package octez-libs

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file ec_sig.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
(** Basic interface for elliptic curves *)
module type BASE = sig
  exception Not_on_curve of Bytes.t

  (** Represents an element on the curve. In the case of a curve with a
      cofactor, the element is not necessarily in the prime subgroup.
  *)
  type t

  (** The size of a point representation, in bytes *)
  val size_in_bytes : int

  module Scalar : Bls12_381.Ff_sig.PRIME

  module Base : Bls12_381.Ff_sig.PRIME

  (** Check if a point, represented as a byte array, is on the curve **)
  val check_bytes : Bytes.t -> bool

  (** Attempt to construct a point from a byte array *)
  val of_bytes_opt : Bytes.t -> t option

  (** Attempt to construct a point from a byte array.
      Raise [Not_on_curve] if the point is not on the curve
  *)
  val of_bytes_exn : Bytes.t -> t

  (** Return a representation in bytes *)
  val to_bytes : t -> Bytes.t

  (** Zero of the elliptic curve *)
  val zero : t

  (** A fixed generator of the elliptic curve *)
  val one : t

  (** Return [true] if the given element is zero *)
  val is_zero : t -> bool

  (** Generate a random element *)
  val random : ?state:Random.State.t -> unit -> t

  (** Return the addition of two element *)
  val add : t -> t -> t

  (** Double the element *)
  val double : t -> t

  (** Return the opposite of the element *)
  val negate : t -> t

  (** Return [true] if the two elements are algebraically the same *)
  val eq : t -> t -> bool

  (** Multiply an element by a scalar *)
  val mul : t -> Scalar.t -> t
end

(** Curve in Weierstrass form with a and b. In affine, the curve has the
    equation form y² = x³ + ax + b *)
module type WeierstrassT = sig
  include BASE

  val a : Base.t

  val b : Base.t

  val cofactor : Z.t
end

module type AffineWeierstrassT = sig
  include WeierstrassT

  val get_x_coordinate : t -> Base.t

  val get_y_coordinate : t -> Base.t

  (* val to_montgomery_curve_parameters : unit -> (Base.t * Base.t * Z.t * (Base.t * Base.t)) option

     val to_montgomery : t -> (Base.t * Base.t) option *)

  (** [is_on_curve ~x ~y] returns [true] if the coordinates [(x, y)] represents
      a point on the curve. It does not check the point is in the prime subgroup.
  *)
  val is_on_curve : x:Base.t -> y:Base.t -> bool

  (** [is_in_prime_subgroup ~x ~y] returns [true] if the coordinates [(x, y)]
      represents a point in the prime subgroup. The coordinates must be a point
      on the curve
  *)
  val is_in_prime_subgroup : x:Base.t -> y:Base.t -> bool

  (** Build a point from the affine coordinates. If the point is not on the curve
      and in the subgroup, returns [None]
  *)
  val from_coordinates_opt : x:Base.t -> y:Base.t -> t option

  (** Build a point from the affine coordinates. If the point is not on the curve
      and in the subgroup, raise [Not_on_curve].
  *)
  val from_coordinates_exn : x:Base.t -> y:Base.t -> t

  (** Build a point from a compressed representation. It supposes the base field
      leaves at least a free bit in the last byte to encode the sign.
      Raise [Not_on_curve] if the bytes do not represent a point on the curve
      and in the prime subgroup.
  *)
  val of_compressed_bytes_exn : Bytes.t -> t

  (** Same than [of_compressed_bytes_exn] but returns an option instead of
      raising an exception
  *)
  val of_compressed_bytes_opt : Bytes.t -> t option

  (** Return the compressed representation of the point *)
  val to_compressed_bytes : t -> Bytes.t
end

module type ProjectiveWeierstrassT = sig
  include WeierstrassT

  (** [is_on_curve ~x ~y ~z] returns [true] if the coordinates [(x, y, z)]
      represents a point on the curve. It does not check the point is in the
      prime subgroup.
  *)
  val is_on_curve : x:Base.t -> y:Base.t -> z:Base.t -> bool

  (** [is_in_prime_subgroup ~x ~y ~z] returns [true] if the coordinates
      [(x, y, z)] represents a point in the prime subgroup. The coordinates must
      be a point on the curve.
  *)
  val is_in_prime_subgroup : x:Base.t -> y:Base.t -> z:Base.t -> bool

  val get_x_coordinate : t -> Base.t

  val get_y_coordinate : t -> Base.t

  val get_z_coordinate : t -> Base.t

  (** Build a point from the affine coordinates. If the point is not on the curve
      and in the subgroup, returns [None]
  *)
  val from_coordinates_opt : x:Base.t -> y:Base.t -> z:Base.t -> t option

  (** Build a point from the affine coordinates. If the point is not on the curve
      and in the subgroup, raise [Not_on_curve].
  *)
  val from_coordinates_exn : x:Base.t -> y:Base.t -> z:Base.t -> t

  val get_affine_x_coordinate : t -> Base.t

  val get_affine_y_coordinate : t -> Base.t

  val from_affine_coordinates_exn : x:Base.t -> y:Base.t -> t

  val from_affine_coordinates_opt : x:Base.t -> y:Base.t -> t
end

module type JacobianWeierstrassT = sig
  include WeierstrassT

  (** [is_on_curve ~x ~y ~z] returns [true] if the coordinates [(x, y, z)] represents
      a point on the curve. It does not check the point is in the prime subgroup.
  *)
  val is_on_curve : x:Base.t -> y:Base.t -> z:Base.t -> bool

  (** [is_in_prime_subgroup ~x ~y ~z] returns [true] if the coordinates [(x, y, z)]
      represents a point in the prime subgroup. The coordinates must be a point
      on the curve
  *)
  val is_in_prime_subgroup : x:Base.t -> y:Base.t -> z:Base.t -> bool

  val get_x_coordinate : t -> Base.t

  val get_y_coordinate : t -> Base.t

  val get_z_coordinate : t -> Base.t

  (** Build a point from the projective coordinates. If the point is not on the curve
      and in the subgroup, returns [None]
  *)
  val from_coordinates_opt : x:Base.t -> y:Base.t -> z:Base.t -> t option

  (** Build a point from the projective coordinates. If the point is not on the curve
      and in the subgroup, raise [Not_on_curve].
  *)
  val from_coordinates_exn : x:Base.t -> y:Base.t -> z:Base.t -> t

  val get_affine_x_coordinate : t -> Base.t

  val get_affine_y_coordinate : t -> Base.t

  val from_affine_coordinates_exn : x:Base.t -> y:Base.t -> t

  val from_affine_coordinates_opt : x:Base.t -> y:Base.t -> t
end

module type MontgomeryT = sig
  include BASE

  val a : Base.t

  val b : Base.t

  val cofactor : Z.t
end

module type AffineMontgomeryT = sig
  (** by^2 = x3 + ax^2 + x with b * (a^2 - 4) != 0*)
  include MontgomeryT

  (** [is_on_curve ~x ~y] returns [true] if the coordinates [(x, y)] represents
      a point on the curve. It does not check the point is in the prime subgroup.
  *)
  val is_on_curve : x:Base.t -> y:Base.t -> bool

  (** [is_in_prime_subgroup ~x ~y] returns [true] if the coordinates [(x, y)]
      represents a point in the prime subgroup. The coordinates must be a point
      on the curve
  *)
  val is_in_prime_subgroup : x:Base.t -> y:Base.t -> bool

  val get_x_coordinate : t -> Base.t

  val get_y_coordinate : t -> Base.t

  val to_twisted_curve_parameters :
    unit -> (Base.t * Base.t * Z.t * (Base.t * Base.t)) option

  val to_twisted : t -> (Base.t * Base.t) option

  val to_weierstrass_curve_parameters :
    unit -> (Base.t * Base.t * Z.t * (Base.t * Base.t)) option

  val to_weierstrass : t -> (Base.t * Base.t) option

  (** Build a point from the affine coordinates. If the point is not on the curve
      and in the subgroup, returns [None]
  *)
  val from_coordinates_opt : x:Base.t -> y:Base.t -> t option

  (** Build a point from the affine coordinates. If the point is not on the curve
      and in the subgroup, raise [Not_on_curve].
  *)
  val from_coordinates_exn : x:Base.t -> y:Base.t -> t

  (** Build a point from a compressed representation. It supposes the base field
      leaves at least a free bit in the last byte to encode the sign.
      Raise [Not_on_curve] if the bytes do not represent a point on the curve
      and in the prime subgroup.
  *)
  val of_compressed_bytes_exn : Bytes.t -> t

  (** Same than [of_compressed_bytes_exn] but returns an option instead of
      raising an exception
  *)
  val of_compressed_bytes_opt : Bytes.t -> t option

  (** Return the compressed representation of the point *)
  val to_compressed_bytes : t -> Bytes.t
end

module type AffineEdwardsT = sig
  (** au^2 + v^2 = 1 + du^2v^2 *)
  include BASE

  (** The parameter [a] of the curve, from the equation a * u^2 + v^2 = 1 + d * u^2 * v^2  *)
  val a : Base.t

  (** The parameter [d] of the curve, from the equation a * u^2 + v^2 = 1 + d * u^2 * v^2  *)
  val d : Base.t

  (** The cofactor of the curve. The parameter is used in [is_small_order] and
      in the random point generator.
  *)
  val cofactor : Z.t

  (** [is_on_curve ~u ~v] returns [true] if the coordinates [(u, v)] represents
      a point on the curve. It does not check the point is in the prime subgroup.
  *)
  val is_on_curve : u:Base.t -> v:Base.t -> bool

  (** [is_in_prime_subgroup ~u ~v] returns [true] if the coordinates [(u, v)]
      represents a point in the prime subgroup. The coordinates must be a point
      on the curve
  *)
  val is_in_prime_subgroup : u:Base.t -> v:Base.t -> bool

  (** Return the affine coordinate u (such that au^2 + v^2 = 1 + d u^2 v^2 *)
  val get_u_coordinate : t -> Base.t

  (** Return the affine coordinate u (such that au^2 + v^2 = 1 + d u^2 v^2 *)
  val get_v_coordinate : t -> Base.t

  val to_montgomery_curve_parameters :
    unit -> (Base.t * Base.t * Z.t * (Base.t * Base.t)) option

  val to_montgomery : t -> (Base.t * Base.t) option

  (** Build a point from the affine coordinates. If the point is not on the curve
      and in the subgroup, returns [None]
  *)
  val from_coordinates_opt : u:Base.t -> v:Base.t -> t option

  (** Build a point from the affine coordinates. If the point is not on the curve
      and in the subgroup, raise [Not_on_curve].
  *)
  val from_coordinates_exn : u:Base.t -> v:Base.t -> t

  (** Build a point from the affine coordinates, without verifying the point is
      on the curve. Use with precaution.
  *)
  val unsafe_from_coordinates : u:Base.t -> v:Base.t -> t
end

module type PAIRING = sig
  module G1 : BASE

  module G2 : BASE

  module GT : Bls12_381.Ff_sig.BASE

  exception FailToComputeFinalExponentiation of GT.t

  val miller_loop : (G1.t * G2.t) list -> GT.t

  (** Compute the miller loop on a single tuple of point *)
  val miller_loop_simple : G1.t -> G2.t -> GT.t

  (** Compute a pairing result of a list of points *)
  val pairing : G1.t -> G2.t -> GT.t

  (** Compute the final exponentiation of the given point. Returns a [None] if
      the point is null *)
  val final_exponentiation_opt : GT.t -> GT.t option

  (** Compute the final exponentiation of the given point. Raise
      [FailToComputeFinalExponentiation] if the point is null *)
  val final_exponentiation_exn : GT.t -> GT.t
end
OCaml

Innovation. Community. Security.