package octez-libs

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file core.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
(*****************************************************************************)
(*                                                                           *)
(* Open Source License                                                       *)
(* Copyright (c) 2019-2020 Nomadic Labs <contact@nomadic-labs.com>           *)
(*                                                                           *)
(* Permission is hereby granted, free of charge, to any person obtaining a   *)
(* copy of this software and associated documentation files (the "Software"),*)
(* to deal in the Software without restriction, including without limitation *)
(* the rights to use, copy, modify, merge, publish, distribute, sublicense,  *)
(* and/or sell copies of the Software, and to permit persons to whom the     *)
(* Software is furnished to do so, subject to the following conditions:      *)
(*                                                                           *)
(* The above copyright notice and this permission notice shall be included   *)
(* in all copies or substantial portions of the Software.                    *)
(*                                                                           *)
(* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*)
(* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,  *)
(* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL   *)
(* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*)
(* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING   *)
(* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER       *)
(* DEALINGS IN THE SOFTWARE.                                                 *)
(*                                                                           *)
(*****************************************************************************)

(** This module implements all the core functionalities. It contains also the low
    level Rustzcash type equalities and should be used in its Raw form only for
    testing.
    For all other uses refer to its Client or Validator interfaces. *)
module Raw = struct
  module R = Rustzcash

  let init_params = R.init_params

  module Spending_key = struct
    (** Authorisation spending key: secret key used to sign once randomized. *)
    type ask = R.ask

    (** Nullifier secret key. Used to compute nullifier. *)
    type nsk = R.nsk

    type ovk = R.ovk

    (* 96 bytes *)
    type expanded_spending_key = R.expanded_spending_key = {
      ask : ask;
      nsk : nsk;
      ovk : ovk;
    }

    let _to_expanded_spending_key = R.to_expanded_spending_key

    let expsk_encoding =
      let open Data_encoding in
      def "sapling.wallet.expanded_spending_key"
      @@ conv
           (fun t -> (t.ask, t.nsk, t.ovk))
           (fun (ask, nsk, ovk) -> {ask; nsk; ovk})
           (obj3
              (req "ask" (conv R.of_ask R.to_ask (Fixed.bytes 32)))
              (req "nsk" (conv R.of_nsk R.to_nsk (Fixed.bytes 32)))
              (req "ovk" (conv R.of_ovk R.to_ovk (Fixed.bytes 32))))

    (** Type t contains ask, nsk, ovk and zip-32 related info. *)
    type t = R.zip32_expanded_spending_key = {
      depth : Bytes.t;
      parent_fvk_tag : Bytes.t;
      child_index : Bytes.t;
      chain_code : Bytes.t;
      expsk : expanded_spending_key;
      dk : Bytes.t;
    }

    let of_bytes b = Option.catch (fun () -> R.to_zip32_expanded_spending_key b)

    let to_bytes = R.of_zip32_expanded_spending_key

    let encoding =
      let open Data_encoding in
      def "sapling.wallet.spending_key"
      @@ conv
           (fun t ->
             ( t.depth,
               t.parent_fvk_tag,
               t.child_index,
               t.chain_code,
               t.expsk,
               t.dk ))
           (fun (depth, parent_fvk_tag, child_index, chain_code, expsk, dk) ->
             {depth; parent_fvk_tag; child_index; chain_code; expsk; dk})
           (obj6
              (req "depth" (Fixed.bytes 1))
              (req "parent_fvk_tag" (Fixed.bytes 4))
              (req "child_index" (Fixed.bytes 4))
              (req "chain_code" (Fixed.bytes 32))
              (req "expsk" expsk_encoding)
              (req "dk" (Fixed.bytes 32)))

    type Tezos_crypto.Base58.data += Data of t

    let b58check_encoding =
      let to_raw sk = Bytes.to_string @@ to_bytes sk in
      let of_raw str = of_bytes (Bytes.of_string str) in
      Tezos_crypto.Base58.register_encoding
        ~prefix:Tezos_crypto.Base58.Prefix.sapling_spending_key
        ~length:169
        ~to_raw
        ~of_raw
        ~wrap:(fun x -> Data x)

    let () =
      Tezos_crypto.Base58.check_encoded_prefix b58check_encoding "sask" 241

    let of_seed = R.zip32_xsk_master

    let derive_key = R.zip32_xsk_derive

    let child_index sk = Bytes.get_int32_be sk.child_index 0
  end

  module Viewing_key = struct
    (** Public signature key.
        Note: if this key is exposed there is privacy loss! Only randomised
        version of it (rk) are published. *)
    type ak = R.ak

    (** Public nullifier key.
        Note: if this key is exposed there is privacy loss! Only randomised
        version of it (rk) are published. *)
    type nk = R.nk

    type ivk = R.ivk

    type pkd = R.pkd

    type ovk = R.ovk

    (** Used to create an address from a viewing key. *)
    type diversifier = R.diversifier

    let diversifier_encoding =
      let open Data_encoding in
      def "sapling.wallet.diversifier"
      @@ conv
           R.of_diversifier
           (fun b ->
             match R.to_diversifier b with
             | Some diversifier -> diversifier
             | None -> raise (Invalid_argument "diversifier_encoding: decoding"))
           (Fixed.bytes 11)

    (** Full viewing key contains ak, nsk, ovk *)
    type full_viewing_key = R.full_viewing_key = {ak : ak; nk : nk; ovk : ovk}

    let fvk_encoding =
      let open Data_encoding in
      def "sapling.wallet.full_viewing_key"
      @@ conv
           (fun t -> (R.of_ak t.ak, R.of_nk t.nk, R.of_ovk t.ovk))
           (fun (ak, nk, ovk) ->
             {ak = R.to_ak ak; nk = R.to_nk nk; ovk = R.to_ovk ovk})
           (obj3
              (req "ak" (Fixed.bytes 32))
              (req "nk" (Fixed.bytes 32))
              (req "ovk" (Fixed.bytes 32)))

    let of_expsk expsk =
      {
        ak = R.ask_to_ak Spending_key.(expsk.ask);
        nk = R.nsk_to_nk Spending_key.(expsk.nsk);
        ovk = expsk.ovk;
      }

    (** Type t additionally contains zip-32 related info *)
    type t = R.zip32_full_viewing_key = {
      depth : Bytes.t;
      parent_fvk_tag : Bytes.t;
      child_index : Bytes.t;
      chain_code : Bytes.t;
      fvk : full_viewing_key;
      dk : Bytes.t;
    }

    let ovk_of_xfvk xfvk = xfvk.fvk.ovk

    let encoding : t Data_encoding.t =
      let open Data_encoding in
      def "sapling.wallet.viewing_key"
      @@ conv
           (fun t ->
             ( t.depth,
               t.parent_fvk_tag,
               t.child_index,
               t.chain_code,
               t.fvk,
               t.dk ))
           (fun (depth, parent_fvk_tag, child_index, chain_code, fvk, dk) ->
             {depth; parent_fvk_tag; child_index; chain_code; fvk; dk})
           (obj6
              (req "depth" (Fixed.bytes 1))
              (req "parent_fvk_tag" (Fixed.bytes 4))
              (req "child_index" (Fixed.bytes 4))
              (req "chain_code" (Fixed.bytes 32))
              (req "expsk" fvk_encoding)
              (req "dk" (Fixed.bytes 32)))

    let to_bytes = R.of_zip32_full_viewing_key

    let of_bytes b = Option.catch (fun () -> R.to_zip32_full_viewing_key b)

    let of_sk (sk : Spending_key.t) =
      Spending_key.
        {
          depth = sk.depth;
          parent_fvk_tag = sk.parent_fvk_tag;
          child_index = sk.child_index;
          chain_code = sk.chain_code;
          fvk = of_expsk sk.expsk;
          dk = sk.dk;
        }

    (* diversifier_index is 11 bytes long but we treat is as 8 byte long int64 *)
    type index = R.diversifier_index

    let compare_index = R.compare_diversifier_index

    (* partial function to convert an 11 byte index to a 8 byte int64 *)
    let index_to_int64 idx =
      let b = R.of_diversifier_index idx in
      assert (
        Bytes.get b 8 = '\000'
        && Bytes.get b 9 = '\000'
        && Bytes.get b 10 = '\000') ;
      Bytes.get_int64_le b 0

    (* int64 is padded back to 11 bytes *)
    let index_of_int64 i =
      let b = Bytes.make 11 '\000' in
      Bytes.set_int64_le b 0 i ;
      R.to_diversifier_index b

    let index_encoding =
      let open Data_encoding in
      def "sapling.transaction.diversifier_index"
      @@ conv index_to_int64 index_of_int64 int64

    let default_index = index_of_int64 0L

    let index_succ b = index_to_int64 b |> Int64.succ |> index_of_int64

    type address = {diversifier : diversifier; pkd : pkd}

    let address_encoding =
      let open Data_encoding in
      def "sapling.wallet.address"
      @@ conv
           (fun i -> (i.diversifier, R.of_pkd i.pkd))
           (fun (diversifier, pkd) -> {diversifier; pkd = R.to_pkd pkd})
           (obj2
              (req "diversifier" diversifier_encoding)
              (req "pkd" (Fixed.bytes 32)))

    type Tezos_crypto.Base58.data += Data of address

    let address_b58check_encoding =
      let to_raw address =
        Data_encoding.Binary.to_string_exn address_encoding address
      in
      let of_raw str =
        Data_encoding.Binary.of_string_opt address_encoding str
      in
      Tezos_crypto.Base58.register_encoding
        ~prefix:Tezos_crypto.Base58.Prefix.sapling_address
        ~length:43
        ~to_raw
        ~of_raw
        ~wrap:(fun x -> Data x)

    let () =
      Tezos_crypto.Base58.check_encoded_prefix
        address_b58check_encoding
        "zet1"
        69

    let new_address vk j =
      match R.zip32_xfvk_address vk j with
      | None -> failwith "Exhausted available indices for the sapling key."
      | Some (i, diversifier, pkd) -> (i, {diversifier; pkd})

    let to_ivk xfvk = R.crh_ivk xfvk.fvk.ak xfvk.fvk.nk

    (* Creates an unspendable address since the ivk is generated at random *)
    let dummy_address () =
      (* NOTE: the density of valid diversifiers is roughly half. This loop is
         likely to be short. *)
      let rec random_diversifier () =
        match R.to_diversifier @@ Tezos_crypto.Hacl.Rand.gen 11 with
        | Some diversifier -> diversifier
        | None -> random_diversifier ()
      in
      let diversifier = random_diversifier () in
      (* A random ivk is 32 bytes with the first 5 bits set to 0 (if in big
         endian). As ivk is encoded in little endian, we apply the mask on the
         last byte.
      *)
      let rand = Tezos_crypto.Hacl.Rand.gen 32 in
      let mask = 0b00000111 in
      let int = Char.code @@ Bytes.get rand (32 - 1) in
      let int_masked = int land mask in
      Bytes.set rand (32 - 1) (Char.chr int_masked) ;
      let ivk = R.to_ivk rand in
      let pkd = R.ivk_to_pkd ivk diversifier in
      {diversifier; pkd}
  end

  (** See spec section 4.17 *)
  module DH = struct
    type esk = R.esk

    let esk_encoding =
      let open Data_encoding in
      def "sapling.DH.esk" @@ conv R.of_esk R.to_esk (Fixed.bytes 32)

    let esk_random () = R.to_esk @@ R.generate_r ()

    type epk = R.epk

    let epk_encoding =
      let open Data_encoding in
      def "sapling.DH.epk" @@ conv R.of_epk R.to_epk (Fixed.bytes 32)

    (** Derives the public part of the DH for the sender.
       (ie. epk is used for symkey_receiver). *)
    let derive_ephemeral address esk =
      R.ka_derivepublic Viewing_key.(address.diversifier) esk

    (* used to derive symmetric keys from the diffie hellman. *)
    let kdf_key = "KDFSaplingForTezosV1"

    (** Derives a symmetric key to be used to create the ciphertext on the
        sender side. *)
    let symkey_sender esk pkd =
      let symkey =
        Bytes.unsafe_to_string @@ R.of_symkey @@ R.ka_agree_sender pkd esk
      in
      let hash =
        Tezos_crypto.Blake2B.(to_bytes @@ hash_string ~key:kdf_key [symkey])
      in
      Tezos_crypto.Crypto_box.Secretbox.unsafe_of_bytes hash

    let symkey_receiver epk ivk =
      let symkey =
        Bytes.unsafe_to_string @@ R.of_symkey @@ R.ka_agree_receiver epk ivk
      in
      let hash =
        Tezos_crypto.Blake2B.(to_bytes @@ hash_string ~key:kdf_key [symkey])
      in
      Tezos_crypto.Crypto_box.Secretbox.unsafe_of_bytes hash

    let symkey_out ovk (cv, cm, epk) =
      let key = Bytes.of_string "OCK_keystringderivation_TEZOS" in
      let ock =
        Tezos_crypto.Blake2B.(
          to_bytes
            (hash_bytes
               ~key
               [R.of_cv cv; R.of_commitment cm; R.of_epk epk; R.of_ovk ovk]))
      in
      Tezos_crypto.Crypto_box.Secretbox.unsafe_of_bytes ock
  end

  module Rcm = struct
    type t = R.rcm

    let random () = R.to_rcm @@ R.generate_r ()

    let encoding =
      let open Data_encoding in
      def "sapling.transaction.rcm" @@ conv R.of_rcm R.to_rcm (Fixed.bytes 32)

    (* Check that rcm < r_j as specified by the spec.
       to_scalar reduces mod r_j but takes as input 64 bytes so concat rcm with
       0's and check to scalar (rcm) = rcm *)
    let assert_valid =
      let zeros = Bytes.make 32 '\000' in
      fun rcm ->
        assert (rcm = R.to_rcm (R.to_scalar (Bytes.cat (R.of_rcm rcm) zeros)))
  end

  module Commitment = struct
    type t = R.commitment

    let to_bytes = R.of_commitment

    let of_bytes_exn = R.to_commitment

    let encoding =
      let open Data_encoding in
      def "sapling.transaction.commitment"
      @@ conv R.of_commitment R.to_commitment (Fixed.bytes 32)

    let compute address ~amount rcm =
      let open Viewing_key in
      R.compute_cm address.diversifier address.pkd ~amount rcm

    let valid_position = R.valid_position
  end

  module Nullifier = struct
    type t = R.nullifier

    let encoding =
      let open Data_encoding in
      def "sapling.transaction.nullifier"
      @@ conv R.of_nullifier R.to_nullifier (Fixed.bytes 32)

    let compare nf1 nf2 =
      Bytes.compare (R.of_nullifier nf1) (R.of_nullifier nf2)

    let compute address xfvk ~amount rcm ~position =
      let open Viewing_key in
      let pkd = R.ivk_to_pkd (to_ivk xfvk) address.diversifier in
      R.compute_nf
        address.diversifier
        pkd
        ~amount
        rcm
        xfvk.fvk.ak
        xfvk.fvk.nk
        ~position
  end

  module CV = struct
    type t = R.cv

    let of_bytes b = Option.catch (fun () -> R.to_cv b)

    let encoding =
      let open Data_encoding in
      def "sapling.transaction.commitment_value"
      @@ conv R.of_cv R.to_cv (Fixed.bytes 32)
  end

  module Ciphertext = struct
    type t = {
      cv : CV.t;
      (* Public key to be used with symkey_receiver *)
      epk : DH.epk;
      (* authenticated encryption of diversifier, value, rcm, and an optional
         memo *)
      payload_enc : Bytes.t;
      (* nonce for the authenticated encryption of payload_enc *)
      nonce_enc : Tezos_crypto.Crypto_box.nonce;
      (* authenticated encryption of pkd and esk,
         allows to recover the symkey with symkey_sender *)
      payload_out : Bytes.t;
      (* nonce for the authenticated encryption of payload_out *)
      nonce_out : Tezos_crypto.Crypto_box.nonce;
    }

    let encoding =
      let open Data_encoding in
      let payload_out_size =
        Binary.(
          (WithExceptions.Option.get ~loc:__LOC__
          @@ fixed_length DH.esk_encoding)
          + (WithExceptions.Option.get ~loc:__LOC__
            @@ fixed_length DH.epk_encoding)
          + Tezos_crypto.Crypto_box.tag_length)
      in
      def "sapling.transaction.ciphertext"
      @@ conv
           (fun o ->
             ( o.cv,
               o.epk,
               o.payload_enc,
               o.nonce_enc,
               o.payload_out,
               o.nonce_out ))
           (fun (cv, epk, payload_enc, nonce_enc, payload_out, nonce_out) ->
             {cv; epk; payload_enc; nonce_enc; payload_out; nonce_out})
           (obj6
              (req "cv" CV.encoding)
              (req "epk" DH.epk_encoding)
              (req "payload_enc" bytes)
              (req "nonce_enc" Tezos_crypto.Crypto_box.nonce_encoding)
              (req "payload_out" (Fixed.bytes payload_out_size))
              (req "nonce_out" Tezos_crypto.Crypto_box.nonce_encoding))

    type plaintext = {
      diversifier : Viewing_key.diversifier;
      amount : int64;
      rcm : Rcm.t;
      memo : Bytes.t;
    }

    let plaintext_encoding =
      let open Data_encoding in
      def "sapling.transaction.plaintext"
      @@ conv
           (fun o ->
             assert (R.valid_amount o.amount) ;
             (o.diversifier, o.amount, o.rcm, o.memo))
           (fun (diversifier, amount, rcm, memo) ->
             assert (R.valid_amount amount) ;
             {diversifier; amount; rcm; memo})
           (obj4
              (req "diversifier" Viewing_key.diversifier_encoding)
              (req "amount" int64)
              (req "rcm" Rcm.encoding)
              (req "memo" bytes))

    let get_memo_size ciphertext =
      let payload_size = Bytes.length ciphertext.payload_enc in
      (* Payload contains fixed length fields and a variable size memo.
         The fixed length things are diversifier, amount, rcm and a message
         authentication code and 4 bytes added by the encoding for the length
         of the variable length field memo. *)
      let size_besides_memo =
        let open Data_encoding in
        (WithExceptions.Option.get ~loc:__LOC__
        @@ Binary.fixed_length Viewing_key.diversifier_encoding)
        + (WithExceptions.Option.get ~loc:__LOC__ @@ Binary.fixed_length int64)
        + (WithExceptions.Option.get ~loc:__LOC__
          @@ Binary.fixed_length Rcm.encoding)
        + Tezos_crypto.Crypto_box.tag_length + 4
      in
      payload_size - size_besides_memo

    let decompose_plaintext_out plaintext =
      assert (Bytes.length plaintext = 32 + 32) ;
      let pkd = Bytes.create 32 in
      let esk = Bytes.create 32 in
      let () = Bytes.blit plaintext 0 pkd 0 32 in
      let () = Bytes.blit plaintext 32 esk 0 32 in
      (R.to_pkd pkd, R.to_esk esk)

    let encrypt_aux key_agreed_out amount address rcm memo esk cv =
      let epk = DH.derive_ephemeral address esk in
      let nonce_enc = Tezos_crypto.Crypto_box.random_nonce () in
      let payload_enc =
        let key_agreed_enc = DH.symkey_sender esk address.pkd in
        let plaintext_enc =
          Data_encoding.Binary.to_bytes_exn
            plaintext_encoding
            {diversifier = Viewing_key.(address.diversifier); amount; rcm; memo}
        in
        Tezos_crypto.Crypto_box.Secretbox.secretbox
          key_agreed_enc
          plaintext_enc
          nonce_enc
      in
      let nonce_out = Tezos_crypto.Crypto_box.random_nonce () in
      let payload_out =
        let plaintext_out =
          Bytes.cat (R.of_pkd Viewing_key.(address.pkd)) (R.of_esk esk)
        in
        Tezos_crypto.Crypto_box.Secretbox.secretbox
          key_agreed_out
          plaintext_out
          nonce_out
      in
      {epk; payload_enc; nonce_enc; payload_out; nonce_out; cv}

    let encrypt amount address vk rcm memo (cv, cm, epk) esk =
      let key_agreed_out =
        DH.symkey_out Viewing_key.(vk.fvk.ovk) (cv, cm, epk)
      in
      encrypt_aux key_agreed_out amount address rcm memo esk cv

    (* useful for not revealing your outgoing transactions or creating dummy
       output *)
    let encrypt_without_ovk amount address rcm memo esk cv =
      let key_agreed_out =
        Tezos_crypto.Crypto_box.Secretbox.unsafe_of_bytes
        @@ Tezos_crypto.Hacl.Rand.gen 32
      in
      encrypt_aux key_agreed_out amount address rcm memo esk cv

    (* Since this is an authenticated encryption scheme, decrypt fails if the
       MAC does. This happens if the ciphertext was not intended to us, or was
       not correctly computed *)
    let decrypt ciphertext xfvk =
      let ivk = Viewing_key.to_ivk xfvk in
      let symkey = DH.symkey_receiver ciphertext.epk ivk in
      let ( >?? ) = Option.bind in
      Tezos_crypto.Crypto_box.Secretbox.secretbox_open
        symkey
        ciphertext.payload_enc
        ciphertext.nonce_enc
      >?? fun plaintext ->
      let {diversifier; amount; rcm; memo} =
        Data_encoding.Binary.of_bytes_exn plaintext_encoding plaintext
      in
      let pkd = R.ivk_to_pkd ivk diversifier in
      Some (Viewing_key.{pkd; diversifier}, amount, rcm, memo)

    (* Get ciphertext with only the outgoing viewing key,
       can fail if we decided to encrypt with encrypt_without_ovk *)
    let decrypt_ovk ciphertext ovk (cm, epk) =
      (* symkey for payload_out *)
      let symkey = DH.symkey_out ovk (ciphertext.cv, cm, epk) in
      let ( >?? ) = Option.bind in
      Tezos_crypto.Crypto_box.Secretbox.secretbox_open
        symkey
        ciphertext.payload_out
        ciphertext.nonce_out
      >?? fun plaintext ->
      let pkd, esk = decompose_plaintext_out plaintext in
      (* symkey for payload_enc *)
      let symkey = DH.symkey_sender esk pkd in
      Tezos_crypto.Crypto_box.Secretbox.secretbox_open
        symkey
        ciphertext.payload_enc
        ciphertext.nonce_enc
      >?? fun plaintext ->
      let {diversifier; amount; rcm; memo} =
        Data_encoding.Binary.of_bytes_exn plaintext_encoding plaintext
      in
      Some (Viewing_key.{pkd; diversifier}, amount, rcm, memo)
  end

  module Hash = struct
    type t = R.hash

    let compare = R.hash_compare

    let encoding =
      let open Data_encoding in
      def "sapling.transaction.commitment_hash"
      @@ conv R.of_hash R.to_hash (Fixed.bytes 32)

    let merkle_hash = R.merkle_hash

    let uncommitted_hashes =
      lazy
        (let max_height = 32 in
         let res = Array.make (max_height + 1) R.tree_uncommitted in
         for height = 0 to max_height - 1 do
           let h = res.(height) in
           res.(height + 1) <- R.merkle_hash ~height h h
         done ;
         res)

    let uncommitted ~height = (Lazy.force uncommitted_hashes).(height)

    let of_bytes_exn = R.to_hash

    let to_bytes = R.of_hash

    let of_commitment = R.hash_of_commitment

    let to_commitment = R.commitment_of_hash
  end

  module UTXO = struct
    type rk = R.rk

    type spend_proof = R.spend_proof

    (** What gets signed. Has to be a hash of an input plus anti-replay string. *)
    type sighash = R.sighash

    (* Creates sighash for spend_sig *)
    let hash_input cv nf rk proof key_string =
      let key = Bytes.of_string key_string in
      let h =
        Tezos_crypto.Blake2B.(
          to_bytes
            (hash_bytes
               ~key
               [
                 R.of_cv cv;
                 R.of_nullifier nf;
                 R.of_rk rk;
                 R.of_spend_proof proof;
               ]))
      in
      R.to_sighash h

    type spend_sig = R.spend_sig

    (* Spend description *)
    type input = {
      cv : CV.t;
      nf : Nullifier.t;
      rk : rk;
      proof_i : spend_proof;
      signature : spend_sig;
    }

    let input_encoding =
      let open Data_encoding in
      let open R in
      def "sapling.transaction.input" ~description:"Input of a transaction"
      @@ conv
           (fun i ->
             ( i.cv,
               i.nf,
               of_rk i.rk,
               of_spend_proof i.proof_i,
               of_spend_sig i.signature ))
           (fun (cv, nf, rk, proof_i, signature) ->
             {
               cv;
               nf;
               rk = to_rk rk;
               proof_i = to_spend_proof proof_i;
               signature = to_spend_sig signature;
             })
           (obj5
              (req "cv" CV.encoding)
              (req "nf" Nullifier.encoding)
              (req "rk" (Fixed.bytes 32))
              (req "proof_i" (Fixed.bytes (48 + 96 + 48)))
              (req "signature" (Fixed.bytes 64)))

    type output_proof = R.output_proof

    (* output description *)
    type output = {
      cm : Commitment.t;
      proof_o : output_proof;
      ciphertext : Ciphertext.t;
    }

    let output_encoding =
      let open Data_encoding in
      let open R in
      def "sapling.transaction.output" ~description:"Output of a transaction"
      @@ conv
           (fun o -> (o.cm, of_output_proof o.proof_o, o.ciphertext))
           (fun (cm, proof_o, ciphertext) ->
             {cm; proof_o = to_output_proof proof_o; ciphertext})
           (obj3
              (req "cm" Commitment.encoding)
              (req "proof_o" (Fixed.bytes (48 + 96 + 48)))
              (req "ciphertext" Ciphertext.encoding))

    type binding_sig = R.binding_sig

    let binding_sig_encoding =
      let open Data_encoding in
      def
        "sapling.transaction.binding_sig"
        ~description:"Binding signature of a transaction"
      @@ conv R.of_binding_sig R.to_binding_sig (Fixed.bytes 64)

    (* Create sighash for binding_sig *)
    let hash_transaction inputs outputs ~bound_data key =
      let input_bytes =
        List.map (Data_encoding.Binary.to_string_exn input_encoding) inputs
      in
      let output_bytes =
        List.map (Data_encoding.Binary.to_string_exn output_encoding) outputs
      in
      let h =
        Tezos_crypto.Blake2B.(
          to_bytes
            (hash_string ~key (input_bytes @ output_bytes @ [bound_data])))
      in
      R.to_sighash h

    type transaction = {
      inputs : input list;
      outputs : output list;
      binding_sig : binding_sig;
      balance : int64;
      root : Hash.t;
      bound_data : string;
    }

    let transaction_encoding =
      let open Data_encoding in
      let check_memo_size outputs =
        let size =
          match outputs with
          | o :: _ -> Ciphertext.get_memo_size o.ciphertext
          | _ ->
              (* never actually used *)
              -1
        in
        List.iter
          (fun output ->
            assert (Ciphertext.get_memo_size output.ciphertext = size))
          outputs
      in
      def
        "sapling.transaction"
        ~description:
          "A Sapling transaction with inputs, outputs, balance, root, \
           bound_data and binding sig."
      @@ conv
           (fun t ->
             check_memo_size t.outputs ;
             ( t.inputs,
               t.outputs,
               t.binding_sig,
               t.balance,
               t.root,
               t.bound_data ))
           (fun (inputs, outputs, binding_sig, balance, root, bound_data) ->
             check_memo_size outputs ;
             {inputs; outputs; binding_sig; balance; root; bound_data})
           (obj6
              (req "inputs" (list ~max_length:5208 input_encoding))
              (req "outputs" (list ~max_length:2019 output_encoding))
              (req "binding_sig" binding_sig_encoding)
              (req "balance" int64)
              (req "root" Hash.encoding)
              (req "bound_data" string))

    let max_amount = R.max_amount

    let valid_amount = R.valid_amount

    module Legacy = struct
      type transaction_new = transaction

      type transaction = {
        inputs : input list;
        outputs : output list;
        binding_sig : binding_sig;
        balance : int64;
        root : Hash.t;
      }

      let transaction_encoding =
        let open Data_encoding in
        let check_memo_size outputs =
          let size =
            match outputs with
            | o :: _ -> Ciphertext.get_memo_size o.ciphertext
            | _ ->
                (* never actually used *)
                -1
          in
          List.iter
            (fun output ->
              assert (Ciphertext.get_memo_size output.ciphertext = size))
            outputs
        in
        def
          "sapling.transaction_legacy"
          ~description:
            "A Sapling legacy transaction with inputs, outputs, balance, root \
             and binding sig."
        @@ conv
             (fun t ->
               check_memo_size t.outputs ;
               (t.inputs, t.outputs, t.binding_sig, t.balance, t.root))
             (fun (inputs, outputs, binding_sig, balance, root) ->
               check_memo_size outputs ;
               {inputs; outputs; binding_sig; balance; root})
             (obj5
                (req "inputs" (list ~max_length:5208 input_encoding))
                (req "outputs" (list ~max_length:2019 output_encoding))
                (req "binding_sig" binding_sig_encoding)
                (req "balance" int64)
                (req "root" Hash.encoding))

      let cast : transaction -> transaction_new =
       fun t ->
        {
          inputs = t.inputs;
          outputs = t.outputs;
          root = t.root;
          binding_sig = t.binding_sig;
          balance = t.balance;
          bound_data = "";
        }
    end
  end

  module Proving = struct
    type t = R.proving_ctx

    type ar = R.ar

    let with_proving_ctx = R.with_proving_ctx

    let ar_random () = R.to_ar @@ R.generate_r ()

    let spend_proof ctx xfvk xsp address rcm ar ~amount ~root ~witness =
      let open Viewing_key in
      R.spend_proof
        ctx
        xfvk.fvk.ak
        Spending_key.(xsp.expsk.nsk)
        address.diversifier
        rcm
        ar
        ~amount
        ~root
        ~witness

    let spend_sig xsp ar cv nf rk proof key_string =
      let sighash = UTXO.hash_input cv nf rk proof key_string in
      R.spend_sig Spending_key.(xsp.expsk.ask) ar sighash

    let output_proof ctx esk address rcm ~amount =
      R.output_proof
        ctx
        esk
        Viewing_key.(address.diversifier)
        address.pkd
        rcm
        ~amount

    let make_binding_sig ctx inputs outputs ~balance ~bound_data key =
      let sighash = UTXO.hash_transaction inputs outputs ~bound_data key in
      R.make_binding_sig ctx ~balance sighash
  end

  module Verification = struct
    (* A verifying ctx is an elliptic curve point in the Rust library *)
    type t = R.verification_ctx

    let with_verification_ctx = R.with_verification_ctx

    let check_spend ctx input root key =
      let open UTXO in
      (* Hash the transaction with the anti-replay string *)
      let sighash = hash_input input.cv input.nf input.rk input.proof_i key in
      (* Checks the signature on sighash under rk, the zero-knowledge proof
         and adds info into the context (multiply by cv). *)
      R.check_spend
        ctx
        input.cv
        root
        input.nf
        input.rk
        input.proof_i
        input.signature
        sighash

    let check_output ctx output =
      let open UTXO in
      (* Checks the zero-knowledge proof and add infos into the context
         (divides by cv). *)
      R.check_output
        ctx
        output.ciphertext.cv
        output.cm
        output.ciphertext.epk
        output.proof_o

    (* Checks that the binding_sig is a valid signature of sighash
       under ctx times (commitment of the balance with randomness zero) *)
    let final_check ctx transaction key =
      let open UTXO in
      let hash =
        hash_transaction
          transaction.inputs
          transaction.outputs
          ~bound_data:transaction.bound_data
          key
      in
      R.final_check ctx transaction.balance transaction.binding_sig hash
  end

  module Forge = struct
    module Input = struct
      (* A Forge.Input.t allows to create an UTXO.Input.t
         assuming the address is derived from our key *)
      type t = {
        rcm : Rcm.t;
        pos : int64;
        amount : int64;
        address : Viewing_key.address;
      }

      let encoding =
        let open Data_encoding in
        def
          "sapling.forge.input"
          ~description:"Data to forge the input of a transaction"
        @@ conv
             (fun i ->
               assert (Commitment.valid_position i.pos) ;
               assert (UTXO.valid_amount i.amount) ;
               (i.rcm, i.pos, i.amount, i.address))
             (fun (rcm, pos, amount, address) ->
               assert (Commitment.valid_position pos) ;
               assert (UTXO.valid_amount amount) ;
               {rcm; pos; amount; address})
             (obj4
                (req "rcm" Rcm.encoding)
                (req "pos" int64)
                (req "amount" int64)
                (req "addr" Viewing_key.address_encoding))

      let compare fi1 fi2 =
        let v = Int64.compare fi1.amount fi2.amount in
        if v = 0 then Int64.compare fi1.pos fi2.pos else v

      (* Gets the information from the ciphertext provided the right viewing key *)
      let of_ciphertext ~pos cipher vk =
        Option.map
          (fun (address, amount, rcm, memo) ->
            (memo, {rcm; pos; amount; address}))
          (Ciphertext.decrypt cipher vk)

      (* Gets the information from the ciphertext provided the right outgoing viewing
         key and that the cipher is valid *)
      let of_ciphertext_out ~pos cipher ovk cm =
        let to_be_hashed = (cm, Ciphertext.(cipher.epk)) in
        Option.map
          (fun (address, amount, rcm, memo) ->
            (memo, {rcm; pos; amount; address}))
          (Ciphertext.decrypt_ovk cipher ovk to_be_hashed)

      (* Used to check that the decrypted information is correct by re-computing
         the cm *)
      let check_cm i existing_cm =
        Rcm.assert_valid i.rcm ;
        let computed_cm = Commitment.compute i.address ~amount:i.amount i.rcm in
        if existing_cm = computed_cm then true else false
    end

    module Output = struct
      (* Forge.Output.t allows to create a UTXO.Output.t *)
      type t = {address : Viewing_key.address; amount : int64; memo : Bytes.t}

      (* Prepare the ciphertext and the commitment *)
      let to_ciphertext o cv vk rcm esk =
        let cm = Commitment.compute o.address ~amount:o.amount rcm in
        let epk = DH.derive_ephemeral o.address esk in
        let to_be_hashed = (cv, cm, epk) in
        let ciphertext =
          Ciphertext.encrypt o.amount o.address vk rcm o.memo to_be_hashed esk
        in
        (ciphertext, cm)

      (* Prepare the ciphertext that won't decrypt under ovk and the commitment *)
      let to_ciphertext_without_ovk o rcm esk cv =
        let cm = Commitment.compute o.address ~amount:o.amount rcm in
        let ciphertext =
          Ciphertext.encrypt_without_ovk o.amount o.address rcm o.memo esk cv
        in
        (ciphertext, cm)
    end
  end
end

module Client : Core_sig.Client = Raw

module Validator :
  Core_sig.Validator
    with type Ciphertext.t = Client.Ciphertext.t
     and type Commitment.t = Client.Commitment.t
     and type CV.t = Client.CV.t
     and type Hash.t = Client.Hash.t
     and type Nullifier.t = Client.Nullifier.t
     and module UTXO = Client.UTXO =
  Client

(* This module is for backward compatibility with a previous definition of
   [transaction] which didn't have any [bound_data]. *)
module Validator_legacy = struct
  include Validator

  module UTXO = struct
    include UTXO
    include UTXO.Legacy
  end

  module Verification = struct
    include Verification

    let final_check ctx transaction key =
      Validator.Verification.final_check
        ctx
        (Validator.UTXO.Legacy.cast transaction)
        key
  end
end

module Wallet :
  Core_sig.Wallet
    with type Spending_key.t = Client.Spending_key.t
     and type Viewing_key.t = Client.Viewing_key.t
     and type Viewing_key.address = Client.Viewing_key.address =
  Client

let () =
  Data_encoding.Registration.register Raw.Ciphertext.encoding ;
  Data_encoding.Registration.register Raw.Ciphertext.plaintext_encoding ;
  Data_encoding.Registration.register Raw.Commitment.encoding ;
  Data_encoding.Registration.register Raw.CV.encoding ;
  Data_encoding.Registration.register Raw.Hash.encoding ;
  Data_encoding.Registration.register Raw.Nullifier.encoding ;
  Data_encoding.Registration.register Raw.Rcm.encoding ;
  Data_encoding.Registration.register Raw.Spending_key.encoding ;
  Data_encoding.Registration.register Raw.UTXO.binding_sig_encoding ;
  Data_encoding.Registration.register Raw.UTXO.input_encoding ;
  Data_encoding.Registration.register Raw.UTXO.output_encoding ;
  Data_encoding.Registration.register Raw.UTXO.transaction_encoding ;
  Data_encoding.Registration.register Raw.Viewing_key.address_encoding ;
  Data_encoding.Registration.register Raw.Viewing_key.index_encoding ;
  Data_encoding.Registration.register Raw.Viewing_key.encoding
OCaml

Innovation. Community. Security.