluations f in Evaluations.linear_c ~res:tmp_evaluation ~evaluations:[s; f] ~linear_coeffs:[one; mone] ~composition_gx:([0; 1], n) () in Evaluations.mul_c ~res:id5_evaluation ~evaluations:[q; s_minus_f] () in id_agg :: base in let id_names = let base = ["Plookup.a"; "Plookup.b"; "Plookup.c"; "Plookup.d"] in let base = "Plookup.ultra" :: base in List.map (fun id_name -> prefix id_name) base in SMap.of_list (List.combine id_names ids) module Plookup_poly = struct let ln_p_1 n domain = let scalar_list = Array.(append [|one|] (init (n - 1) (fun _ -> zero))) in Evaluations.interpolation_fft2 domain scalar_list (* computes an array where the i-th element is sum_j alpha_j*x_i,j where x_i,j is the i-th elementof the j_th array of the list*) let compute_aggregation array_list alpha = let n = Array.length (List.hd array_list) in let nb_wires = List.length array_list in let alpha_array = Fr_generation.powers nb_wires alpha in Array.init n (fun i -> let fis = List.map (fun array -> array.(i)) array_list in List.fold_left2 (fun acc alpha_j fij -> Scalar.(acc + (alpha_j * fij))) Scalar.zero (Array.to_list alpha_array) fis) let compute_f_aggregation gates wires alpha n = let q = SMap.find q_label gates in let nb_wires = SMap.cardinal wires in let alpha_array = Fr_generation.powers nb_wires alpha in let array_list = SMap.values wires in let compute_aggregate qi fis = List.fold_left2 (fun acc alpha_j fij -> Scalar.(acc + (alpha_j * qi * fij))) Scalar.zero (Array.to_list alpha_array) fis in (* Store previous lookup to pad with *) let previous_lookup = let index = List.find (fun i -> not (Scalar.is_zero q.(i))) (List.init n (fun i -> i)) in let q0 = q.(index) in let f0s = List.map (fun array -> array.(index)) array_list in ref (compute_aggregate q0 f0s) in Array.init n (fun i -> let qi = q.(i) in if Scalar.is_zero qi then !previous_lookup else let fis = List.map (fun array -> array.(i)) array_list in let lookup = compute_aggregate qi fis in if not (Scalar.eq !previous_lookup lookup) then previous_lookup := lookup ; lookup) let sort_by f t = let indexes_t, _ = Array.fold_left (fun (map, i) z -> (Scalar_map.add z i map, i + 1)) (Scalar_map.empty, 0) t in let my_compare a b = let a_index_opt = Scalar_map.find_opt a indexes_t in let b_index_opt = Scalar_map.find_opt b indexes_t in match (a_index_opt, b_index_opt) with | Some a_index, Some b_index -> a_index - b_index | _ -> raise (Entry_not_in_table "Array f is not included in array t") in Array.sort my_compare f ; f let switch t = let k = Array.length t in Array.init k (fun i -> if i = 0 then t.(k - 1) else t.(i - 1)) let t_poly_from_tables tables alpha domain = let t = compute_aggregation tables alpha in Evaluations.interpolation_fft2 domain (switch t) let compute_s f t = sort_by (Array.concat [f; t]) t let compute_h s domain n = let compute_hi ~domain ~start s n = Evaluations.interpolation_fft2 domain (switch (Array.sub s start n)) in let h1 = compute_hi ~domain ~start:0 s n in let h2 = compute_hi ~domain ~start:(n - 1) s n in (h1, h2) let compute_z beta gamma f t s n domain = let one_p_beta = Scalar.(one + beta) in let gamma_one_p_beta = Scalar.(gamma * one_p_beta) in let tmp = Scalar.(copy one) in let to_acc array i = let beta_a = Scalar.mul beta array.(Int.succ i) in Scalar.( add_inplace tmp beta_a array.(i) ; add_inplace beta_a tmp gamma_one_p_beta ; beta_a) in (* the first two elements of z_array are always one *) let z_array = Array.init n (fun _ -> Scalar.zero) in z_array.(0) <- one ; z_array.(1) <- one ; for i = 0 to n - 3 do let f_coeff = Scalar.(f.(i) + gamma) in let t_coeff = to_acc t i in Scalar.( mul_inplace tmp f_coeff one_p_beta ; mul_inplace f_coeff tmp t_coeff) ; let acc_i = to_acc s i in let acc_n_i = to_acc s (n - 1 + i) in Scalar.mul_inplace acc_i acc_i acc_n_i ; let z_coeff = Scalar.(f_coeff / acc_i) in z_array.(i + 2) <- Scalar.mul z_array.(i + 1) z_coeff done ; Evaluations.interpolation_fft2 domain z_array end let srs_size ~length_table = let log = Z.(log2up (of_int length_table)) in let length_padded = Int.shift_left 1 log in length_padded (* max degree of Plookup identities is idb’s degree, which is ~4n *) let polynomials_degree () = 4 let common_preprocessing ~n:nb_records ~domain ~evaluations = let lnp1_map = SMap.singleton ln_p_1 (Plookup_poly.ln_p_1 nb_records domain) in Evaluations.compute_evaluations_update_map ~evaluations lnp1_map let preprocessing ~domain ~tables ~alpha () = let alpha = get_alpha alpha in SMap.singleton t (Plookup_poly.t_poly_from_tables tables alpha domain) let format_tables ~tables ~nb_columns ~length_not_padded ~length_padded = let concatenated_table = (* We make sure that all tables have the same number of columns as the number of wires by filling with columns of 0s. We also index tables. *) let corrected_tables = List.mapi (fun i t -> let nb_subtable_columns = List.length t in let sub_table_size = Array.length (List.hd t) in (* Pad table to have constant number of columns. *) let padding_columns = List.init (nb_columns - nb_subtable_columns) (fun _ -> Array.make sub_table_size zero) in let full_table = t @ padding_columns in (* Indexing table. *) Array.make sub_table_size (Scalar.of_z (Z.of_int i)) :: full_table) tables in (* Concatenating tables. *) let acc_n = List.init (nb_columns + 1) (fun _ -> [||]) in List.fold_left (fun aa ll -> List.map2 (fun a l -> Array.append a l) aa ll) acc_n corrected_tables in (* Padding table. *) List.map (fun t -> let last = t.(length_not_padded - 1) in let padding = Array.make (length_padded - length_not_padded) last in Array.append t padding) concatenated_table let prover_identities ?(circuit_prefix = Fun.id) ~proof_prefix ~wires_names ~alpha ~beta ~gamma ~n () : prover_identities = let alpha = get_alpha alpha in prover_identities_aux ~circuit_prefix ~prefix:proof_prefix ~wires_names ~alpha ~beta ~gamma n let verifier_identities ?(circuit_prefix = Fun.id) ~proof_prefix ~n ~generator ~wires_names ~alpha ~beta ~gamma () : verifier_identities = let alpha = get_alpha alpha in gate_identity ~circuit_prefix ~prefix:proof_prefix ~n ~generator ~wires_names ~alpha ~beta ~gamma (* wires must be correctly padded *) (*TODO : do this in evaluation*) (*TODO : use mul z_s*) let f_map_contribution ~wires ~gates ~tables ~alpha ~beta ~gamma ~domain = let wires = let wires_names = List.init nb_plookup_wires Csir.wire_name in SMap.filter_map (fun k w -> if not (List.mem k wires_names) then None (* TODO : remove this conversion *) else Some (Evaluations.to_array w)) wires in let size_domain = Domain.length domain in let alpha = get_alpha alpha in let t_agg = Plookup_poly.compute_aggregation tables alpha in (* We add the table selector to be aggregated alongside the wires. *) let wires_to_agg = let table_selector = SMap.find q_table gates in (* We add the prefix _ to the selector's label to make sure the selector is first in the map. *) SMap.add ("_" ^ q_table) table_selector wires in let final_size = size_domain - 1 in (* /!\ We remove here the last value of each wire, this is ok as it always corresponds to padding. *) let padded_f_list = SMap.map (fun w -> resize_array w final_size) wires_to_agg in let f_agg = Plookup_poly.compute_f_aggregation gates padded_f_list alpha final_size in let f_poly = Evaluations.interpolation_fft2 domain Array.(append [|zero|] f_agg) in let s = Plookup_poly.compute_s f_agg t_agg in let h1_poly, h2_poly = Plookup_poly.compute_h s domain size_domain in let z_poly = Plookup_poly.compute_z beta gamma f_agg t_agg s size_domain domain in SMap.of_list [(h1, h1_poly); (h2, h2_poly); (z, z_poly); (f, f_poly)] end module type S = sig module PP : Polynomial_protocol.S exception Entry_not_in_table of string type public_parameters = (PP.prover_public_parameters * PP.verifier_public_parameters) * Scalar.t array list * Poly.t SMap.t val srs_size : length_table:int -> int val polynomials_degree : unit -> int val format_tables : tables:Scalar.t array list list -> nb_columns:int -> length_not_padded:int -> length_padded:int -> Scalar.t array list val common_preprocessing : n:int -> domain:Domain.t -> evaluations:Evaluations.t SMap.t -> Evaluations.t SMap.t val preprocessing : domain:Domain.t -> tables:Scalar.t array list -> alpha:Scalar.t option -> unit -> Poly.t SMap.t val prover_identities : ?circuit_prefix:(string -> string) -> proof_prefix:(string -> string) -> wires_names:string list -> alpha:Scalar.t option -> beta:Scalar.t -> gamma:Scalar.t -> n:int -> unit -> prover_identities val verifier_identities : ?circuit_prefix:(string -> string) -> proof_prefix:(string -> string) -> n:int -> generator:Scalar.t -> wires_names:string list -> alpha:Scalar.t option -> beta:Scalar.t -> gamma:Scalar.t -> unit -> verifier_identities val f_map_contribution : wires:Evaluations.t SMap.t -> gates:Scalar.t array SMap.t -> tables:Scalar.t array list -> alpha:Scalar.t option -> beta:Scalar.t -> gamma:Scalar.t -> domain:Domain.t -> PP.PC.secret end module Plookup_gate (PP : Polynomial_protocol.S) : S with module PP = PP = Plookup_gate_impl (PP)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>