package octez-libs

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file gadget_poseidon.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
(*****************************************************************************)
(*                                                                           *)
(* MIT License                                                               *)
(* Copyright (c) 2022 Nomadic Labs <contact@nomadic-labs.com>                *)
(*                                                                           *)
(* Permission is hereby granted, free of charge, to any person obtaining a   *)
(* copy of this software and associated documentation files (the "Software"),*)
(* to deal in the Software without restriction, including without limitation *)
(* the rights to use, copy, modify, merge, publish, distribute, sublicense,  *)
(* and/or sell copies of the Software, and to permit persons to whom the     *)
(* Software is furnished to do so, subject to the following conditions:      *)
(*                                                                           *)
(* The above copyright notice and this permission notice shall be included   *)
(* in all copies or substantial portions of the Software.                    *)
(*                                                                           *)
(* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*)
(* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,  *)
(* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL   *)
(* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*)
(* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING   *)
(* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER       *)
(* DEALINGS IN THE SOFTWARE.                                                 *)
(*                                                                           *)
(*****************************************************************************)

open Lang_core
open Lang_stdlib

module type PARAMETERS = sig
  val width : int

  val nb_full_rounds : int

  val nb_partial_rounds : int

  val nb_skips : int

  val mds_matrix : string array array

  val round_constants : string array

  val partial_round_idx_to_permute : int
end

module Make (PP : PARAMETERS) (L : LIB) = struct
  open PP
  open L
  module Poly = Polynomial.MakeUnivariate (S)

  type poly = Poly.t

  (* Map between scalar variables and an identifier used as degree in their
     polynomial representation. Identifiers are guarateed to be unique. *)
  module Map : sig
    val init : unit -> unit

    val degree_of_wire : scalar repr -> int

    val wire_of_degree : int -> scalar repr
  end = struct
    let assoc : ((scalar repr * int) list * int) ref = ref ([], 1)

    let init () = assoc := ([], 1)

    let degree_of_wire w =
      List.find_opt (fun (w', _d) -> eq w w') (fst !assoc) |> function
      | Some (_, d) -> d
      | None ->
          let l, d = !assoc in
          let l = (w, d) :: l in
          assoc := (l, d + 1) ;
          d

    let wire_of_degree d =
      List.find_opt (fun (_w, d') -> d = d') (fst !assoc) |> function
      | Some (w, _) -> w
      | None -> assert false
  end

  type polys = poly array

  let initial_state = Array.init width (fun _ -> Poly.zero)

  let print_state state =
    Array.iter (fun p -> Format.printf "%s\n" (Poly.to_string p)) state ;
    Format.printf "\n"

  let mds_matrix = mds_matrix |> Array.map (Array.map S.of_string)

  let round_constants = round_constants |> Array.map S.of_string

  (* Linear composition trick:

     - Core idea: The composition of two linear functions is a linear function.

     - Application to Poseidon:
       Partial rounds are linear functions for (width-1) elements of the state.
       We can compose two or more partial rounds (configured with [nb_skips])
       before calculating (creating wires for) the actual value of the
       elements that are linearly afected.

     - Execution:
       We store pending linear computations as polynomials, whose monomials
       represent the wires that need to be linearly combined.

       The i-th wire is represented by monomial x^{i+1}.
       The independent term x^{0} is reserved for the constant ~qc if any. *)

  (* A polynomial represents a linear combination of wires (and a constant).
     The i-th wire is associated to monomial x^{i+1} so that wire 0 is not in
     conflict with the constant (which is stored in the independent term) *)
  let poly_of_wire w = Poly.of_coefficients [(S.one, Map.degree_of_wire w)]

  let wire_of_poly p =
    with_label ~label:"Poseidon.wire_of_poly"
    @@
    let coeffs = Poly.get_list_coefficients p |> List.rev in
    let qc, ws =
      match coeffs with (qc, 0) :: l -> (qc, l) | l -> (S.zero, l)
    in
    let combined_lists =
      List.map (fun (q, d) -> (q, Map.wire_of_degree d)) ws
    in
    let coeffs, xs = List.split combined_lists in
    Num.add_list ~qc ~coeffs (to_list xs)

  let s_box p : poly t =
    with_label ~label:"Poseidon.s_box"
    @@
    if Poly.is_constant p then ret Poly.(p * p * p * p * p)
    else
      let open Num in
      let* x = wire_of_poly p in
      let* x5 = pow5 x in
      ret @@ poly_of_wire x5

  let rec repeat : n:int -> ('a -> 'a t) -> 'a -> 'a t =
   fun ~n f e ->
    if n <= 0 then ret e
    else
      let* x = f e in
      repeat ~n:(n - 1) f x

  let state_map : polys -> (poly -> poly t) -> polys t =
   fun state f ->
    with_label ~label:"Poseidon.state_map"
    @@
    let rec aux : polys -> int -> polys t =
     fun state j ->
      if j = width then ret state
      else
        let* p = f state.(j) in
        state.(j) <- p ;
        aux state (j + 1)
    in
    aux state 0

  (* Simplify the state into single-monomial polynomials by evaluating
     pending the linear combination that they store *)
  let checkpoint : polys -> polys t =
   fun state ->
    with_label ~label:"Poseidon.checkpoint"
    @@
    let f p =
      if Poly.is_constant p then ret p
      else
        let* w = wire_of_poly p in
        ret @@ poly_of_wire w
    in
    state_map state f

  let apply_matrix state =
    let x = Array.copy state in
    for j = 0 to width - 1 do
      state.(j) <- Poly.zero ;
      for i = 0 to width - 1 do
        state.(j) <- Poly.(state.(j) + mult_by_scalar mds_matrix.(j).(i) x.(i))
      done
    done ;
    state

  let apply_round_key (state, i_round_key) =
    for i = 0 to width - 1 do
      state.(i) <-
        Poly.add state.(i) (Poly.constants @@ round_constants.(i_round_key + i))
    done ;
    (state, i_round_key + width)

  let full_round : ?skip_ark:bool -> polys * int -> (polys * int) t =
   fun ?(skip_ark = false) (state, i_round_key) ->
    with_label ~label:"Poseidon.full_round"
    @@ let* state = state_map state s_box in
       let state = apply_matrix state in
       if skip_ark then ret (state, i_round_key)
       else ret @@ apply_round_key (state, i_round_key)

  let full_round128 : ?skip_ark:bool -> polys * int -> (polys * int) t =
   fun ?(skip_ark = false) (state, i_round_key) ->
    assert (width = 3) ;
    with_label ~label:"Poseidon.full_round128"
    @@ let* state = checkpoint state in
       let* x0 = wire_of_poly state.(0) in
       let* x1 = wire_of_poly state.(1) in
       let* x2 = wire_of_poly state.(2) in
       let k = [|S.zero; S.zero; S.zero|] in
       if not skip_ark then
         for i = 0 to width - 1 do
           k.(i) <- round_constants.(i_round_key + i)
         done ;
       let* output =
         Poseidon.poseidon128_full_round ~matrix:mds_matrix ~k (x0, x1, x2)
       in
       (match of_list output with
       | [y0; y1; y2] ->
           state.(0) <- poly_of_wire y0 ;
           state.(1) <- poly_of_wire y1 ;
           state.(2) <- poly_of_wire y2
       | _ -> assert false) ;
       ret @@ (state, i_round_key + width)

  let partial_round : batch:int -> polys * int -> (polys * int) t =
   fun ~batch (state, i_round_key) ->
    with_label ~label:"Poseidon.partial_round"
    @@
    let f (state, i_round_key) =
      let* p = s_box state.(partial_round_idx_to_permute) in
      state.(partial_round_idx_to_permute) <- p ;
      let state = apply_matrix state in
      ret @@ apply_round_key (state, i_round_key)
    in
    let* state, i_round_key = repeat ~n:batch f (state, i_round_key) in
    let* state = checkpoint state in
    ret (state, i_round_key)

  let partial_round128 : batch:int -> polys * int -> (polys * int) t =
   fun ~batch (state, i_round_key) ->
    assert (width = 3) ;
    assert (batch = 4) ;
    with_label ~label:"Poseidon.partial_round128"
    @@ let* state = checkpoint state in
       let* x0 = wire_of_poly state.(0) in
       let* x1 = wire_of_poly state.(1) in
       let* x2 = wire_of_poly state.(2) in
       let ks = Array.make_matrix width batch S.zero in
       for j = 0 to batch - 1 do
         for i = 0 to width - 1 do
           ks.(i).(j) <- round_constants.(i_round_key + (width * j) + i)
         done
       done ;
       let* output =
         Poseidon.poseidon128_four_partial_rounds
           ~matrix:mds_matrix
           ~ks
           (x0, x1, x2)
       in
       (match of_list output with
       | [y0; y1; y2] ->
           state.(0) <- poly_of_wire y0 ;
           state.(1) <- poly_of_wire y1 ;
           state.(2) <- poly_of_wire y2
       | _ -> assert false) ;
       ret @@ (state, i_round_key + (batch * width))

  let apply_permutation (state, _) =
    with_label ~label:"Poseidon.apply_permutation"
    @@
    let batch = nb_skips + 1 in

    let full = if width = 3 then full_round128 else full_round in
    let partial =
      if width = 3 && batch = 4 then partial_round128 else partial_round
    in

    let state, i_round_key = apply_round_key (state, 0) in
    let* state = repeat ~n:(nb_full_rounds / 2) full (state, i_round_key) in
    let* state = repeat ~n:(nb_partial_rounds / batch) (partial ~batch) state in
    let* state = partial_round ~batch:(nb_partial_rounds mod batch) state in
    let* state = repeat ~n:((nb_full_rounds / 2) - 1) full state in
    full ~skip_ark:true state

  let prepare_block with_padding (state, blocks_read) r nb_chunks inputs =
    let block_size =
      if blocks_read < nb_chunks - 1 then width - 1
      else if with_padding then r
      else Array.length inputs - (blocks_read * (width - 1))
    in
    let offset = blocks_read * (width - 1) in

    for j = 0 to block_size - 1 do
      let p = Poly.add state.(j + 1) @@ poly_of_wire inputs.(offset + j) in
      state.(j + 1) <- p
    done ;
    if blocks_read = nb_chunks - 1 && with_padding then
      state.(r + 1) <- Poly.add state.(r + 1) Poly.one ;
    (state, blocks_read + 1)

  let digest : ?input_length:int -> scalar list repr -> scalar repr t =
   fun ?input_length inputs ->
    Map.init () ;
    let inputs = Array.of_list @@ of_list inputs in
    let l = Array.length inputs in
    let assert_length expected =
      let error_msg =
        Format.sprintf "digest expects data of length %d, %d given" expected l
      in
      if l <> expected then raise @@ Invalid_argument error_msg
    in
    Option.iter assert_length input_length ;
    let with_padding = Option.is_none input_length in

    let polys = Array.init width (fun _ -> Poly.zero) in

    let nb_blocks = ((l - if with_padding then 0 else 1) / (width - 1)) + 1 in
    let r = l mod (width - 1) in
    with_label ~label:"Poseidon.digest"
    @@
    let block_iteration (state, blocks_read, i_round_key) =
      let state, blocks_read =
        prepare_block with_padding (state, blocks_read) r nb_blocks inputs
      in
      let* state, i_round_key = apply_permutation (state, i_round_key) in
      ret (state, blocks_read, i_round_key)
    in
    let* state, _, _ = repeat ~n:nb_blocks block_iteration (polys, 0, 0) in
    wire_of_poly state.(1)
end

module Poseidon128 = struct
  module P : Hash_sig.P_HASH = struct
    module H = Mec.Hash.Poseidon128.Make (S)
    include H.Hash

    let direct ?input_length inputs =
      let ctx = init ?input_length () in
      let ctx = digest ctx inputs in
      get ctx
  end

  module V : Hash_sig.HASH = Make (struct
    let width = 3

    let nb_full_rounds = 8

    let nb_partial_rounds = 56

    let nb_skips = 3

    let mds_matrix = Mds_128.v

    let round_constants = Ark_128.v

    let partial_round_idx_to_permute = 2
  end)
end

module Poseidon252 = struct
  module P : Hash_sig.P_HASH = struct
    module H = Mec.Hash.Poseidon252.Make (S)
    include H.Hash

    let direct ?input_length inputs =
      let ctx = init ?input_length () in
      let ctx = digest ctx inputs in
      get ctx
  end

  module V : Hash_sig.HASH = Make (struct
    let width = 5

    let nb_full_rounds = 8

    let nb_partial_rounds = 59

    let nb_skips = 4

    let mds_matrix = Mds_252.v

    let round_constants = Ark_252.v

    let partial_round_idx_to_permute = 4
  end)
end

module PoseidonFull = struct
  module P : Hash_sig.P_HASH = struct
    module H = Mec.Hash.Neptunus.Make (S)
    include H.Hash

    let direct ?input_length inputs =
      let ctx = init ?input_length () in
      let ctx = digest ctx inputs in
      get ctx
  end

  module V : Hash_sig.HASH = Make (struct
    let width = 3

    let nb_full_rounds = 60

    let nb_partial_rounds = 0

    let nb_skips = 0

    let mds_matrix = Mds_full.v

    let round_constants = Ark_full.v

    let partial_round_idx_to_permute = 0
  end)
end
OCaml

Innovation. Community. Security.