package octez-libs

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file timelock_legacy.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
(*****************************************************************************)
(*                                                                           *)
(* Open Source License                                                       *)
(* Copyright (c) 2020-2021 Nomadic Labs, <contact@nomadic-labs.com>          *)
(*                                                                           *)
(* Permission is hereby granted, free of charge, to any person obtaining a   *)
(* copy of this software and associated documentation files (the "Software"),*)
(* to deal in the Software without restriction, including without limitation *)
(* the rights to use, copy, modify, merge, publish, distribute, sublicense,  *)
(* and/or sell copies of the Software, and to permit persons to whom the     *)
(* Software is furnished to do so, subject to the following conditions:      *)
(*                                                                           *)
(* The above copyright notice and this permission notice shall be included   *)
(* in all copies or substantial portions of the Software.                    *)
(*                                                                           *)
(* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*)
(* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,  *)
(* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL   *)
(* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*)
(* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING   *)
(* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER       *)
(* DEALINGS IN THE SOFTWARE.                                                 *)
(*                                                                           *)
(*****************************************************************************)

open Tezos_hacl

type rsa_secret = {p : Z.t; q : Z.t}

type rsa_public = Z.t (* RSA modulus = p * q*)

type timelock_proof = Z.t

type locked_value = Z.t

type unlocked_value = Z.t

type symmetric_key = Crypto_box.Secretbox.key

type ciphertext = {nonce : Crypto_box.nonce; payload : bytes}

(*Should be sufficient since the public key will not be exposed for a long time*)
let size_modulus = 2048

(* Creates a symmetric key using hash based key derivation from the time locked value*)
let unlocked_value_to_symmetric_key unlocked_value =
  let kdf_key = "Tezoskdftimelockv0" in
  let to_hash = Z.to_string unlocked_value in
  let hash = Blake2B.(to_bytes @@ hash_string ~key:kdf_key [to_hash]) in
  Crypto_box.Secretbox.unsafe_of_bytes hash

(* A random Z arith element of size [size] bytes *)
let random_z size = Hacl.Rand.gen size |> Bytes.to_string |> Z.of_bits

let random_prime_z size =
  let rec aux () =
    let trial = random_z size in
    if Z.probab_prime trial 25 = 0 then aux () else trial
  in
  aux ()

(* Generates and RSA key pair of 2048 bits (= 256 bytes) *)
let gen_rsa_keys () =
  (* We divide by 8 to convert to bytes and by 2 because we generate two primes *)
  let size = size_modulus / (2 * 8) in
  let p = random_prime_z size in
  let q = random_prime_z size in
  (Z.(p * q), {p; q})

(* Generates almost uniformly a Zarith element between 0 and [public key].
   Intended for generating the time lock *)
let gen_locked_value rsa_public =
  (* We divide by 8 to convert to bytes *)
  Z.erem (random_z ((size_modulus / 8) + 16)) rsa_public

(* The resulting prime has size 256 bits or slightly more. *)
let hash_to_prime rsa_public ~time value key =
  let personalization = Bytes.of_string "\032" in
  let s =
    String.concat
      "\xff\x00\xff\x00\xff\x00\xff\x00"
      (Int.to_string time :: List.map Z.to_bits [rsa_public; value; key])
  in
  let (Hacl.Blake2b.Hash hash_result) =
    Hacl.Blake2b.direct ~key:personalization (Bytes.of_string s) 32
  in
  Z.(nextprime (of_bits (Bytes.to_string hash_result)))

let prove_without_secret rsa_public ~time locked_value unlocked_value =
  let l = hash_to_prime rsa_public ~time locked_value unlocked_value in
  let pow = Z.(pow (of_int 2) time / l) in
  Z.powm locked_value pow rsa_public

let prove_with_secret secret ~time locked_value unlocked_value =
  let rsa_public = Z.(secret.p * secret.q) in
  let l = hash_to_prime rsa_public ~time locked_value unlocked_value in
  let phi = Z.((secret.p - one) * (secret.q - one)) in
  let pow = Z.(pow (of_int 2) time / l mod phi) in
  Z.powm locked_value pow rsa_public

(* The proof is verified by checking that
   lv ^ (2 ^ time) = (proof ^ l) * (lv ^ r) mod public
   which is equivalent to
   2 ^ time = (((2 ^ time) / l) * l) + (2 ^ time mod l) mod phi
   see https://eprint.iacr.org/2018/712.pdf section 3.2 for this proof
*)
let verify_timelock rsa_public ~time locked_value unlocked_value proof =
  let l = hash_to_prime rsa_public ~time locked_value unlocked_value in
  let r = Z.(powm (of_int 2) (Z.of_int time) l) in
  unlocked_value
  = Z.(powm proof l rsa_public * powm locked_value r rsa_public mod rsa_public)

(* Gives the value that was timelocked from the timelock, the secret and the
   time. Works in logarithmic time in [time] *)
let unlock_with_secret secret ~(time : int) (locked_value : locked_value) =
  let phi = Z.((secret.p - one) * (secret.q - one)) in
  let e = Z.powm (Z.of_int 2) (Z.of_int time) phi in
  Z.powm locked_value e Z.(secret.p * secret.q)

let unlock_and_prove_with_secret secret ~(time : int)
    (locked_value : locked_value) =
  let unlocked_value = unlock_with_secret secret ~time locked_value in
  let pi = prove_with_secret secret ~time locked_value unlocked_value in
  (unlocked_value, pi)

let locked_value_to_symmetric_key_with_secret secret ~(time : int)
    (locked_value : locked_value) : symmetric_key =
  unlocked_value_to_symmetric_key (unlock_with_secret secret ~time locked_value)

(* Gives the value that was timelocked from the timelock, the public modulus
   and the time. Works in linear time in [time] *)
let unlock_and_prove_without_secret rsa_public ~time locked_value =
  let rec aux time v =
    if time = 0 then v else aux Int.(pred time) Z.(v * v mod rsa_public)
  in
  let unlocked_value = aux time locked_value in
  let pi = prove_without_secret rsa_public ~time locked_value unlocked_value in
  (unlocked_value, pi)

let locked_value_to_symmetric_key_with_proof (rsa_public : rsa_public)
    ~(time : int) locked_value unlocked_value proof =
  if verify_timelock rsa_public ~time locked_value unlocked_value proof then
    Some (unlocked_value_to_symmetric_key unlocked_value)
  else None

let encrypt symmetric_key plaintext =
  let nonce = Crypto_box.random_nonce () in
  {
    nonce;
    payload = Crypto_box.Secretbox.secretbox symmetric_key plaintext nonce;
  }

let decrypt symmetric_key ciphertext =
  Crypto_box.Secretbox.secretbox_open
    symmetric_key
    ciphertext.payload
    ciphertext.nonce

(* ------------*)
type chest_key = {unlocked_value : unlocked_value; proof : timelock_proof}

type chest = {
  locked_value : locked_value;
  rsa_public : rsa_public;
  ciphertext : ciphertext;
}

let proof_encoding = Data_encoding.n

let chest_key_encoding =
  let open Data_encoding in
  def "timelock.chest_key"
  @@ conv
       (fun chest_key -> (chest_key.unlocked_value, chest_key.proof))
       (fun (unlocked_value, proof) -> {unlocked_value; proof})
       (obj2
          (req "unlocked_value" Data_encoding.n)
          (req "proof" Data_encoding.n))

let ciphertext_encoding =
  let open Data_encoding in
  def "timelock.ciphertext"
  @@ conv_with_guard
       (fun ciphertext -> (ciphertext.nonce, ciphertext.payload))
       (fun (nonce, payload) ->
         if Bytes.length payload <= Crypto_box.tag_length then
           Error "The ciphertext has a negative size"
         else Ok {nonce; payload})
       (obj2
          (req "timelock.nonce" Crypto_box.nonce_encoding)
          (req "timelock.payload" bytes))

let min_rsa_modulus = Z.(shift_left (of_int 2) 2000)

let chest_encoding =
  let open Data_encoding in
  def "timelock.chest"
  @@ conv_with_guard
       (fun chest -> (chest.locked_value, chest.rsa_public, chest.ciphertext))
       (fun (locked_value, rsa_public, ciphertext) ->
         if Z.Compare.(locked_value < Z.zero || locked_value >= rsa_public) then
           Error "locked value is not in the rsa group"
         else if Z.leq rsa_public min_rsa_modulus then
           Error "rsa modulus is too small"
         else Ok {locked_value; rsa_public; ciphertext})
       (obj3
          (req "locked_value" n)
          (req "rsa_public" n)
          (req "ciphertext" ciphertext_encoding))

type opening_result = Correct of Bytes.t | Bogus_cipher | Bogus_opening

let open_chest chest chest_key ~time =
  if time < 0 then failwith "Timelock: trying to open with a negative time"
  else
    let sym_key_opt =
      locked_value_to_symmetric_key_with_proof
        chest.rsa_public
        ~time
        chest.locked_value
        chest_key.unlocked_value
        chest_key.proof
    in
    match sym_key_opt with
    | None -> Bogus_opening
    | Some sym_key -> (
        let plaintext_opt = decrypt sym_key chest.ciphertext in
        match plaintext_opt with
        | None -> Bogus_cipher
        | Some plaintext -> Correct plaintext)

let create_chest_and_chest_key ~payload ~time =
  let rsa_public, rsa_secret = gen_rsa_keys () in
  let locked_value = gen_locked_value rsa_public in
  let unlocked_value, proof =
    unlock_and_prove_with_secret rsa_secret ~time locked_value
  in
  let sym_key = unlocked_value_to_symmetric_key unlocked_value in
  let ciphertext = encrypt sym_key payload in
  ({locked_value; rsa_public; ciphertext}, {unlocked_value; proof})

let create_chest_key chest ~time =
  let unlocked_value, proof =
    unlock_and_prove_without_secret chest.rsa_public ~time chest.locked_value
  in
  {unlocked_value; proof}

let get_plaintext_size chest =
  Bytes.length chest.ciphertext.payload - Crypto_box.tag_length

(*-------- sampling function for gas benchmarks-----*)
(* Those function are unsafe for wallet usage as they use the OCaml
   random generator. This is used to easily reproduce benchmarks. *)
let gen_random_bytes_unsafe size =
  Bytes.init size (fun _ -> Char.chr (Random.int 256))

let gen_random_z_unsafe size =
  gen_random_bytes_unsafe size |> Bytes.to_string |> Z.of_bits

let gen_random_prime_unsafe size = gen_random_z_unsafe size |> Z.nextprime

let gen_rsa_keys_unsafe () =
  let size = size_modulus / (2 * 8) in
  let p = gen_random_prime_unsafe size in
  let q = gen_random_prime_unsafe size in
  (Z.(p * q), {p; q})

let gen_locked_value_unsafe rsa_public =
  Z.erem (gen_random_z_unsafe (size_modulus / 8)) rsa_public

let encrypt_unsafe symmetric_key plaintext =
  let nonce =
    Data_encoding.Binary.of_bytes_exn
      Crypto_box.nonce_encoding
      (gen_random_bytes_unsafe Crypto_box.nonce_size)
  in
  {
    nonce;
    payload = Crypto_box.Secretbox.secretbox symmetric_key plaintext nonce;
  }

let chest_sampler ~rng_state ~plaintext_size ~time =
  Random.set_state rng_state ;
  let plaintext = gen_random_bytes_unsafe plaintext_size in
  let rsa_public, rsa_secret = gen_rsa_keys_unsafe () in
  let locked_value = gen_locked_value_unsafe rsa_public in
  let unlocked_value, proof =
    unlock_and_prove_with_secret rsa_secret ~time locked_value
  in
  let sym_key = unlocked_value_to_symmetric_key unlocked_value in
  let ciphertext = encrypt_unsafe sym_key plaintext in
  ({locked_value; rsa_public; ciphertext}, {unlocked_value; proof})
OCaml

Innovation. Community. Security.