package octez-libs

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file main_protocol.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
(*****************************************************************************)
(*                                                                           *)
(* MIT License                                                               *)
(* Copyright (c) 2022 Nomadic Labs <contact@nomadic-labs.com>                *)
(*                                                                           *)
(* Permission is hereby granted, free of charge, to any person obtaining a   *)
(* copy of this software and associated documentation files (the "Software"),*)
(* to deal in the Software without restriction, including without limitation *)
(* the rights to use, copy, modify, merge, publish, distribute, sublicense,  *)
(* and/or sell copies of the Software, and to permit persons to whom the     *)
(* Software is furnished to do so, subject to the following conditions:      *)
(*                                                                           *)
(* The above copyright notice and this permission notice shall be included   *)
(* in all copies or substantial portions of the Software.                    *)
(*                                                                           *)
(* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*)
(* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,  *)
(* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL   *)
(* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*)
(* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING   *)
(* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER       *)
(* DEALINGS IN THE SOFTWARE.                                                 *)
(*                                                                           *)
(*****************************************************************************)

open Kzg.Bls
open Kzg.Utils
open Plonk.Identities
module SMap = Kzg.SMap

let nb_wires = Plompiler.Csir.nb_wires_arch

module type S = sig
  module PP : Polynomial_protocol.S

  type proof = {
    perm_and_plook : PP.PC.Commitment.t;
    wires_cm : PP.PC.Commitment.t;
    pp_proof : PP.proof;
  }

  include Plonk.Main_protocol_intf.S with type proof := proof

  type gate_randomness = {beta : Scalar.t; gamma : Scalar.t; delta : Scalar.t}

  val build_gates_randomness : Transcript.t -> gate_randomness * Transcript.t

  val filter_prv_pp_circuits :
    prover_public_parameters -> 'a SMap.t -> prover_public_parameters

  module Prover : sig
    val build_all_keys_z : prover_public_parameters -> string list

    val commit_to_wires :
      ?all_keys:string list ->
      ?shifts_map:(int * int) SMap.t ->
      prover_public_parameters ->
      circuit_prover_input list SMap.t ->
      Evaluations.t SMap.t list SMap.t
      * Poly.t SMap.t list SMap.t
      * Poly.t SMap.t option list SMap.t
      * Poly.t SMap.t
      * Input_commitment.public
      * PP.PC.Commitment.prover_aux

    val build_evaluations :
      prover_public_parameters ->
      Evaluations.polynomial SMap.t ->
      Evaluations.t SMap.t

    val build_f_map_plook :
      ?shifts_map:(int * int) SMap.t ->
      prover_public_parameters ->
      gate_randomness ->
      Evaluations.t SMap.t list SMap.t ->
      Poly.t SMap.t

    val build_f_map_perm :
      prover_public_parameters ->
      gate_randomness ->
      Evaluations.t SMap.t SMap.t ->
      Poly.t SMap.t

    (* builds the range check’s permutation proof polynomials *)
    val build_f_map_rc_2 :
      prover_public_parameters ->
      gate_randomness ->
      Evaluations.t SMap.t SMap.t ->
      Poly.t SMap.t

    val build_perm_rc2_identities :
      prover_public_parameters -> gate_randomness -> prover_identities

    val build_gates_plook_rc1_identities :
      ?shifts_map:(int * int) SMap.t ->
      prover_public_parameters ->
      gate_randomness ->
      circuit_prover_input list SMap.t ->
      prover_identities
  end

  type worker_inputs [@@deriving repr]

  val split_inputs_map :
    nb_workers:int ->
    circuit_prover_input list SMap.t ->
    worker_inputs SMap.t list

  type commit_to_wires_reply = PP.PC.Commitment.t [@@deriving repr]

  (* shifts_maps binds circuits names to pairs of integers.
     'c1' -> (7, 20) means that 20 proofs are expected for circuit 'c1' and
     there must be a shift of 7 in indexing considering the worker is starting
     at proof No. 7 *)
  type commit_to_wires_remember = {
    all_f_wires : Poly.t SMap.t;
    wires_list_map : Evaluations.t SMap.t list SMap.t;
    inputs_map : circuit_prover_input list SMap.t;
    shifts_map : (int * int) SMap.t;
    f_wires : Poly.t SMap.t list SMap.t;
    cm_aux_wires : PP.PC.Commitment.prover_aux;
  }

  val worker_commit_to_wires :
    prover_public_parameters ->
    worker_inputs SMap.t ->
    commit_to_wires_reply * commit_to_wires_remember

  type commit_to_plook_rc_reply = {
    batched_wires_map : Evaluations.t SMap.t SMap.t;
    cmt : PP.PC.Commitment.t;
    f_map : Poly.t SMap.t;
    prover_aux : PP.PC.Commitment.prover_aux;
  }
  [@@deriving repr]

  type commit_to_plook_rc_remember = {beta : scalar; gamma : scalar}

  val commit_to_plook_rc :
    prover_public_parameters ->
    (int * int) SMap.t ->
    Transcript.t ->
    Evaluations.t SMap.t list SMap.t ->
    commit_to_plook_rc_reply * commit_to_plook_rc_remember

  val batch_evaluated_ids :
    alpha:scalar -> Evaluations.t SMap.t -> string list -> Evaluations.t

  val kzg_eval_at_x :
    prover_public_parameters ->
    Transcript.t ->
    (PP.PC.secret * PP.PC.Commitment.prover_aux) list ->
    scalar ->
    PP.PC.answer list

  val shared_perm_rc_argument :
    prover_public_parameters ->
    int ->
    gate_randomness ->
    'a list SMap.t ->
    commit_to_plook_rc_reply list ->
    Poly.t SMap.t
    * Evaluations.t SMap.t
    * (commit_to_wires_reply * PP.PC.Commitment.prover_aux)

  val make_secret :
    prover_public_parameters ->
    Poly.t SMap.t * PP.PC.Commitment.prover_aux ->
    (Poly.t SMap.t * PP.PC.Commitment.prover_aux) list

  val make_eval_points :
    prover_public_parameters -> eval_point list list * eval_point list list

  val get_srs : prover_public_parameters -> PP.prover_public_parameters

  (** Returns (g, n, nb_t), where n is the size of the circuit padded to the
      next power of two, g is a primitive n-th root of unity, & nb_t is the
      number of T polynomials in the answers
   *)
  val get_gen_n_nbt : prover_public_parameters -> scalar * int * int

  val get_transcript : prover_public_parameters -> Transcript.t

  val check_no_zk : prover_public_parameters -> unit
end

module Common (PP : Polynomial_protocol.S) = struct
  open Plonk.Main_protocol.Make_impl (PP)

  open Prover
  module Commitment = PP.PC.Commitment

  type commit_to_wires_reply = Commitment.t [@@deriving repr]

  type worker_inputs = {inputs : circuit_prover_input list; shift : int * int}
  [@@deriving repr]

  let split_inputs_map ~nb_workers inputs_map =
    let list_range i1 i2 = List.filteri (fun i _ -> i1 <= i && i < i2) in
    List.map
      (fun i ->
        SMap.map
          (fun l ->
            let n = List.length l in
            let chunk_size =
              Z.(cdiv (of_int n) (of_int nb_workers) |> to_int)
            in
            let inputs = list_range (chunk_size * i) (chunk_size * (i + 1)) l in
            let shift = (chunk_size * i, n) in
            {inputs; shift})
          inputs_map)
      (List.init nb_workers Fun.id)

  type commit_to_plook_rc_reply = {
    batched_wires_map : Evaluations.t SMap.t SMap.t;
    cmt : Commitment.t;
    f_map : Poly.t SMap.t;
    prover_aux : Commitment.prover_aux;
  }
  [@@deriving repr]

  type commit_to_plook_rc_remember = {beta : scalar; gamma : scalar}

  type commit_to_wires_remember = {
    all_f_wires : Poly.t SMap.t;
    wires_list_map : Evaluations.t SMap.t list SMap.t;
    inputs_map : circuit_prover_input list SMap.t;
    shifts_map : (int * int) SMap.t;
    f_wires : Poly.t SMap.t list SMap.t;
    cm_aux_wires : Commitment.prover_aux;
  }

  let worker_commit_to_wires pp worker_inputs_map =
    let inputs_map = SMap.map (fun wi -> wi.inputs) worker_inputs_map in
    let shifts_map = SMap.map (fun wi -> wi.shift) worker_inputs_map in
    let all_keys = build_all_wires_keys pp (SMap.map snd shifts_map) nb_wires in
    let wires_list_map, f_wires, _, all_f_wires, cm_wires, cm_aux_wires =
      commit_to_wires ~all_keys ~shifts_map pp inputs_map
    in
    ( cm_wires,
      {
        all_f_wires;
        wires_list_map;
        inputs_map;
        shifts_map;
        f_wires;
        cm_aux_wires;
      } )

  let commit_to_plook_rc pp shifts_map transcript f_wires_list_map =
    let rd, _transcript = build_gates_randomness transcript in
    (* we should compute this in an other function *)
    let batched_wires_map =
      Perm.Shared_argument.build_batched_wires_values
        ~delta:rd.delta
        ~wires:f_wires_list_map
        ()
    in
    (* ******************************************* *)
    let f_map = build_f_map_plook ~shifts_map pp rd f_wires_list_map in
    (* commit to the plookup polynomials *)
    let cmt, prover_aux =
      (* TODO #5551
         Implement Plookup
      *)
      let all_keys = build_all_keys_z pp in
      PP.PC.commit ~all_keys pp.common_pp.pp_public_parameters f_map
    in
    ( {batched_wires_map; cmt; f_map; prover_aux},
      {beta = rd.beta; gamma = rd.gamma} )

  let batch_evaluated_ids ~alpha evaluated_ids all_ids_keys =
    let powers_map =
      SMap.of_list @@ List.mapi (fun i s -> (s, i)) all_ids_keys
    in
    let ids_keys, evaluations = List.split @@ SMap.bindings evaluated_ids in
    let powers =
      List.map (fun s -> SMap.find s powers_map) ids_keys
      |> List.map (fun i -> Scalar.pow alpha @@ Z.of_int i)
    in
    Evaluations.linear_c ~evaluations ~linear_coeffs:powers ()

  let kzg_eval_at_x pp transcript secrets_worker generator =
    let eval_points_worker =
      [List.hd @@ List.rev @@ pp.common_pp.eval_points]
    in
    let x, _transcript = Fr_generation.random_fr transcript in
    let polys_list_worker = List.map fst secrets_worker in
    let query_list_worker =
      List.map (convert_eval_points ~generator ~x) eval_points_worker
    in
    List.map2 PP.PC.evaluate polys_list_worker query_list_worker

  (* Same as Plonk.Main_protocol.build_batched_witness_poly, but the IFFT
     version every times.
     Because I don’t know how to use f_wires in distributed_prover
  *)
  let build_batched_witness_polys_bis pp batched_witnesses =
    let batched_witness_polys =
      SMap.map
        (fun batched_witness ->
          (* we apply an IFFT on the batched witness *)
          Perm.Shared_argument.batched_wires_poly_of_batched_wires
            pp
            batched_witness
            (Scalar.zero, []))
        batched_witnesses
    in
    batched_witness_polys |> SMap.Aggregation.smap_of_smap_smap

  let shared_perm_rc_argument pp nb_workers randomness inputs_map replies =
    let recombine_batched_wires pieces =
      (* we want the last worker to be first to apply Horner's method *)
      let pieces = List.rev pieces in
      List.fold_left
        (fun acc m ->
          SMap.union
            (fun circuit_name witness_acc witness_m ->
              let n = List.length (SMap.find circuit_name inputs_map) in
              let chunk_size = Z.(cdiv (of_int n) (of_int nb_workers)) in
              let delta_factor = Scalar.pow randomness.delta chunk_size in
              let sum =
                SMap.mapi
                  (fun i w_acc ->
                    let w = SMap.find i witness_m in
                    Evaluations.(add w (mul_by_scalar delta_factor w_acc)))
                  witness_acc
              in
              Some sum)
            acc
            m)
        (List.hd pieces)
        (List.tl pieces)
    in
    let batched_wires_map =
      recombine_batched_wires (List.map (fun r -> r.batched_wires_map) replies)
    in
    let open Prover in
    let f_map_perm = build_f_map_perm pp randomness batched_wires_map in
    let f_map_rc = build_f_map_rc_2 pp randomness batched_wires_map in
    let f_map_perm_rc = SMap.union_disjoint f_map_perm f_map_rc in

    let evaluated_perm_ids =
      let evaluations =
        let batched_wires_polys =
          build_batched_witness_polys_bis
            (pp.common_pp.zk, pp.common_pp.n, pp.common_pp.domain)
            batched_wires_map
        in
        build_evaluations
          pp
          (SMap.union_disjoint f_map_perm_rc batched_wires_polys)
      in
      (build_perm_rc2_identities pp randomness) evaluations
    in
    let cmt =
      let all_keys = build_all_keys_z pp in
      PP.PC.commit ~all_keys pp.common_pp.pp_public_parameters f_map_perm_rc
    in
    (f_map_perm_rc, evaluated_perm_ids, cmt)

  let build_f_map_rc_2 = Prover.build_f_map_rc_2

  let make_secret pp (f_map, f_prv_aux) =
    [(pp.common_pp.g_map, pp.common_pp.g_prover_aux); (f_map, f_prv_aux)]

  let make_eval_points pp = Plonk.List.split_n 2 pp.common_pp.eval_points

  let get_generator pp = Domain.get pp.common_pp.domain 1

  let get_srs pp = pp.common_pp.pp_public_parameters

  let get_gen_n_nbt pp =
    ( Domain.get pp.common_pp.domain 1,
      pp.common_pp.n,
      pp.common_pp.nb_of_t_chunks )

  let get_transcript pp = pp.transcript

  let check_no_zk pp =
    if pp.common_pp.zk then failwith "Distribution with ZK is not supported"
end

module Make (PP : Polynomial_protocol.S) = struct
  module PP = PP
  module MP = Plonk.Main_protocol.Make_impl (PP)

  include (MP : module type of MP with module PP := PP)

  include Common (PP)
end

module MakeSuper (PP : Polynomial_protocol.Super) = struct
  module PP = PP
  module MP = Aggregation.Main_protocol.Make_impl (PP)

  include (MP : module type of MP with module PP := PP)

  include Common (PP)
end
OCaml

Innovation. Community. Security.