package octez-libs

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file circuit.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
(*****************************************************************************)
(*                                                                           *)
(* MIT License                                                               *)
(* Copyright (c) 2022 Nomadic Labs <contact@nomadic-labs.com>                *)
(*                                                                           *)
(* Permission is hereby granted, free of charge, to any person obtaining a   *)
(* copy of this software and associated documentation files (the "Software"),*)
(* to deal in the Software without restriction, including without limitation *)
(* the rights to use, copy, modify, merge, publish, distribute, sublicense,  *)
(* and/or sell copies of the Software, and to permit persons to whom the     *)
(* Software is furnished to do so, subject to the following conditions:      *)
(*                                                                           *)
(* The above copyright notice and this permission notice shall be included   *)
(* in all copies or substantial portions of the Software.                    *)
(*                                                                           *)
(* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*)
(* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,  *)
(* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL   *)
(* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*)
(* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING   *)
(* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER       *)
(* DEALINGS IN THE SOFTWARE.                                                 *)
(*                                                                           *)
(*****************************************************************************)

(* This files contains all tools that can be used to create the verification circuit of aPlonK. *)

module SMap = Kzg.SMap
open Kzg.Bls

let nb_wires = Plompiler.Csir.nb_wires_arch

module V (Main : Aggregation.Main_protocol.S) = struct
  module Gates = Main.Gates
  module Perm = Main.Perm
  module RC = Main.RangeCheck
  module S = Plompiler.S
  open Plompiler.LibCircuit

  type scalar_input = scalar Input.input

  (* This type gathers all inputs of the verification circuit
     alpha, beta, gamma, delta, x, r are challenges generated from Fiat-Shamir
     ss_list are preprocessed permutation polynomials evaluations at x
     selectors are the list of the selectors evaluations at x with their names
     ids_batch is the batch (with alpha) of the evaluated identities at x
     wires_g is the lists of all wires evaluations at gx for each proof
     wires is the lists of all wires evaluations at x for each proof
     zg is the permutation polynomial evaluation at gx
     z is the permutation polynomial evaluation at x
     batch are the expected batched values with r of
      · ss_list selectors
      · ids_batch
      · wires_g
      · wires
      · zg_list
      · z_list
     outer_pi is the list of public inputs that are public to aPlonK’s verifier
     inner_pi is the list of hidden public inputs that are not known from aPlonK’s verifier
     rc_selectors are range checks dedicated selectors lnin1, pnin1, RC_ss1 & RC_ss2
     z_rc is the list of Range checks’ Z proof polynomials evaluations for each proof
     z_rc_perm & z_rc_perm are Range checks’ permutation polynomial evaluation for X and gX. Note that the list must be at most of size 1 (1 permutation polynomial per circuit). We use lists here in order make handling in plompiler easier.
  *)
  type circuit_inputs = {
    switches : bool Input.input list;
    compressed_switches : scalar_input;
    alpha : scalar_input;
    beta : scalar_input;
    gamma : scalar_input;
    delta : scalar_input;
    x : scalar_input;
    r : scalar_input;
    ss_list : scalar_input list;
    selectors : (string * scalar_input) list;
    ids_batch : scalar_input;
    wires_g : scalar_input list list;
    wires : scalar_input list list;
    zg : scalar_input;
    z : scalar_input;
    batch : scalar_input list;
    inner_pi : scalar_input list list;
    outer_pi : scalar_input list;
    rc_selectors : scalar_input list;
    zg_rc_perm : scalar_input list;
    z_rc_perm : scalar_input list;
  }

  (* by default, there is one batch for the preprocessed polynomials, two for the permutation polynomials (also evaluated at gX), and one for the wires. *)
  let nb_batches_default = 4

  (* The number of batches increases by one if there is a gX evaluation for wires (using RC protocol induces a gX evaluations for wires) *)
  let nb_batches circuit =
    let gates =
      Plonk.Circuit.get_selectors circuit
      |> List.map (fun g -> (g, ()))
      |> SMap.of_list
    in
    let nb_rc = SMap.cardinal circuit.range_checks in
    if Gates.exists_gx_composition ~gates || nb_rc <> 0 then
      nb_batches_default + 1
    else nb_batches_default

  (* This inputs is given to the verification circuit when it’s created. The value of the dummy inputs is irrelevant, only their structures & sizes matter *)
  let dummy_input range_checks gates nb_batches nb_proofs nb_inner_pi
      nb_outer_pi =
    let nb_rc = SMap.cardinal range_checks in
    let switches = List.init nb_proofs (fun _ -> Input.bool true) in
    let dummy_input = Input.scalar S.one in
    let wires =
      (* wires also contain RC.Z polynomials when there are range-checks *)
      List.init nb_proofs (fun _ ->
          List.init (nb_wires + nb_rc) (fun _ -> dummy_input))
    in
    let inner_pi =
      List.init nb_proofs (fun _ ->
          List.init nb_inner_pi (fun _ -> dummy_input))
    in
    let outer_pi = List.init nb_outer_pi (fun _ -> dummy_input) in
    let selectors = List.map (fun q -> (q, dummy_input)) gates in
    let ss_list =
      List.init Plompiler.Csir.nb_wires_arch @@ Fun.const dummy_input
    in
    let batch = List.init nb_batches (fun _ -> dummy_input) in
    let wires_g = if nb_batches = nb_batches_default then [] else wires in
    let z_rc_perm, rc_selectors =
      if SMap.is_empty range_checks then ([], [])
      else
        ( List.init nb_rc (Fun.const dummy_input),
          List.init (4 * nb_rc) (Fun.const dummy_input) )
    in
    {
      switches;
      compressed_switches = dummy_input;
      alpha = dummy_input;
      beta = dummy_input;
      gamma = dummy_input;
      delta = dummy_input;
      x = dummy_input;
      r = dummy_input;
      ss_list;
      selectors;
      ids_batch = dummy_input;
      wires_g;
      wires;
      zg = dummy_input;
      z = dummy_input;
      batch;
      inner_pi;
      outer_pi;
      rc_selectors;
      zg_rc_perm = z_rc_perm;
      z_rc_perm;
    }

  module Constraints = struct
    (* replace by [zero] all elements of the second list that correspond to false in the first one *)
    let switch_list = map2M (fun s l -> mapM (Num.mul s) l)

    (* Replace with zeros all the wires values when the correponding switch is false *)
    let switch switches ~wires ~wires_g ~inner_pi =
      let switches = List.map scalar_of_bool switches in
      let* wires = switch_list switches wires in
      let* wires_g =
        match wires_g with
        | [] -> ret []
        | wires_g -> switch_list switches wires_g
      in
      let* inner_pi = switch_list switches inner_pi in
      ret (wires, wires_g, inner_pi)

    (* Because we can’t deal as we want with the monad in the output of Gates functions & for gates uniformity, Arith monomials are expected to be given as scalar repr t list t. *)
    let format_arith_cs : scalar repr list t -> scalar repr t =
     fun scalar_repr_list_t ->
      let* scalar_repr_list = scalar_repr_list_t in
      match scalar_repr_list with
      | [cs] -> ret cs
      | _ -> raise (Invalid_argument "Invalid format for Arith constraint.")

    (* For a selector name and value q, given the wires values wires & wires_g, returns the evaluation of arithmetic monomial associated with the selector. *)
    let cs_of_arith_sel name q wires wires_g =
      let wires = Array.of_list wires in
      let wires_g = Array.of_list wires_g in
      format_arith_cs (Gates.get_cs name ~q ~wires ~wires_g ())

    (* For a selector name and value q, given the wires values wires & wires_g, returns the evaluation of identity given by the selector. *)
    let cs_of_custom_sel ?precomputed_advice name q wires wires_g =
      let wires = Array.of_list wires in
      let wires_g = Array.of_list wires_g in
      Gates.get_cs name ~q ~wires ~wires_g ?precomputed_advice ()

    (* Circuit that computes x^n - 1 *)
    let compute_zs x n =
      with_label ~label:"zs"
      @@
      let nb_bits = S.size_in_bytes in
      let* n_repr = Num.constant n in
      let* n_bytes = bits_of_scalar ~nb_bits n_repr in
      let* xn = Num.pow x (of_list n_bytes) in
      Num.add_constant S.(negate one) xn

    (* Circuit that computes L1(x) := (g / n) * (x^n - 1) / (x - g) *)
    let compute_l1 x xn_minus_one n generator =
      let* den = Num.add_constant S.(negate generator) x in
      Num.div ~den_coeff:(S.div_exn n generator) xn_minus_one den

    (* Circuit that computes (x₀ + αx₁ + α²x₂ + …) for list_circuit = [x₀, x₁, x₂, …] *)
    let sum_alpha_i list_circuit alpha =
      let list_circuit = List.rev list_circuit in
      match list_circuit with
      | [] -> Num.zero
      | init :: list_circuit ->
          foldM
            (fun acc circuit ->
              let* tmp = Num.mul acc alpha in
              Num.add tmp circuit)
            init
            list_circuit

    (* Circuit that computes (x₀ + αx₁ + α²x₂ + …) for list_circuit = [x₀, x₁, x₂, …] and ignores the coefficients when corresponding switch is false ; for instance, if switch₁ = 0 and all other switches are 1, it will compute (x₀ + αx₂ + α²x₃ + …) *)
    let sum_alpha_i_switched switches list_circuit alpha =
      let* zero = Num.zero in
      let* alpha_min_one = Num.add ~qc:S.(negate one) alpha zero in
      let nb_proofs = List.length switches in
      let list_circuit = List.rev list_circuit in
      let switches = List.rev switches in
      match list_circuit with
      | [] -> Num.zero
      | list_circuit ->
          let* res, _ =
            fold2M
              (fun (acc, i) coeff switch ->
                let switch = scalar_of_bool switch in
                let* coeff = Num.mul switch coeff in
                (* α = [switch × (α - 1)] + 1 *)
                let* alpha =
                  Num.custom ~qm:S.one ~qc:S.one switch alpha_min_one
                in
                let* tmp = Num.add acc coeff in
                let* res =
                  if i = nb_proofs then ret tmp else Num.mul tmp alpha
                in
                ret (res, i + 1))
              (zero, 1)
              list_circuit
              switches
          in
          ret res

    (* Circuit that recomputes T polynomial from the t_list of its parts & x^n *)
    let compute_t xn t_list = sum_alpha_i t_list xn

    let add_circuits circuit_list =
      let* circuit_list = mapM Fun.id circuit_list in
      Num.add_list (to_list circuit_list)

    (* Checks that compressed_switches is the sum of all switches and that switches has the structure [1…10…0] *)
    let check_switches compressed_switches switches =
      let switches = List.map scalar_of_bool switches in
      let* sum = Num.add_list (to_list switches) in
      let switches_pairs, _ =
        List.fold_left
          (fun (pairs, s_prev) s -> ((s_prev, s) :: pairs, s))
          ([], List.hd switches)
          (List.tl switches)
      in
      iterM
        (fun (s_prev, s) ->
          Num.assert_custom ~qm:S.one ~qr:S.(negate one) s_prev s s)
        switches_pairs
      >* equal compressed_switches sum

    (* Recomputes batches & compare them to claimed batches *)
    let check_batch r (g_list, wires, wiresg, z_list, zg_list) batch =
      let wires = List.flatten wires in
      let wiresg = List.flatten wiresg in
      let* batch_g = sum_alpha_i g_list r in
      let* batch_wires = sum_alpha_i wires r in
      let* batch_z = sum_alpha_i z_list r in
      let* batch_zg = sum_alpha_i zg_list r in
      let g_exp = List.nth batch 0 in
      let zg_exp = List.nth batch 1 in
      let z_exp = List.nth batch 2 in
      let* g = equal batch_g g_exp in
      let* zg = equal batch_zg zg_exp in
      let* z = equal batch_z z_exp in
      match wiresg with
      | [] ->
          let wires_exp = List.nth batch 3 in
          let* wires = equal batch_wires wires_exp in
          Bool.band_list [g; wires; zg; z]
      | wg ->
          let* batch_wires_g = sum_alpha_i wg r in
          let wiresg_exp = List.nth batch 3 in
          let wires_exp = List.nth batch 4 in
          let* wiresg = equal batch_wires_g wiresg_exp in
          let* wires = equal batch_wires wires_exp in
          Bool.band_list [g; wiresg; wires; zg; z]

    (* custom_ids is a nested list with 3 levels:
       - the outter one corresponds to different proofs
       - the middle level corresponds to different identities
       - the inner level corresponds to different equations of the same identity *)
    let format_custom_ids custom_ids =
      let suffix_ids l =
        List.map
          (fun (s, l) ->
            List.mapi (fun i x -> (s ^ "." ^ string_of_int i, x)) l)
          l
        |> List.flatten
      in
      let index_proofs l =
        let n = List.length l in
        List.mapi
          (fun i inner_l ->
            List.map
              (fun (s, x) -> (SMap.Aggregation.add_prefix ~n ~i "" s, x))
              inner_l)
          l
      in
      index_proofs (List.map suffix_ids custom_ids) |> List.flatten

    let format_arith_ids arith_ids =
      let arith = Plonk.Custom_gates.arith_label in
      let n = List.length arith_ids in
      List.mapi
        (fun i x -> (SMap.Aggregation.add_prefix ~n ~i "" arith, x))
        arith_ids

    (* This function separates the wires in two blocks, the first stands for the Z_RC & the seconds for the pure wire evaluations *)
    let split_rc_wires nb_rc wires =
      if nb_rc = 0 then ([], wires)
      else
        let rec aux acc_rc acc_w = function
          | [] -> List.(rev acc_rc, rev acc_w)
          | rc_w :: tl ->
              let rc, w = Plonk.List.split_n nb_rc rc_w in
              aux (rc :: acc_rc) (w :: acc_w) tl
        in
        aux [] [] wires

    (* Verifies that the linear combination of identities with alpha is equal to T×Zs
       The identities are computed from evaluations, with the functions cs of Custom_gates & Permutation_gate
    *)
    let check_identities ~switches (n, generator) x rc_wires ids_batch
        rc_selectors (q_names, selectors) (alpha, beta, gamma, delta)
        (wires_g, wires, zg, z, zg_rc_perm, z_rc_perm) ss_list pi_list_list =
      let nb_rc = List.length rc_wires in
      (* We don’t care about wires_g value if it’s empty so we just take wires *)
      let wires_g = match wires_g with [] -> wires | w -> w in
      let zg_rc, wires_g = split_rc_wires nb_rc wires_g in
      let z_rc, wires = split_rc_wires nb_rc wires in
      (* precompute some constant *)
      let* t = Bool.constant true in
      let* zs = compute_zs x n in
      let* l1 = compute_l1 x zs n generator in
      (* split the arith selectors & other selectors in two lists *)
      let is_advice_sel s = String.starts_with ~prefix:Gates.qadv_label s in
      let arith_selectors, custom_selectors =
        List.combine q_names selectors
        |> List.partition (fun (q_name, _) ->
               if is_advice_sel q_name then false
               else
                 let id_name, nb_id = Gates.get_ids q_name in
                 if id_name = Gates.arith_label then
                   if nb_id <> 1 then
                     failwith "partition_selector : invalid Arith identity."
                   else true
                 else false)
      in
      let advice_selectors, custom_selectors =
        List.partition (fun (s, _) -> is_advice_sel s) custom_selectors
      in
      let precomputed_advice = SMap.of_list advice_selectors in
      (* Custom identities are usually composed with several identities
         Custom_ids has format
          [[[q₁.ida₁ ; q₁.idb₁] ; [q₂.ida₁ ; q₂.idb₁]] ;
           [[q₁.ida₂ ; q₁.idb₂] ; [q₂.ida₂ ; q₂.idb₂]] ;
           [[q₁.ida₃ ; q₁.idb₃] ; [q₂.ida₃ ; q₂.idb₃]]]
           for 2 selectors q₁ & q₂ with 2 identities each (ida & idb) & 3 proofs
      *)
      let* custom_ids =
        map2M
          (fun wires wires_g ->
            mapM
              (fun (name, q) ->
                let* id_values =
                  cs_of_custom_sel ~precomputed_advice name q wires wires_g
                in
                ret (name, id_values))
              custom_selectors)
          wires
          wires_g
      in
      let* arith_list =
        let monomials =
          List.map
            (fun (name, q) -> List.map2 (cs_of_arith_sel name q) wires wires_g)
            arith_selectors
        in
        let pi_list =
          List.map (Gates.cs_pi ~generator ~n ~x ~zs) pi_list_list
        in
        Plonk.List.mapn add_circuits (pi_list :: monomials) |> mapM Fun.id
      in
      (* Using switched wires is enough for adapting the perm identity to the lower number of proof *)
      let* aggregated_wires =
        Plonk.List.mapn (fun i -> sum_alpha_i i delta) wires |> mapM Fun.id
      in
      let* perm_ids =
        (Perm.cs ~l1 ~ss_list ~beta ~gamma ~x ~z ~zg) ~aggregated_wires ()
      in
      let* rc_ids =
        match rc_wires with
        | [] -> ret []
        | _ ->
            let nb_proofs = List.length wires in
            let lnin1 = Plonk.List.sub rc_selectors 0 nb_rc in
            let pnin1 = Plonk.List.sub rc_selectors nb_rc nb_rc in
            let ss_list =
              List.init nb_rc (fun i ->
                  Plonk.List.sub rc_selectors (nb_rc * (2 + i)) 2)
            in
            RC.cs
              ~rc_index:rc_wires
              ~nb_proofs
              ~lnin1
              ~pnin1
              ~z_rc
              ~zg_rc
              ~z_perm:z_rc_perm
              ~zg_perm:zg_rc_perm
              ~aggregated_wires
              ~sum_alpha_i
              ~l1
              ~ss_list
              ~beta
              ~gamma
              ~delta
              ~x
      in
      let identities =
        format_arith_ids arith_list
        @ format_custom_ids custom_ids
        @ perm_ids @ rc_ids
        |> List.sort (fun (s, _) (s', _) -> String.compare s s')
        |> List.map snd
      in
      (* Adapt the switches to match the identities. Note that the way we
         handle shifts here only works because the switches are of form [11…00] *)
      let id_switches =
        let for_each_proof =
          let nb_ids_per_proof =
            let nb_custom_ids =
              List.(
                hd custom_ids |> fold_left (fun acc l -> acc + length (snd l)) 0)
            in
            (* +1 for the arithmetic identity & + 2×nb_rc for the range check ids *)
            match rc_ids with
            | [] -> nb_custom_ids + 1
            | _ -> nb_custom_ids + 1 + (2 * nb_rc)
          in
          List.concat_map
            (fun b -> List.init nb_ids_per_proof (Fun.const b))
            switches
        in
        (* [true ; true] is added for the permutation identities, &
           nb_rc × [true ; true] is added for the RC permutation identities *)
        let for_whole_circuit =
          match rc_ids with
          | [] -> [t; t]
          | _ -> [t; t] @ List.init (2 * nb_rc) (Fun.const t)
        in
        for_each_proof @ for_whole_circuit
      in
      let* sum_id = sum_alpha_i_switched id_switches identities alpha in
      equal sum_id ids_batch
  end

  let verify_batch r batch batches t_answers =
    let init_sum =
      List.map (SMap.map @@ Fun.const Scalar.zero) (List.tl batch)
    in
    let init_sizes = List.map (SMap.map @@ Fun.const 0) (List.tl batch) in
    let sum_batches, _ =
      SMap.fold
        (fun _circuit_name this_batch (acc_sum, acc_sizes) ->
          let values = List.map (SMap.map fst) this_batch in
          let sizes_list = List.map (SMap.map snd) this_batch in
          let acc_sum =
            List.map2
              (fun map_sum (map_this_batch, map_sizes) ->
                SMap.mapi
                  (fun key acc_value ->
                    let size = SMap.find key map_sizes |> Z.of_int in
                    let this_value = SMap.find key map_this_batch in
                    Scalar.(acc_value + (this_value * pow r size)))
                  map_sum)
              acc_sum
              (List.combine values acc_sizes)
          in
          let acc_sizes =
            List.map2
              (fun map_acc_sizes map_sizes ->
                SMap.mapi
                  (fun key size -> size + SMap.find key map_sizes)
                  map_acc_sizes)
              acc_sizes
              sizes_list
          in
          (acc_sum, acc_sizes))
        batches
        (init_sum, init_sizes)
    in
    let t_batch =
      List.fold_left
        (fun (acc, rk) x -> Scalar.(acc + (rk * x), r * rk))
        (Scalar.zero, Scalar.one)
        t_answers
      |> fst
    in
    (* Complete the first element of [sum_batches] with [t_batch] *)
    let sum_batches =
      let hd = List.hd batch in
      assert (SMap.cardinal hd = 1) ;
      let t_key, _t_value = SMap.choose hd in
      SMap.singleton t_key t_batch :: sum_batches
    in
    let given = List.concat_map SMap.values batch in
    let computed = List.concat_map SMap.values sum_batches in
    List.for_all2 Scalar.( = ) given computed

  (* Format verification circuit public inputs *)
  let aggreg_public_inputs pi_size (alpha, beta, gamma, delta, x, r) batch
      ids_batch compressed_switches outer_pi =
    let batch = List.concat_map SMap.values batch |> List.map fst in
    let public_input =
      Array.of_list
        ([alpha; beta; gamma; delta; x; r]
        @ batch
        @ [ids_batch; compressed_switches]
        @ outer_pi)
    in
    let l = Array.length public_input in
    if l <> pi_size then
      failwith
        (Printf.sprintf
           "Public input has not expected size (expected: %d; actual: %d)."
           pi_size
           l) ;
    public_input

  let compute_switches max_nb_proofs nb_proofs =
    let switches =
      Array.init max_nb_proofs S.(fun i -> if i < nb_proofs then one else zero)
    in
    (switches, S.of_int nb_proofs)

  (* Applies the function [f] to the last element of the list [l] ; if [l] is empty, it returns the empty list. *)
  let map_end f l =
    let rec aux acc = function
      | [] -> []
      | [x] -> List.rev (f x :: acc)
      | x :: tl -> aux (x :: acc) tl
    in
    aux [] l

  (* This function converts answers to a list of scalars. If [nb_proofs] < [nb_max_proofs], the missing answers will be added as zero, in an order that is suitable for aPlonK’s switches *)
  let pad_answers nb_max_proofs nb_rc_wires nb_proofs
      (answers : S.t SMap.t SMap.t list) =
    let answers = List.map (SMap.map SMap.values) answers in
    (* We want to work on the 'a map list because it’s the only way to find the wires in the answers without knowing if there is ultra or next wire *)
    let answers_padded =
      map_end
        (SMap.map (fun w_list ->
             w_list
             @ List.init
                 ((nb_max_proofs - nb_proofs)
                 * (Plompiler.Csir.nb_wires_arch + nb_rc_wires))
                 (Fun.const S.zero)))
        answers
    in
    answers_padded |> List.concat_map SMap.values |> List.flatten

  let pad_inputs nb_max_proofs nb_rc_wires inner_pi answers =
    let nb_proofs = List.length inner_pi in
    let padded_inner_pi =
      let to_pad = nb_max_proofs - nb_proofs in
      let nb_inner_pi = List.(length (hd inner_pi)) in
      List.flatten inner_pi
      @ List.(init (to_pad * nb_inner_pi) (Fun.const S.zero))
    in
    let padded_answers =
      pad_answers nb_max_proofs nb_rc_wires nb_proofs answers
    in
    (padded_inner_pi, padded_answers)

  (* Returns witness of verification circuit *)
  let get_witness max_nb_proofs nb_rc_wires (p : Main.prover_aux) circuit_name
      pi_size solver (inner_pi, outer_pi) switches compressed_switches batch =
    let ids_batch = SMap.find circuit_name p.ids_batch |> fst in
    let public =
      aggreg_public_inputs
        pi_size
        (p.alpha, p.beta, p.gamma, p.delta, p.x, p.r)
        batch
        ids_batch
        compressed_switches
        outer_pi
    in
    let circuit_answers =
      List.map
        (SMap.Aggregation.select_answers_by_circuit circuit_name)
        (* ignore the first element in p.answers corresponding to T evaluations,
           which are handled outside of the meta-verification circuit *)
        (List.tl p.answers)
    in
    let inputs =
      let inner_pi, answers =
        pad_inputs max_nb_proofs nb_rc_wires inner_pi circuit_answers
      in
      Array.(concat [of_list (inner_pi @ answers); public; switches])
    in
    try Plompiler.Solver.solve solver inputs
    with e ->
      print_string "\nSolver failure\n" ;
      raise e

  let get_batches inputs answers r =
    let batch_map r map = Kzg.Utils.Fr_generation.batch r (SMap.values map) in
    (* we map over [inputs] just because it contains the circuit_names *)
    SMap.mapi
      (fun circuit_name _ ->
        let answers =
          List.map
            (SMap.Aggregation.select_answers_by_circuit circuit_name)
            (List.tl answers)
        in
        List.map SMap.(map (fun m -> (batch_map r m, cardinal m))) answers)
      inputs

  (* generator & n are the subgroup generator & size of the subgroup of identities verification
     check_pi is a function related to PI, given here as argument in order to allow several PI handling forms
     note that wires & wires_g may also contain RC_Z polynomials
  *)
  let verification_circuit (generator, n) rc_wires check_pi
      {
        switches;
        compressed_switches;
        alpha;
        beta;
        gamma;
        delta;
        x;
        r;
        ss_list;
        selectors;
        ids_batch;
        wires_g;
        wires;
        zg;
        z;
        batch;
        outer_pi;
        inner_pi;
        rc_selectors;
        zg_rc_perm;
        z_rc_perm;
      } =
    let n = S.of_int n in
    (* input selectors in the same order they are given *)
    let q_names, selectors = List.split selectors in

    let* inner_pi =
      begin_input_com (fun inner_pi -> List.map of_list (of_list inner_pi))
      |: Input.list (List.map Input.list inner_pi)
      |> end_input_com
    in
    let* ( rc_selectors,
           ss_list,
           selectors,
           zg_rc_perm,
           zg,
           z_rc_perm,
           z,
           wires_g,
           wires ) =
      begin_input_com
        (fun
          rc_selectors
          ss_list
          selectors
          zg_rc_perm
          zg
          z_rc_perm
          z
          wires_g
          wires
        ->
          ( of_list rc_selectors,
            ss_list,
            of_list selectors,
            of_list zg_rc_perm,
            zg,
            of_list z_rc_perm,
            z,
            List.map of_list (of_list wires_g),
            List.map of_list (of_list wires) ))
      |: Input.list rc_selectors |: Input.list ss_list |: Input.list selectors
      |: Input.list zg_rc_perm |: zg |: Input.list z_rc_perm |: z
      |: Input.list (List.map Input.list wires_g)
      |: Input.list (List.map Input.list wires)
      |> end_input_com
    in
    let* alpha = input ~kind:`Public alpha in
    let* beta = input ~kind:`Public beta in
    let* gamma = input ~kind:`Public gamma in
    let* delta = input ~kind:`Public delta in
    let* x = input ~kind:`Public x in
    let* r = input ~kind:`Public r in

    let* batch = mapM (input ~kind:`Public) batch in

    let* ids_batch = input ~kind:`Public ids_batch in

    let* compressed_switches = input ~kind:`Public compressed_switches in

    (* Input PI *)
    let* outer_pi = mapM (input ~kind:`Public) outer_pi in

    let* switches = mapM input switches in

    (* We use the switch to only take the n first wires evaluations (where n is the number of proofs actually performed), the rest is set to zero ; this nullifies batches and the permutation argument where proofs were not computed *)
    let* switched_wires, switched_wires_g, switched_inner_pi =
      Constraints.switch switches ~wires ~wires_g ~inner_pi
    in

    let ss_list = of_list ss_list in

    let* check_switches =
      with_label ~label:"check_switches"
      @@ Constraints.check_switches compressed_switches switches
    in

    let* check_pi =
      with_label ~label:"check_pi"
      @@ check_pi ~switches ~outer:outer_pi ~inner:inner_pi
    in

    let* check_identities =
      with_label ~label:"check_identities"
      @@ Constraints.check_identities
           ~switches
           (n, generator)
           x
           rc_wires
           ids_batch
           rc_selectors
           (q_names, selectors)
           (alpha, beta, gamma, delta)
           (switched_wires_g, switched_wires, zg, z, zg_rc_perm, z_rc_perm)
           ss_list
           switched_inner_pi
    in
    let* check_batch =
      with_label ~label:"check_batch"
      @@
      let g_list = rc_selectors @ ss_list @ selectors in
      let z_list = z_rc_perm @ [z] in
      let zg_list = zg_rc_perm @ [zg] in
      Constraints.check_batch
        r
        (g_list, switched_wires, switched_wires_g, z_list, zg_list)
        batch
    in

    let* res =
      with_label ~label:"check_aplonk_res"
      @@ Bool.band_list
           [check_switches; check_batch; check_identities; check_pi]
    in
    Bool.assert_true res

  (* Function that creates the verification circuit as cs *)
  let get_cs_verification pp circuit nb_batches nb_proofs
      (nb_outer_pi, nb_inner_pi) check_pi =
    let gen, n = Main.get_gen_n_prover pp in
    let gates = Plonk.Circuit.get_selectors circuit in
    let dummy_input =
      dummy_input
        circuit.range_checks
        gates
        nb_batches
        nb_proofs
        nb_inner_pi
        nb_outer_pi
    in
    let rc_wires =
      SMap.(keys circuit.range_checks)
      |> List.map Plompiler.Csir.int_of_wire_name
    in
    Plompiler.LibCircuit.get_cs
      (verification_circuit (gen, n) rc_wires check_pi dummy_input)
end
OCaml

Innovation. Community. Security.