package octez-libs

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file result.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
(*****************************************************************************)
(*                                                                           *)
(* MIT License                                                               *)
(* Copyright (c) 2022 Nomadic Labs <contact@nomadic-labs.com>                *)
(*                                                                           *)
(* Permission is hereby granted, free of charge, to any person obtaining a   *)
(* copy of this software and associated documentation files (the "Software"),*)
(* to deal in the Software without restriction, including without limitation *)
(* the rights to use, copy, modify, merge, publish, distribute, sublicense,  *)
(* and/or sell copies of the Software, and to permit persons to whom the     *)
(* Software is furnished to do so, subject to the following conditions:      *)
(*                                                                           *)
(* The above copyright notice and this permission notice shall be included   *)
(* in all copies or substantial portions of the Software.                    *)
(*                                                                           *)
(* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*)
(* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,  *)
(* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL   *)
(* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*)
(* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING   *)
(* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER       *)
(* DEALINGS IN THE SOFTWARE.                                                 *)
(*                                                                           *)
(*****************************************************************************)

(** "Pure value" backend for Plompiler.
    It actually implements a simple state monad to keep track
    of implicit checks.
*)

include Lang_core

type scalar = X of S.t

type input_kind = [`InputCom | `Public | `Private]

type trace_kind = [input_kind | `NoInput]

type 'a repr =
  | U : unit repr
  | S : scalar -> scalar repr
  | B : bool -> bool repr
  | P : 'a repr * 'b repr -> ('a * 'b) repr
  | L : 'a repr list -> 'a list repr

type state = bool repr list

type 'a t = state -> state * 'a

let ret x s = (s, x)

let ( let* ) m f s =
  let s, o = m s in
  f o s

let ( >* ) m f =
  let* U = m in
  f

let ( <$> ) m f =
  let* m in
  ret (f m)

let rec mapM f ls =
  match ls with
  | [] -> ret @@ []
  | l :: ls ->
      let* o = f l in
      let* rest = mapM f ls in
      ret @@ (o :: rest)

let with_bool_check : bool repr t -> unit repr t =
 fun check s ->
  let s, b = check s in
  (b :: s, U)

module Input = struct
  type 'a implicit_check = 'a repr -> unit repr t

  type 'a t' = 'a repr

  type 'a input = 'a t' * 'a implicit_check

  type 'a t = 'a input

  let default_check _ = ret U

  let s x : scalar t' = S (X x)

  let scalar x = (s x, default_check)

  let to_scalar (S (X x), _) = x

  let bool b = (B b, default_check)

  let to_bool (B b, _) = b

  let unit = (U, default_check)

  let pair : 'a t -> 'b t -> ('a * 'b) t =
   fun (a, check_a) (b, check_b) ->
    (P (a, b), fun (P (ar, br)) -> check_a ar >* check_b br)

  let to_pair (P (a, b), _) = ((a, default_check), (b, default_check))

  let list : 'a t list -> 'a list t =
   fun l ->
    ( L (List.map fst l),
      fun (L lr) ->
        let* _l =
          mapM (fun ((_, asssertion), r) -> asssertion r) (List.combine l lr)
        in
        ret U )

  let to_list (L l, _) = List.map (fun i -> (i, default_check)) l

  let with_implicit_bool_check bc (i, a) =
    (i, fun repr -> a repr >* with_bool_check (bc repr))

  let with_assertion na (i, a) = (i, fun repr -> a repr >* na repr)
end

let rec encode : type a. a Input.t' -> S.t list =
 fun input ->
  match input with
  | U -> []
  | S (X s) -> [s]
  | B b -> if b then [S.one] else [S.zero]
  | P (l, r) -> encode l @ encode r
  | L l -> List.concat_map encode l

let serialize i = Array.of_list @@ encode (fst i)

(* Note: this doesn't match [Circuit]'s concept of physical equality,
   as we don't have wires here. *)
let rec eq : type a. a repr -> a repr -> bool =
 fun a b ->
  match (a, b) with
  | S (X a), S (X b) -> S.eq a b
  | B a, B b -> a = b
  | P (al, ar), P (bl, br) -> eq al bl && eq ar br
  | L l1, L l2 -> List.for_all2 eq l1 l2
  | U, U -> true

let input : type a. ?kind:input_kind -> a Input.t -> a repr t =
 fun ?(kind = `Private) (input, check) ->
  ignore kind ;
  check input >* ret input

let new_input_com : unit repr t = fun s -> (s, U)

type 'b open_input_com = 'b t

let begin_input_com : 'b -> 'b open_input_com = fun b -> new_input_com >* ret b

let ( |: ) :
    type c d. (c repr -> d) open_input_com -> c Input.t -> d open_input_com =
 fun v i s ->
  let s, f = v s in
  let s, r = (input ~kind:`InputCom i) s in
  (s, f r)

let end_input_com : 'a open_input_com -> 'a t = Fun.id

let to_list l = L l

let of_list (L l) = l

let of_pair (P (l, r)) = (l, r)

let pair l r = P (l, r)

let unit = U

let to_s s = S (X s)

let of_s (S (X s)) = s

let map2 f x y = X (f x y)

let rec foldM f e l =
  match l with
  | [] -> ret e
  | x :: xs ->
      let* y = f e x in
      foldM f y xs

let scalar_of_bool (B b) = if b then S (X S.one) else S (X S.zero)

let unsafe_bool_of_scalar (S (X s)) = if S.(eq s one) then B true else B false

module Num = struct
  type nonrec scalar = scalar

  type nonrec 'a repr = 'a repr

  type nonrec 'a t = 'a t

  let range_check ~nb_bits (S (X x)) s =
    assert (Z.compare (S.to_z x) Z.(one lsl nb_bits) < 0) ;
    (s, U)

  let assert_nonzero sx =
    let x = of_s sx in
    assert (not S.(x = zero)) ;
    ret U

  let is_zero (S (X x)) = ret @@ B S.(x = zero)

  let is_not_zero (S (X x)) = ret @@ B (not S.(x = zero))

  let custom ?(qc = S.zero) ?(ql = S.zero) ?(qr = S.zero) ?(qo = S.mone)
      ?(qm = S.zero) ?(qx2b = S.zero) ?(qx5a = S.zero) sl sr =
    let l, r = (of_s sl, of_s sr) in
    let o =
      S.(
        ((ql * l) + (qr * r)
        + (qm * l * r)
        + qc
        + (qx2b * r * r)
        + (qx5a * l * l * l * l * l))
        / negate qo)
    in
    ret @@ S (X o)

  let assert_custom ?(qc = S.zero) ?(ql = S.zero) ?(qr = S.zero) ?(qo = S.zero)
      ?(qm = S.zero) sl sr so =
    let l, r, o = (of_s sl, of_s sr, of_s so) in
    let o = S.((ql * l) + (qr * r) + (qo * o) + (qm * l * r) + qc) in
    assert (S.(o = zero)) ;
    ret U

  let assert_bool (S (X l)) =
    assert (S.(l = zero || l = one)) ;
    ret U

  let add ?(qc = S.zero) ?(ql = S.one) ?(qr = S.one) sl sr =
    let l, r = (of_s sl, of_s sr) in
    let o = S.((ql * l) + (qr * r) + qc) in
    ret @@ S (X o)

  let sub sl sr =
    let l, r = (of_s sl, of_s sr) in
    ret @@ S (map2 S.sub l r)

  let mul ?(qm = S.one) sl sr =
    let l, r = (of_s sl, of_s sr) in
    let lr = S.mul l r in
    ret @@ S (map2 S.mul qm lr)

  let add_constant ?(ql = S.one) k sl =
    let l = of_s sl in
    let o = S.(k + (ql * l)) in
    ret @@ S (X o)

  let div ?(den_coeff = S.one) sl sr =
    let l, r = (of_s sl, of_s sr) in
    assert (not S.(is_zero r)) ;
    assert (not S.(is_zero den_coeff)) ;
    let qmr = S.mul den_coeff r in
    ret @@ S (map2 S.div_exn l qmr)

  let pow5 sl =
    let l = of_s sl in
    ret @@ S (X S.(pow l (Z.of_int 5)))

  let constant : S.t -> scalar repr t = fun s -> ret (S (X s))

  let zero = constant S.zero

  let one = constant S.one
end

module Bool = struct
  type nonrec scalar = scalar

  type nonrec 'a repr = 'a repr

  type nonrec 'a t = 'a t

  let s_of_b b = if b then X S.one else X S.zero

  let assert_true (B b) =
    assert b ;
    ret U

  let assert_false (B b) =
    assert (not b) ;
    ret U

  let constant : bool -> bool repr t = fun b -> ret (B b)

  let band (B l) (B r) = ret @@ B (l && r)

  let xor (B l) (B r) =
    let o =
      match (l, r) with
      | true, true -> false
      | false, true -> true
      | true, false -> true
      | false, false -> false
    in
    ret @@ B o

  let bor (B l) (B r) = ret @@ B (l || r)

  let bnot (B b) = ret @@ B (not b)

  let ifthenelse (B b) l r = if b then ret l else ret r

  let swap (B b) l r = if b then ret @@ pair r l else ret @@ pair l r

  let band_list l : bool repr t =
    ret @@ List.fold_left (fun (B a) (B b) -> B (a && b)) (B true) l

  module Internal = struct
    let bor_lookup (B l) (B r) = bor (B l) (B r)

    let xor_lookup (B l) (B r) = xor (B l) (B r)

    let band_lookup (B l) (B r) = band (B l) (B r)

    let bnot_lookup (B b) = bnot (B b)
  end
end

module Limb (N : sig
  val nb_bits : int
end) =
struct
  let nb_bits =
    (* As we use the Int functions (logxor, logand, etc.) to compute
       the lookup table, the nb_bits is limited to int_size / 2. *)
    assert (N.nb_bits <= 8) ;
    N.nb_bits

  let xor_lookup (S (X l)) (S (X r)) =
    ret @@ to_s @@ S.of_int
    @@ Int.logxor (Z.to_int (S.to_z l)) (Z.to_int (S.to_z r))

  let band_lookup (S (X l)) (S (X r)) =
    ret @@ to_s @@ S.of_int
    @@ Int.logand (Z.to_int (S.to_z l)) (Z.to_int (S.to_z r))

  let bnot_lookup (S (X l)) =
    let mask = (1 lsl nb_bits) - 1 in
    ret @@ to_s @@ S.of_int @@ Int.(logand (lognot (Z.to_int (S.to_z l))) mask)

  let rotate_right_lookup (S (X l)) (S (X r)) i =
    assert (i < nb_bits) ;
    ret @@ to_s
    @@ S.of_int
         (Csir.rotate_right
            ~nb_bits
            (Z.to_int (S.to_z l))
            (Z.to_int (S.to_z r))
            i)
end

let point x y = P (S (X x), S (X y))

let of_point (P (S (X x), S (X y))) = (x, y)

module Ecc = struct
  let weierstrass_add p1 p2 =
    let module W = Mec.Curve.Jubjub.AffineWeierstrass in
    let x1, y1 = of_point p1 in
    let x2, y2 = of_point p2 in
    let s_to_base s = W.Base.of_z (S.to_z s) in
    let s_of_base s = S.of_z (W.Base.to_z s) in
    let p1 = W.from_coordinates_exn ~x:(s_to_base x1) ~y:(s_to_base y1) in
    let p2 = W.from_coordinates_exn ~x:(s_to_base x2) ~y:(s_to_base y2) in
    let p3 = W.add p1 p2 in
    ret
    @@ point
         (s_of_base @@ W.get_x_coordinate p3)
         (s_of_base @@ W.get_y_coordinate p3)

  let edwards_add p1 p2 =
    let module W = Mec.Curve.Jubjub.AffineEdwards in
    let x1, y1 = of_point p1 in
    let x2, y2 = of_point p2 in
    let s_to_base s = W.Base.of_z (S.to_z s) in
    let s_of_base s = S.of_z (W.Base.to_z s) in
    let p1 = W.from_coordinates_exn ~u:(s_to_base x1) ~v:(s_to_base y1) in
    let p2 = W.from_coordinates_exn ~u:(s_to_base x2) ~v:(s_to_base y2) in
    let p3 = W.add p1 p2 in
    ret
    @@ point
         (s_of_base @@ W.get_u_coordinate p3)
         (s_of_base @@ W.get_v_coordinate p3)

  let edwards_cond_add p1 p2 (B b) =
    let module W = Mec.Curve.Jubjub.AffineEdwards in
    let x1, y1 = of_point p1 in
    let x2, y2 = of_point p2 in
    let s_to_base s = W.Base.of_z (S.to_z s) in
    let s_of_base s = S.of_z (W.Base.to_z s) in
    let p1 = W.from_coordinates_exn ~u:(s_to_base x1) ~v:(s_to_base y1) in
    let p2 = W.from_coordinates_exn ~u:(s_to_base x2) ~v:(s_to_base y2) in
    let p3 = W.add p1 p2 in
    let out = if b then p3 else p1 in
    ret
    @@ point
         (s_of_base @@ W.get_u_coordinate out)
         (s_of_base @@ W.get_v_coordinate out)
end

module Mod_arith = struct
  let add ?(subtraction = false) ~label:_ ~modulus ~nb_limbs:_ ~base ~moduli:_
      ~qm_bound:_ ~ts_bounds:_ x y =
    let xs = List.map (fun s -> of_s s |> S.to_z) (of_list x) in
    let ys = List.map (fun s -> of_s s |> S.to_z) (of_list y) in
    let zs =
      if subtraction then Utils.mod_sub_limbs ~modulus ~base xs ys
      else Utils.mod_add_limbs ~modulus ~base xs ys
    in
    let z = List.map (fun z -> S.of_z z |> to_s) zs |> to_list in
    ret z

  let mul ?(division = false) ~label:_ ~modulus ~nb_limbs:_ ~base ~moduli:_
      ~qm_bound:_ ~ts_bounds:_ x y =
    let xs = List.map (fun s -> of_s s |> S.to_z) (of_list x) in
    let ys = List.map (fun s -> of_s s |> S.to_z) (of_list y) in
    let zs =
      if division then Utils.mod_div_limbs ~modulus ~base xs ys
      else Utils.mod_mul_limbs ~modulus ~base xs ys
    in
    let z = List.map (fun z -> S.of_z z |> to_s) zs |> to_list in
    ret z

  let assert_non_zero ~label:_ ~modulus ~is_prime:_ ~nb_limbs:_ ~base ~moduli:_
      ~qm_bound:_ ~ts_bounds:_ x =
    let xs = List.map (fun s -> of_s s |> S.to_z) (of_list x) in
    let x = Utils.z_of_limbs ~base xs in
    assert (not Z.(rem x modulus = zero)) ;
    ret unit

  let is_zero ~label:_ ~modulus ~is_prime:_ ~nb_limbs:_ ~base ~moduli:_
      ~qm_bound:_ ~ts_bounds:_ x =
    let xs = List.map (fun s -> of_s s |> S.to_z) (of_list x) in
    let x = Utils.z_of_limbs ~base xs in
    ret @@ B Z.(rem x modulus = zero)
end

module Poseidon = struct
  module VS = Linear_algebra.Make_VectorSpace (S)

  let poseidon128_full_round ~matrix ~k (x0, x1, x2) =
    let pow5 x = S.pow (of_s x) (Z.of_int 5) in
    let x_vec = [|Array.map pow5 [|x0; x1; x2|]|] |> VS.transpose in
    let y_vec = VS.mul matrix x_vec in
    let y0 = S.add k.(0) @@ y_vec.(0).(0) in
    let y1 = S.add k.(1) @@ y_vec.(1).(0) in
    let y2 = S.add k.(2) @@ y_vec.(2).(0) in
    ret @@ to_list [S (X y0); S (X y1); S (X y2)]

  let poseidon128_four_partial_rounds ~matrix ~ks (x0, x1, x2) =
    let k0 = VS.filter_cols (Int.equal 0) ks in
    let k1 = VS.filter_cols (Int.equal 1) ks in
    let k2 = VS.filter_cols (Int.equal 2) ks in
    let k3 = VS.filter_cols (Int.equal 3) ks in
    let ppow5 v = [|v.(0); v.(1); [|S.pow v.(2).(0) (Z.of_int 5)|]|] in
    let x_vec = [|[|of_s x0; of_s x1; of_s x2|]|] |> VS.transpose in
    let a_vec = VS.(add (mul matrix @@ ppow5 x_vec) k0) in
    let b_vec = VS.(add (mul matrix @@ ppow5 a_vec) k1) in
    let c_vec = VS.(add (mul matrix @@ ppow5 b_vec) k2) in
    let y_vec = VS.(add (mul matrix @@ ppow5 c_vec) k3) in
    ret
    @@ to_list [S (X y_vec.(0).(0)); S (X y_vec.(1).(0)); S (X y_vec.(2).(0))]
end

module Anemoi = struct
  module AnemoiPerm = Bls12_381_hash.Permutation.Anemoi

  let beta = S.of_string (Bls12_381.Fr.to_string AnemoiPerm.Parameters.beta)

  let gamma = S.of_string (Bls12_381.Fr.to_string AnemoiPerm.Parameters.gamma)

  let g = S.of_string (Bls12_381.Fr.to_string AnemoiPerm.Parameters.g)

  let delta = S.of_string (Bls12_381.Fr.to_string AnemoiPerm.Parameters.delta)

  let alpha_inv =
    S.of_string (Bls12_381.Fr.to_string AnemoiPerm.Parameters.alpha_inv)

  let anemoi_round ~kx ~ky (x0, y0) =
    let x0 = of_s x0 in
    let y0 = of_s y0 in
    let g2_p_1 = S.((g * g) + one) in
    let w_5 = S.(sub x0 ((beta * y0 * y0) + gamma)) in
    (* (1/5) *)
    let w = S.(pow w_5 (to_z alpha_inv)) in
    let v = S.sub y0 w in
    let u = S.(w_5 + ((beta * v * v) + delta)) in
    let x1 = S.(u + kx + (g * (v + ky))) in
    let y1 = S.((g * (u + kx)) + (g2_p_1 * (v + ky))) in
    ret @@ pair (S (X x1)) (S (X y1))

  let anemoi_double_round ~kx1 ~ky1 ~kx2 ~ky2 (x0, y0) =
    let* res1 = anemoi_round ~kx:kx1 ~ky:ky1 (x0, y0) in
    let x1, y1 = of_pair res1 in
    let* res2 = anemoi_round ~kx:kx2 ~ky:ky2 (x1, y1) in
    let x2, y2 = of_pair res2 in
    ret @@ pair x2 y2

  let anemoi_custom = anemoi_double_round
end

let hd (L l) = match l with [] -> assert false | x :: _ -> ret x

let assert_equal l r =
  assert (eq l r) ;
  ret U

let equal : type a. a repr -> a repr -> bool repr t =
 fun l r -> ret @@ B (eq l r)

let scalar_of_limbs ~nb_bits b =
  let sb = of_list b in
  let powers =
    let nb_limbs = List.length sb in
    let base = 1 lsl nb_bits |> Z.of_int in
    List.init nb_limbs (fun i -> S.of_z @@ Z.pow base i)
  in
  foldM
    (fun acc (qr, w) -> Num.add ~qr acc w)
    (List.hd sb)
    List.(tl @@ combine powers sb)

let bits_of_scalar ?(shift = Z.zero) ~nb_bits sx =
  let x = of_s sx |> S.to_z in
  let x = Z.add shift x in
  let sx = S (X (S.of_z x)) in
  let binary_decomposition = Utils.bool_list_of_z ~nb_bits x in
  let bits = L (List.map (fun x -> B x) binary_decomposition) in
  let* sum =
    let sbits = List.map scalar_of_bool (of_list bits) in
    scalar_of_limbs ~nb_bits:1 (to_list sbits)
  in
  with_bool_check (equal sx sum) >* ret bits

let limbs_of_scalar ?(shift = Z.zero) ~total_nb_bits ~nb_bits sx =
  let x = of_s sx |> S.to_z in
  let x = Z.add shift x in
  let binary_decomposition = Utils.bool_list_of_z ~nb_bits:total_nb_bits x in
  let nb_decomposition =
    Utils.limbs_of_bool_list ~nb_bits binary_decomposition
  in
  let limbs = L (List.map (fun x -> to_s @@ S.of_int x) nb_decomposition) in
  let sx = S (X (S.of_z x)) in
  let* sum = scalar_of_limbs ~nb_bits limbs in
  with_bool_check (equal sx sum) >* ret limbs

let of_b (B x) = x

let get_checks_wire : bool repr t =
 fun s -> ([], B (List.for_all (fun (B x) -> x) s))

let init_state = []

let with_label ~label t =
  ignore label ;
  t

let rec repr_to_string : type a. a repr -> string = function
  | U -> "()"
  | S (X s) -> S.string_of_scalar s
  | B b -> if b then "T" else "F"
  | P (a, b) -> "(" ^ repr_to_string a ^ "," ^ repr_to_string b ^ ")"
  | L (B _ :: _ as bs) ->
      (* special case to print bytes in hex *)
      let bs = List.map (fun (B b) -> if b then true else false) bs in
      let bs = Utils.of_bitlist ~le:false bs in
      Utils.hex_of_bytes bs
  | L l -> String.concat ";" (List.map repr_to_string l)

let debug s x =
  Format.printf "%s: %s\n%!" s (repr_to_string x) ;
  ret unit

let get_result : 'a repr t -> 'a Input.t =
 fun m ->
  let s, r = m init_state in
  let c = List.fold_left (fun a b -> a && b) true (List.map of_b s) in
  assert c ;
  (r, Input.default_check)
OCaml

Innovation. Community. Security.