package octez-libs

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file range_check_gate.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
(*****************************************************************************)
(*                                                                           *)
(* MIT License                                                               *)
(* Copyright (c) 2022 Nomadic Labs <contact@nomadic-labs.com>                *)
(*                                                                           *)
(* Permission is hereby granted, free of charge, to any person obtaining a   *)
(* copy of this software and associated documentation files (the "Software"),*)
(* to deal in the Software without restriction, including without limitation *)
(* the rights to use, copy, modify, merge, publish, distribute, sublicense,  *)
(* and/or sell copies of the Software, and to permit persons to whom the     *)
(* Software is furnished to do so, subject to the following conditions:      *)
(*                                                                           *)
(* The above copyright notice and this permission notice shall be included   *)
(* in all copies or substantial portions of the Software.                    *)
(*                                                                           *)
(* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*)
(* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,  *)
(* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL   *)
(* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*)
(* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING   *)
(* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER       *)
(* DEALINGS IN THE SOFTWARE.                                                 *)
(*                                                                           *)
(*****************************************************************************)

(* This gate is used to do range checks on values of a wire
   We noticed an overhead of 20% in prover time when using this protocol ;
   considering N is the number of constraints, if there are κ constraints per
   range checks, denoting x the percentage of the Z polynomial used, solving
   the equation N × 1.2 = N + κ × N × x gives x = (0.2/κ).
   With κ = 3, we need the Z polynomial filled by 7%.

   Note that we don’t handle several proofs for now.

   TODO to integrate the protocol completely :
     - handle several proofs
     - integration to plompiler
     - more tests, especially for zk
     - integration to aPlonK
*)

open Kzg.Bls
open Utils
open Identities
module L = Plompiler.LibCircuit

type s_repr = L.scalar L.repr

module type S = sig
  module PP : Polynomial_protocol.S

  val z_names : string -> string list

  val shared_z_names : string -> string list

  val build_permutations :
    size_domain:int -> range_checks:(int * int) list SMap.t -> int array SMap.t

  val preprocessing :
    range_checks:(int * int) list SMap.t ->
    permutations:int array SMap.t ->
    domain:Domain.t ->
    Poly.t SMap.t

  (* Builds the pure range check proof polynomials *)
  val f_map_contribution_1 :
    range_checks:(int * int) list SMap.t ->
    domain:Domain.t ->
    values:Evaluations.t SMap.t ->
    Evaluations.t SMap.t * Poly.t SMap.t

  (* Builds the shared permutation proof polynomials for the range check proof polynomials built with f_map_contribution_1
     [values] must contain the wire polynomial that is being range checked and its range check proof polynomial, each in aggregated version
  *)
  val f_map_contribution_2 :
    permutations:int array SMap.t ->
    beta:Poly.scalar ->
    gamma:Poly.scalar ->
    domain:Domain.t ->
    values:Evaluations.t SMap.t ->
    Poly.t SMap.t

  (* Builds the pure range check identities *)
  val prover_identities_1 :
    ?circuit_prefix:(string -> string) ->
    proof_prefix:(string -> string) ->
    domain_size:int ->
    range_checks:'a SMap.t ->
    unit ->
    prover_identities

  (* Builds the permutation identities for the range check polynomials *)
  val prover_identities_2 :
    ?circuit_prefix:(string -> string) ->
    beta:Scalar.t ->
    gamma:Scalar.t ->
    domain_size:int ->
    range_checks:'a SMap.t ->
    unit ->
    prover_identities

  (* Builds the pure range check identities *)
  val verifier_identities_1 :
    ?circuit_prefix:(string -> string) ->
    proof_prefix:(string -> string) ->
    range_checks:bool SMap.t ->
    unit ->
    Scalar.t ->
    Scalar.t SMap.t SMap.t ->
    Scalar.t SMap.t

  (* Builds the permutation identities for the range check polynomials *)
  val verifier_identities_2 :
    ?circuit_prefix:(string -> string) ->
    nb_proofs:int ->
    beta:Scalar.t ->
    gamma:Scalar.t ->
    delta:Scalar.t ->
    domain_size:int ->
    generator:Scalar.t ->
    range_checks:bool SMap.t ->
    unit ->
    verifier_identities

  val cs :
    rc_index:int list ->
    nb_proofs:int ->
    lnin1:s_repr list ->
    pnin1:s_repr list ->
    z_rc:s_repr list list ->
    zg_rc:s_repr list list ->
    z_perm:s_repr list ->
    zg_perm:s_repr list ->
    aggregated_wires:s_repr list ->
    sum_alpha_i:(s_repr list -> s_repr -> s_repr L.t) ->
    l1:s_repr ->
    ss_list:s_repr list list ->
    beta:s_repr ->
    gamma:s_repr ->
    delta:s_repr ->
    x:s_repr ->
    (string * s_repr) list L.t
end

module Range_check_gate_impl (PP : Polynomial_protocol.S) = struct
  module PP = PP

  exception Too_many_checks of string

  let lnin1 = "Lnin1"

  let pnin1 = "Pnin1"

  let rc_prefix = "RC_"

  let z_name wire = rc_prefix ^ wire ^ "_Z"

  let batched_wire = String.capitalize_ascii

  let batched_z_name wire = rc_prefix ^ batched_wire wire ^ "_Z"

  let suffix str wire = str ^ "_" ^ wire

  (* Used for distribution *)
  let z_names wire = [z_name wire]

  let shared_z_names wire = [rc_prefix ^ wire ^ "_Perm_Z"]

  type public_parameters = Poly.t SMap.t

  let zero, one, two = Scalar.(zero, one, one + one)

  let mone, mtwo = Scalar.(negate one, negate two)

  module Permutation = struct
    (* Build the permutation such that (n₀ + … + n_{j - 1}) <-> N + i_j for ni = upperbounds,
       j < len([rc]), N = [size_domain], i_j = index of the j-th range check in
       [range_checks]
       Note that identities and Z building must consider the polynomials in the
       order imposed by this permutation, which stands for the order Z_RC — Wire.
    *)
    let build_permutation_wire ~size_domain range_checks =
      if range_checks = [] then [||]
      else
        let fst_part =
          (* the first element is the sum of upperbounds until an index represented
             by the second element *)
          let sum_n = ref (0, 0) in
          let get_safe l j =
            try
              let i, n = List.nth l (snd !sum_n) in
              sum_n := (fst !sum_n + n, snd !sum_n + 1) ;
              size_domain + i
            with _ -> j
          in
          Array.init size_domain (fun j ->
              (* if we are at a range check index i then the permutation goes on
                 the corresponding index in the range check list ; if there is no
                 more index in the range check list, or if we are not at a range
                 check index, i is a fix point of the permutation
              *)
              if j = fst !sum_n then get_safe range_checks j else j)
        in
        let snd_part =
          (* we just keep the first argument of sum_n, the second one is now useless *)
          let sum_n = ref 0 in
          Array.init size_domain (fun j ->
              (* if i is not a index of the range check list then it’s a fix point,
                 else it goes on on index of the corresponding range check ;
                 this piece is the mirror of the preceeding one *)
              match List.assoc_opt j range_checks with
              | None -> size_domain + j
              | Some n ->
                  let res = !sum_n in
                  sum_n := res + n ;
                  res)
        in
        Array.append fst_part snd_part

    module Perm = Permutation_gate.Permutation_gate (PP)

    let external_prefix wire = rc_prefix ^ wire ^ "_"

    let prefix_for_perm =
      let batched_wire_prefix =
        String.capitalize_ascii Plompiler.Csir.wire_prefix
      in
      SMap.Aggregation.update_key_name (fun k ->
          if
            Str.(
              string_match (regexp (batched_wire_prefix ^ "\\([0-9]+\\)")) k 0)
          then "2." ^ k
          else if
            Str.(
              string_match
                (regexp (rc_prefix ^ batched_wire_prefix ^ "\\([0-9]+\\)_Z"))
                k
                0)
          then "1." ^ k
          else k)

    (* We have to make sure we consider the values we give to Perm functions
       in the same order as the permutation we build ; the current permutation
       stands for the order Z_RC — Wire. *)
    let prefix_for_perm_map = SMap.update_keys prefix_for_perm

    let preprocessing ~domain wire permutation =
      Perm.preprocessing
        ~external_prefix:(external_prefix wire)
        ~domain
        ~permutation
        ~nb_wires:2
        ()

    let f_map_contribution ~beta ~gamma ~domain ~values:batched_values wire
        permutation =
      let values =
        SMap.of_list
          [
            (batched_wire wire, SMap.find (batched_wire wire) batched_values);
            (batched_z_name wire, SMap.find (batched_z_name wire) batched_values);
          ]
        |> prefix_for_perm_map
      in
      Perm.f_map_contribution
        ~external_prefix:(external_prefix wire)
        ~permutation
        ~values
        ~beta
        ~gamma
        ~domain
        ()

    let prover_identities ?(circuit_prefix = Fun.id) ~beta ~gamma ~domain_size
        wire _ evaluations =
      let evaluations = prefix_for_perm_map evaluations in
      Perm.prover_identities
        ~external_prefix:(external_prefix wire)
        ~circuit_prefix
        ~wires_names:
          (List.map prefix_for_perm [batched_wire wire; batched_z_name wire])
        ~beta
        ~gamma
        ~n:domain_size
        ()
        evaluations

    let verifier_identities ?(circuit_prefix = Fun.id) ~nb_proofs ~beta ~gamma
        ~delta ~domain_size ~generator wire rc x answers =
      if not rc then SMap.empty
      else
        let answers = SMap.map (SMap.update_keys prefix_for_perm) answers in
        Perm.verifier_identities
          ~external_prefix:(external_prefix wire)
          ~circuit_prefix
          ~nb_proofs
          ~generator
          ~n:domain_size
          ~wires_names:(List.map prefix_for_perm [wire; z_name wire])
          ~beta
          ~gamma
          ~delta
          ()
          x
          answers

    (*
        [[SS1_a ; SS2_a] ; [SS1_b ; SS2_b]]
        [RC_perm_a ; RC_perm_b]
        [0~RC_a_Z ; 0~RC_b_Z]
       [[0~RC_a_Z ; 0~a] ; [0~RC_b_Z ; 0~b]]
    *)
    let cs_for_all_wires ~l1 ~ss_list ~beta ~gamma ~x ~z_perm ~zg_perm
        ~aggregated_wires w_list =
      let zzgwss =
        List.(combine (combine (combine z_perm zg_perm) w_list) ss_list)
      in
      L.map2M
        (fun (((z, zg), w), ss_list) aggregated_wires ->
          Perm.cs
            ~external_prefix:(rc_prefix ^ "w" ^ string_of_int w ^ "_")
            ~l1
            ~ss_list
            ~beta
            ~gamma
            ~x
            ~z
            ~zg
            ~aggregated_wires
            ())
        zzgwss
        aggregated_wires
  end

  module RangeChecks = struct
    let preprocessing ~domain wire range_checks =
      if range_checks = [] then SMap.empty
      else
        let domain_size = Domain.length domain in
        let build_poly ~at_n ~default =
          let a =
            List.concat_map
              (fun (_, n) ->
                List.init n (fun i -> if i = n - 1 then at_n else default))
              range_checks
            |> Array.of_list
          in
          if domain_size < Array.length a then
            raise
              (Too_many_checks
                 (Printf.sprintf
                    "Range checks : sum of bounds (=%d) must be less than \
                     domain size (=%d)"
                    (Array.length a)
                    domain_size)) ;
          Array.(append a (init (domain_size - length a) (Fun.const zero)))
          |> Evaluations.interpolation_fft2 domain
        in
        let lnin1_poly = build_poly ~at_n:one ~default:zero in
        let pnin1_poly = build_poly ~at_n:zero ~default:one in
        SMap.of_list
          [(suffix lnin1 wire, lnin1_poly); (suffix pnin1 wire, pnin1_poly)]

    (* compute the evaluations of the Z polynomial for a scalar [x] with the bound [up] *)
    let partial_z (x, up) =
      let x = Scalar.to_z x in
      let rec aux gwi = function
        | 1 -> gwi
        | i ->
            let q = Z.(div (List.hd gwi) (one + one)) in
            aux (q :: gwi) (i - 1)
      in
      let res = aux [x] up in
      res |> List.rev_map Scalar.of_z

    let f_map_contribution ~domain ~values wire_name range_checks =
      if range_checks = [] then (SMap.empty, SMap.empty)
      else
        let wire = SMap.find wire_name values in
        let evals =
          let to_checks =
            List.map
              (fun (idx, bound) -> (Evaluations.get wire idx, bound))
              range_checks
          in
          let all_evals =
            List.concat_map partial_z to_checks |> Array.of_list
          in
          let evals =
            Array.(
              append
                all_evals
                (init
                   (Domain.length domain - length all_evals)
                   (Fun.const zero)))
          in
          Evaluations.of_array (Array.length evals - 1, evals)
        in
        let z = Evaluations.interpolation_fft domain evals in
        ( SMap.of_list [(batched_z_name wire_name, evals)],
          SMap.of_list [(z_name wire_name, z)] )

    let prover_identities ?(circuit_prefix = Fun.id) ~proof_prefix:prefix
        ~domain_size:n wire _ evaluations =
      let z_evaluation =
        Evaluations.find_evaluation evaluations (prefix (z_name wire))
      in
      let z_evaluation_len = Evaluations.length z_evaluation in
      let tmp_evaluation = Evaluations.create z_evaluation_len in
      let tmp2_evaluation = Evaluations.create z_evaluation_len in
      let idrca_evaluation = Evaluations.create z_evaluation_len in
      let idrcb_evaluation = Evaluations.create z_evaluation_len in
      (* Z × (1-Z) × Lnin1 *)
      let identity_rca =
        let lnin1_evaluation =
          Evaluations.find_evaluation
            evaluations
            (circuit_prefix (suffix lnin1 wire))
        in
        let one_m_z_evaluation =
          Evaluations.linear_c
            ~res:tmp_evaluation
            ~linear_coeffs:[mone]
            ~evaluations:[z_evaluation]
            ~add_constant:one
            ()
        in
        Evaluations.mul_c
          ~res:idrca_evaluation
          ~evaluations:[z_evaluation; one_m_z_evaluation; lnin1_evaluation]
          ()
      in
      (* (Z - 2Zg) × (1 - Z + 2Zg) × Pnin1 *)
      let identity_rcb =
        let pnin1_evaluation =
          Evaluations.find_evaluation
            evaluations
            (circuit_prefix (suffix pnin1 wire))
        in
        let z_min_2Zg_evaluation =
          Evaluations.linear_c
            ~res:tmp_evaluation
            ~linear_coeffs:[one; mtwo]
            ~composition_gx:([0; 1], n)
            ~evaluations:[z_evaluation; z_evaluation]
            ()
        in
        let one_m_Z_p_2Zg_evaluation =
          Evaluations.linear_c
            ~res:tmp2_evaluation
            ~linear_coeffs:[mone]
            ~evaluations:[z_min_2Zg_evaluation]
            ~add_constant:one
            ()
        in
        Evaluations.mul_c
          ~res:idrcb_evaluation
          ~evaluations:
            [z_min_2Zg_evaluation; one_m_Z_p_2Zg_evaluation; pnin1_evaluation]
          ()
      in
      SMap.of_list
        [
          (prefix (rc_prefix ^ wire) ^ ".a", identity_rca);
          (prefix (rc_prefix ^ wire) ^ ".b", identity_rcb);
        ]

    let verifier_identities ?(circuit_prefix = Fun.id) ~proof_prefix:prefix wire
        rc _x answers =
      if not rc then SMap.empty
      else
        let z = get_answer answers X (prefix (z_name wire)) in
        let zg = get_answer answers GX (prefix (z_name wire)) in
        let lnin1 = get_answer answers X (circuit_prefix (suffix lnin1 wire)) in
        let pnin1 = get_answer answers X (circuit_prefix (suffix pnin1 wire)) in
        let identity_rca = Scalar.(z * (one + negate z) * lnin1) in
        let identity_rcb =
          Scalar.((z + (mtwo * zg)) * (one + negate z + (two * zg)) * pnin1)
        in
        SMap.of_list
          [
            (prefix (rc_prefix ^ wire) ^ ".a", identity_rca);
            (prefix (rc_prefix ^ wire) ^ ".b", identity_rcb);
          ]

    let cs_unitary ~prefix ~lnin1 ~pnin1 ~z ~zg w =
      let open L in
      let* one_m_z = Num.custom ~ql:mone ~qc:one z z in
      let* id_a = Num.mul_list (to_list [z; one_m_z; lnin1]) in
      let* id_b =
        let* z_m_2zg = Num.add z ~qr:mtwo zg in
        let* one_m_z_p_2zg = Num.add one_m_z ~qr:two zg in
        Num.mul_list (to_list [z_m_2zg; one_m_z_p_2zg; pnin1])
      in
      let wire = "w" ^ string_of_int w in
      ret
        [(prefix "RC_" ^ wire ^ ".a", id_a); (prefix "RC_" ^ wire ^ ".b", id_b)]

    let cs_for_all_wires ~prefix ~lnin1 ~pnin1 ~z_list ~zg_list w_list =
      let open L in
      let lp = List.combine lnin1 pnin1 in
      let zzgw = List.(combine (combine z_list zg_list) w_list) in
      let* ids =
        map2M
          (fun (lnin1, pnin1) ((z, zg), w) ->
            cs_unitary ~prefix ~lnin1 ~pnin1 ~z ~zg w)
          lp
          zzgw
      in
      ret (List.concat ids)
  end

  let build_permutations ~size_domain ~range_checks =
    SMap.map (Permutation.build_permutation_wire ~size_domain) range_checks

  let preprocessing ~range_checks ~permutations ~domain =
    let rc = SMap.mapi (RangeChecks.preprocessing ~domain) range_checks in
    let perm = SMap.mapi (Permutation.preprocessing ~domain) permutations in
    SMap.values rc @ SMap.values perm |> SMap.union_disjoint_list

  let f_map_contribution_1 ~range_checks ~domain ~values =
    let z_evals, f_map =
      SMap.mapi (RangeChecks.f_map_contribution ~domain ~values) range_checks
      |> SMap.to_pair
    in
    ( SMap.(union_disjoint_list (values z_evals)),
      SMap.(union_disjoint_list (values f_map)) )

  let f_map_contribution_2 ~permutations ~beta ~gamma ~domain ~values =
    SMap.mapi
      (Permutation.f_map_contribution ~beta ~gamma ~domain ~values)
      permutations
    |> SMap.values |> SMap.union_disjoint_list

  let prover_identities_1 ?(circuit_prefix = Fun.id) ~proof_prefix ~domain_size
      ~range_checks () =
    SMap.mapi
      (RangeChecks.prover_identities ~circuit_prefix ~proof_prefix ~domain_size)
      range_checks
    |> SMap.values |> Identities.merge_prover_identities

  let prover_identities_2 ?(circuit_prefix = Fun.id) ~beta ~gamma ~domain_size
      ~range_checks () =
    SMap.mapi
      (Permutation.prover_identities ~circuit_prefix ~beta ~gamma ~domain_size)
      range_checks
    |> SMap.values |> Identities.merge_prover_identities

  let verifier_identities_1 ?(circuit_prefix = Fun.id) ~proof_prefix
      ~range_checks () =
    SMap.mapi
      (RangeChecks.verifier_identities ~circuit_prefix ~proof_prefix)
      range_checks
    |> SMap.values |> Identities.merge_verifier_identities

  let verifier_identities_2 ?(circuit_prefix = Fun.id) ~nb_proofs ~beta ~gamma
      ~delta ~domain_size ~generator ~range_checks () =
    SMap.mapi
      (Permutation.verifier_identities
         ~circuit_prefix
         ~nb_proofs
         ~beta
         ~gamma
         ~delta
         ~domain_size
         ~generator)
      range_checks
    |> SMap.values |> Identities.merge_verifier_identities

  (* [lni1]
     [pni1]
     z_rc = [[0~RC_a_Z ; 0~RC_b_Z] ; [1~RC_a_Z ; 1~RC_b_Z]]
     z_perm = [RC_perm_a ; RC_perm_b]
     aggregated_wires = [A, B, C, D, E] *)
  let cs ~rc_index ~nb_proofs:n ~lnin1 ~pnin1 ~z_rc ~zg_rc ~z_perm ~zg_perm
      ~aggregated_wires ~sum_alpha_i ~l1 ~ss_list ~beta ~gamma ~delta ~x =
    let open L in
    let* rc =
      let proof_idx = ref (-1) in
      map2M
        (fun z_list zg_list ->
          incr proof_idx ;
          RangeChecks.cs_for_all_wires
            ~prefix:(SMap.Aggregation.add_prefix ~n ~i:!proof_idx "")
            ~lnin1
            ~pnin1
            ~z_list
            ~zg_list
            rc_index)
        z_rc
        zg_rc
    in
    let* aggregated_z_rc =
      List.mapn (fun i -> sum_alpha_i i delta) z_rc |> mapM Fun.id
    in

    let aggregated_rc_wires =
      List.filteri (fun i _ -> List.mem i rc_index) aggregated_wires
    in

    let aggregated_wires =
      List.fold_left2
        (fun acc r w -> [r; w] :: acc)
        []
        aggregated_z_rc
        aggregated_rc_wires
      |> List.rev
    in
    let* perm =
      Permutation.cs_for_all_wires
        ~l1
        ~ss_list
        ~beta
        ~gamma
        ~x
        ~z_perm
        ~zg_perm
        ~aggregated_wires
        rc_index
    in
    ret (List.flatten (rc @ perm))
end

module Range_check_gate (PP : Polynomial_protocol.S) : S with module PP = PP =
  Range_check_gate_impl (PP)
OCaml

Innovation. Community. Security.