package frama-c
Platform dedicated to the analysis of source code written in C
Install
Dune Dependency
Authors
-
MMichele Alberti
-
TThibaud Antignac
-
GGergö Barany
-
PPatrick Baudin
-
NNicolas Bellec
-
TThibaut Benjamin
-
AAllan Blanchard
-
LLionel Blatter
-
FFrançois Bobot
-
RRichard Bonichon
-
VVincent Botbol
-
QQuentin Bouillaguet
-
DDavid Bühler
-
ZZakaria Chihani
-
LLoïc Correnson
-
JJulien Crétin
-
PPascal Cuoq
-
ZZaynah Dargaye
-
BBasile Desloges
-
JJean-Christophe Filliâtre
-
PPhilippe Herrmann
-
MMaxime Jacquemin
-
FFlorent Kirchner
-
AAlexander Kogtenkov
-
RRemi Lazarini
-
TTristan Le Gall
-
JJean-Christophe Léchenet
-
MMatthieu Lemerre
-
DDara Ly
-
DDavid Maison
-
CClaude Marché
-
AAndré Maroneze
-
TThibault Martin
-
FFonenantsoa Maurica
-
MMelody Méaulle
-
BBenjamin Monate
-
YYannick Moy
-
PPierre Nigron
-
AAnne Pacalet
-
VValentin Perrelle
-
GGuillaume Petiot
-
DDario Pinto
-
VVirgile Prevosto
-
AArmand Puccetti
-
FFélix Ridoux
-
VVirgile Robles
-
JJan Rochel
-
MMuriel Roger
-
JJulien Signoles
-
NNicolas Stouls
-
KKostyantyn Vorobyov
-
BBoris Yakobowski
Maintainers
Sources
frama-c-29.0-Copper.tar.gz
sha256=d2fbb3b8d0ff83945872e9e6fa258e934a706360e698dae3b4d5f971addf7493
doc/src/frama-c-wp.core/MemVal.ml.html
Source file MemVal.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
(**************************************************************************) (* *) (* This file is part of WP plug-in of Frama-C. *) (* *) (* Copyright (C) 2007-2024 *) (* CEA (Commissariat a l'energie atomique et aux energies *) (* alternatives) *) (* *) (* you can redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation, version 2.1. *) (* *) (* It is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* See the GNU Lesser General Public License version 2.1 *) (* for more details (enclosed in the file licenses/LGPLv2.1). *) (* *) (**************************************************************************) (* -------------------------------------------------------------------------- *) (* --- Value Separation Analysis' Based Memory Model --- *) (* -------------------------------------------------------------------------- *) open Cil_types open Cil_datatype open Ctypes open Lang open Lang.F open Sigs open Definitions module Logic = Qed.Logic module type State = sig type t val bottom : t val join : t -> t -> t val of_kinstr : Cil_types.kinstr -> t val of_stmt : Cil_types.stmt -> t val of_kf : Cil_types.kernel_function -> t val pretty : Format.formatter -> t -> unit end module type Value = sig val configure : unit -> WpContext.rollback val datatype : string module State : State type t type state = State.t val null : t val literal: eid:int -> Cstring.cst -> int * t val cvar : varinfo -> t val field : t -> Cil_types.fieldinfo -> t val shift : t -> Ctypes.c_object -> term -> t val base_addr : t -> t val load : state -> t -> Ctypes.c_object -> t val domain : t -> Base.t list val offset : t -> (term -> pred) val pretty : Format.formatter -> t -> unit end module type Base = sig end let dkey = Wp_parameters.register_category "memval" (* Debugging key *) let dkey_val = Wp_parameters.register_category "memval:val" let debug fmt = Wp_parameters.debug ~dkey fmt let debug_val = Wp_parameters.debug ~dkey:dkey_val (* -------------------------------------------------------------------------- *) (* --- Logic Memory Wrapper --- *) (* -------------------------------------------------------------------------- *) let library = "memory" let a_addr = Lang.datatype ~library "addr" let t_addr = Logic.Data(a_addr,[]) let f_base = Lang.extern_f ~library ~result:Logic.Int ~link:(Qed.Engine.F_subst ("base", "%1.base")) "base" let f_offset = Lang.extern_f ~library ~result:Logic.Int ~link:(Qed.Engine.F_subst ("offset", "%1.offset")) "offset" let f_shift = Lang.extern_f ~library ~result:t_addr "shift" let f_global = Lang.extern_f ~library ~result:t_addr "global" let f_null = Lang.extern_f ~library ~result:t_addr "null" let a_null = F.constant (e_fun f_null []) (* { base = 0; offset = 0 } *) let a_base p = e_fun f_base [p] (* p -> p.offset *) let a_offset p = e_fun f_offset [p] (* p -> p.base *) let a_global b = e_fun f_global [b] (* b -> { base = b; offset = 0 } *) let a_shift l k = e_fun f_shift [l;k] (* p k -> { p w/ offset = p.offset + k } *) let a_addr b k = a_shift (a_global b) k (* b k -> { base = b; offset = k } *) (* -------------------------------------------------------------------------- *) (* --- Cmath Wrapper --- *) (* -------------------------------------------------------------------------- *) let a_iabs i = e_fun ~result:Logic.Int Cmath.f_iabs [i] (* x -> |x| *) (* -------------------------------------------------------------------------- *) (* --- MemValue Types --- *) (* -------------------------------------------------------------------------- *) (* Model utilities *) let t_words = Logic.Array (Logic.Int, Logic.Int) (* TODO: A way to abstract this ? *) (* -------------------------------------------------------------------------- *) (* --- Qed Simplifiers --- *) (* -------------------------------------------------------------------------- *) let phi_base t = match F.repr t with | Logic.Fun (f, [p; _]) when f == f_shift -> a_base p | Logic.Fun (f, [b]) when f == f_global -> b | _ -> raise Not_found let phi_offset t = match F.repr t with | Logic.Fun (f, [p; k]) when f == f_shift -> e_add (a_offset p) k | Logic.Fun (f, _) when f == f_global -> F.e_zero | _ -> raise Not_found let phi_shift p i = if F.is_zero i then p else match F.repr p with | Logic.Fun (f, [q; j]) when f == f_shift -> F.e_fun f [q; F.e_add i j] (* | Logic.Fun (f, [b]) when f == f_global -> a_addr b i *) | _ -> raise Not_found let _phi_read ~obj ~read ~write mem off = match F.repr mem with | Logic.Fun (f, [_; o; v]) when f == write && off == o -> v (*read_tau (write_tau m o v) o == v*) | Logic.Fun (f, [m; o; _]) when f == write -> let offset = a_iabs (F.e_sub off o) in if F.eval_leq (F.e_int (Ctypes.sizeof_object obj)) offset then F.e_fun read [m; off] else raise Not_found (*read_tau (write_tau m o v) o' == read m o' when |o - o'| <= sizeof(tau)*) | _ -> raise Not_found let () = Context.register begin fun () -> F.set_builtin_1 f_base phi_base; F.set_builtin_1 f_offset phi_offset; F.set_builtin_2 f_shift phi_shift; end (* -------------------------------------------------------------------------- *) (* --- Utilities --- *) (* -------------------------------------------------------------------------- *) (* Wp utilities *) module Cstring = struct include Cstring let str_cil ~eid cstr = let enode = match cstr with | C_str str -> Const (CStr str) | W_str wstr -> Const (CWStr wstr) in { eid = eid; enode = enode; eloc = Location.unknown; } end (* Value utilities *) module Base = struct include Base let bitsize_from_validity = function | Invalid -> Integer.zero | Empty -> Integer.zero | Known (_, m) | Unknown (_, _, m) -> Integer.succ m | Variable { max_allocable } -> Integer.succ max_allocable let size_from_validity b = Integer.(e_div (bitsize_from_validity b) eight) end (* -------------------------------------------------------------------------- *) (* --- Memory Model --- *) (* -------------------------------------------------------------------------- *) module Make(V : Value) = struct (* -------------------------------------------------------------------------- *) (* --- Model Parameters --- *) (* -------------------------------------------------------------------------- *) let datatype = "MemVal." ^ V.datatype let configure () = let rollback = V.configure () in let orig_pointer = Context.push Lang.pointer t_addr in let rollback () = rollback (); Context.pop Lang.pointer orig_pointer; in rollback module StateRef = struct let model : V.State.t Context.value = Context.create "Memval.model" let get () = Context.get model let update () = try (match WpContext.get_scope () with | WpContext.Global -> assert false | WpContext.Kf kf -> Context.set model (V.State.of_kf kf)) with | Invalid_argument _ -> Context.set model (V.State.of_kinstr Kglobal) | Kernel_function.No_Definition -> assert false end (* -------------------------------------------------------------------------- *) (* --- Chunk --- *) (* -------------------------------------------------------------------------- *) type chunk = | M_base of Base.t module Chunk = struct type t = chunk let self = "MemVal.Chunk" let hash = function | M_base b -> 5 * Base.hash b let equal c1 c2 = match c1, c2 with | M_base b1, M_base b2 -> Base.equal b1 b2 let compare c1 c2 = match c1, c2 with | M_base b1, M_base b2 -> Base.compare b1 b2 let pretty fmt = function | M_base b -> Base.pretty fmt b let tau_of_chunk = function | M_base _ -> t_words let basename_of_base = function | Base.Var (vi, _) -> Format.sprintf "MVar_%s" (LogicUsage.basename vi) | Base.CLogic_Var (_, _, _) -> assert false (* not supposed to append. *) | Base.Null -> "MNull" | Base.String (eid, _) -> Format.sprintf "MStr_%d" eid | Base.Allocated (vi, _dealloc, _) -> Format.sprintf "MAlloc_%s" (LogicUsage.basename vi) let basename_of_chunk = function | M_base b -> basename_of_base b let is_framed = function | M_base b -> try (match WpContext.get_scope () with | WpContext.Global -> assert false | WpContext.Kf kf -> Base.is_formal_or_local b (Kernel_function.get_definition kf)) with Invalid_argument _ | Kernel_function.No_Definition -> assert false (* by context. *) end let cluster () = Definitions.cluster ~id:"MemVal" () module Heap = Qed.Collection.Make(Chunk) module Sigma = Sigma.Make(Chunk)(Heap) type loc = { loc_v : V.t; loc_t : term (* of type addr *) } type sigma = Sigma.t type segment = loc rloc type state = unit let state _ = () let iter _ _ = () let lookup _ _ = Mterm let updates _ _ = Bag.empty let apply _ _ = () let pretty fmt l = Format.fprintf fmt "([@ t:%a,@ v:%a @])" F.pp_term l.loc_t V.pretty l.loc_v let vars _l = Vars.empty let occurs _x _l = false (* -------------------------------------------------------------------------- *) (* --- Constructors --- *) (* -------------------------------------------------------------------------- *) let null = { loc_v = V.null; loc_t = a_null; } let literal ~eid cstr = let bid, v = V.literal ~eid cstr in { loc_v = v; loc_t = a_global (F.e_int bid) } let cvar x = { loc_v = V.cvar x; loc_t = a_addr (F.e_int (Base.id (Base.of_varinfo x))) (F.e_zero); } (* -------------------------------------------------------------------------- *) (* --- Generated Axiomatization --- *) (* -------------------------------------------------------------------------- *) module Obj = struct include C_object let compare a b = if a==b then 0 else match a, b with | C_pointer _, C_pointer _ -> 0 | _ -> compare a b end module Access = WpContext.Generator(Obj) (struct let name = "MemVal.Access" type key = c_object type data = lfun * lfun let read suffix t_mem t_data = let result = t_data in let lfun = Lang.generated_f ~result "read_%s" suffix in let xw = Lang.freshvar ~basename:"w" t_mem in let xo = Lang.freshvar ~basename:"o" Logic.Int in let dfun = Definitions.Logic result in let cluster = cluster () in Definitions.define_symbol { d_lfun = lfun; d_types = 0; d_params = [xw; xo]; d_definition = dfun; d_cluster = cluster; }; lfun let write suffix t_mem t_data = let result = t_mem in let lfun = Lang.generated_f ~result "write_%s" suffix in let xw = Lang.freshvar ~basename:"w" t_mem in let xo = Lang.freshvar ~basename:"o" Logic.Int in let xv = Lang.freshvar ~basename:"v" t_data in let dfun = Definitions.Logic result in let cluster = cluster () in Definitions.define_symbol { d_lfun = lfun; d_types = 0; d_params = [xw; xo; xv]; d_definition = dfun; d_cluster = cluster; }; lfun let axiomatize ~obj:_ suffix t_mem t_data f_rd f_wr = let name = "axiom_" ^ suffix in let xw = Lang.freshvar ~basename:"w" t_mem in let w = e_var xw in let xo = Lang.freshvar ~basename:"o" Logic.Int in let o = e_var xo in let xv = Lang.freshvar ~basename:"v" t_data in let v = e_var xv in let p_write = e_fun f_wr [w; o; v] ~result:t_mem in let p_read = e_fun f_rd [p_write; o] ~result:t_data in let lemma = p_equal p_read v in let cluster = cluster () in (* if not (Wp_parameters.debug_atleast 1) then begin * F.set_builtin_2 f_rd (phi_read ~obj ~read:f_rd ~write:f_wr) * end; *) Definitions.define_lemma { l_kind = Cil_types.Admit; l_name = name; l_triggers = []; l_forall = [xw; xo; xv]; l_lemma = lemma; l_cluster = cluster; } let axiomatize2 ~obj suffix t_mem t_data f_rd f_wr = let name = "axiom_" ^ suffix ^ "_2" in let xw = Lang.freshvar ~basename:"w" t_mem in let w = e_var xw in let xwo = Lang.freshvar ~basename:"xwo" Logic.Int in let wo = e_var xwo in let xro = Lang.freshvar ~basename:"xro" Logic.Int in let ro = e_var xro in let xv = Lang.freshvar ~basename:"v" t_data in let v = e_var xv in let p_write = e_fun f_wr [w; wo; v] ~result:t_mem in let p_read = e_fun f_rd [p_write; ro] ~result:t_data in let sizeof = (F.e_int (Ctypes.sizeof_object obj)) in let offset = a_iabs (F.e_sub ro wo) in let lemma = F.p_imply (F.p_leq sizeof offset) (F.p_equal p_read (e_fun f_rd [w; ro] ~result:t_data)) in let cluster = cluster () in Definitions.define_lemma { l_kind = Cil_types.Admit; l_name = name; l_triggers = []; l_forall = [xw; xwo; xro; xv]; l_lemma = lemma; l_cluster = cluster; } let generate obj = let suffix = Ctypes.basename obj in let t_mem = t_words in let t_data = Lang.tau_of_object obj in let d_read = read suffix t_mem t_data in let d_write = write suffix t_mem t_data in axiomatize ~obj suffix t_mem t_data d_read d_write; axiomatize2 ~obj suffix t_mem t_data d_read d_write; d_read, d_write let compile = Lang.local generate end) let read obj ~mem ~offset = F.e_fun (fst (Access.get obj)) [mem; offset] ~result:(Lang.tau_of_object obj) let write obj ~mem ~offset ~value = F.e_fun (snd (Access.get obj)) [mem; offset; value] ~result:t_words let fold_ite f l = let rec aux = function | [] -> assert false | [x] -> f x | x :: xs -> F.e_if (F.e_eq (a_base l.loc_t) (F.e_int (Base.id x))) (f x) (aux xs) in aux (V.domain l.loc_v) let fold_ite_pred f l = let rec aux = function | [] -> assert false | [x] -> f x | x :: xs -> F.p_if (F.p_equal (a_base l.loc_t) (F.e_int (Base.id x))) (f x) (aux xs) in aux (V.domain l.loc_v) (* -------------------------------------------------------------------------- *) (* --- Logic to Location (and resp.) --- *) (* -------------------------------------------------------------------------- *) let pointer_loc _ = Warning.error ~source:"MemVal" "Cannot build top from EVA" let pointer_val l = l.loc_t (* -------------------------------------------------------------------------- *) (* --- Lifting --- *) (* -------------------------------------------------------------------------- *) let field l fd = let offs = Integer.of_int (Ctypes.field_offset fd) in { loc_v = V.field l.loc_v fd; loc_t = a_shift l.loc_t (F.e_bigint offs); } let shift l obj k = let size = Integer.of_int (Ctypes.sizeof_object obj) in let offs = F.e_times size k in { loc_v = V.shift l.loc_v obj k; loc_t = a_shift l.loc_t offs; } let base_addr l = { loc_v = V.base_addr l.loc_v; loc_t = a_addr (a_base l.loc_t) F.e_zero; } let block_length _s _obj l = let size_from_base base = F.e_bigint Base.(size_from_validity (validity base)) in fold_ite size_from_base l (* -------------------------------------------------------------------------- *) (* --- Casting --- *) (* -------------------------------------------------------------------------- *) let cast _ l = l let loc_of_int _ v = if F.is_zero v then null else (*TODO: Reinterpret integer with Value *) Warning.error ~source:"MemVal Model" "Forbidden cast of int to pointer" let int_of_loc _ l = pointer_val l let domain _ l = let d = V.domain l.loc_v in assert (d <> []); List.fold_left (fun acc b -> Heap.Set.add (M_base b) acc) Heap.Set.empty d (* -------------------------------------------------------------------------- *) (* --- Memory Load --- *) (* -------------------------------------------------------------------------- *) let load_value sigma obj l = let load_base base = let mem = Sigma.value sigma (M_base base) in let offset = a_offset l.loc_t in read obj ~mem ~offset in let t = fold_ite load_base l in begin if Wp_parameters.has_dkey dkey_val then let v = V.load (StateRef.get ()) l.loc_v obj in debug_val "load: %a -> %a" V.pretty l.loc_v V.pretty v end; Val t let load_loc ~assume sigma obj l = let load_base v' base = let mem = Sigma.value sigma (M_base base) in let offset = a_offset l.loc_t in let rd = read obj ~mem ~offset in if assume then begin let pred = V.offset v' (a_offset rd) in Lang.assume pred (* Yet another mutable. *) end; rd in let v' = V.load (StateRef.get ()) l.loc_v obj in let t = fold_ite (load_base v') l in Loc { loc_v = V.load (StateRef.get ()) l.loc_v obj; loc_t = t; } let load : sigma -> c_object -> loc -> loc value = fun sigma obj l -> StateRef.update (); begin match obj with | C_int _ | C_float _ -> load_value sigma obj l | C_pointer _ -> load_loc ~assume:true sigma obj l | _ -> load_loc ~assume:false sigma obj l end let load_init _sigma obj _loc = e_var @@ Lang.freshvar ~basename:"i" @@ Lang.init_of_object obj (* -------------------------------------------------------------------------- *) (* --- Memory Store --- *) (* -------------------------------------------------------------------------- *) let stored : sigma sequence -> c_object -> loc -> term -> equation list = fun seq obj l v -> let mk_write cond base = let wpre = Sigma.value seq.pre (M_base base) in let wpost = Sigma.value seq.post (M_base base) in let write = write obj ~mem:wpre ~offset:(a_offset l.loc_t) ~value:v in F.p_equal wpost (F.e_if cond write wpre) in let rec store acc = function | [] -> assert false | [c] -> let cond = F.e_and ((List.map (F.e_neq (a_base l.loc_t))) acc) in [ Assert (mk_write cond c) ] | c :: cs -> let bid = (F.e_int (Base.id c)) in let cond = F.e_eq (a_base l.loc_t) bid in [ Assert (mk_write cond c) ] @ store (bid :: acc) cs in store [ ] (V.domain l.loc_v) let stored_init _seq _obj _loc _t = [] let copied seq obj ll lr = let v = match load seq.pre obj lr with | Sigs.Val v -> v | Sigs.Loc l -> l.loc_t in stored seq obj ll v let copied_init _seq _obj _ll _lr = [] let assigned _s _obj _sloc = [ Assert F.p_true ] (* -------------------------------------------------------------------------- *) (* --- Pointer Comparison --- *) (* -------------------------------------------------------------------------- *) let is_null l = p_equal l.loc_t a_null let loc_delta l1 l2 = match F.is_equal (a_base l1.loc_t) (a_base l2.loc_t) with | Logic.Yes -> F.e_sub (a_offset l1.loc_t) (a_offset l2.loc_t) | Logic.Maybe | Logic.No -> Warning.error "Can only compare pointers with same base." let base_eq l1 l2 = F.p_equal (a_base l1.loc_t) (a_base l2.loc_t) let offset_cmp cmpop l1 l2 = cmpop (a_offset l1.loc_t) (a_offset l2.loc_t) let loc_diff _obj l1 l2 = loc_delta l1 l2 let loc_eq l1 l2 = F.p_and (base_eq l1 l2) (offset_cmp F.p_equal l1 l2) let loc_lt l1 l2 = F.p_lt (loc_delta l1 l2) F.e_zero let loc_leq l1 l2 = F.p_leq (loc_delta l1 l2) F.e_zero let loc_neq l1 l2 = F.p_neq (loc_delta l1 l2) F.e_zero (* -------------------------------------------------------------------------- *) (* --- Segments --- *) (* -------------------------------------------------------------------------- *) type range = | LOC of loc * term (*size*) | RANGE of loc * Vset.set (* offset range access from *loc* *) let range_of_rloc = function | Rloc (obj, l) -> LOC (l, F.e_int (Ctypes.sizeof_object obj)) | Rrange (l, obj, Some a, Some b) -> let la = shift l obj a in let n = e_fact (Ctypes.sizeof_object obj) (F.e_range a b) in LOC (la, n) | Rrange (l, obj, a_opt, b_opt) -> let f = F.e_fact (Ctypes.sizeof_object obj) in RANGE (l, Vset.range (Option.map f a_opt) (Option.map f b_opt)) (* -------------------------------------------------------------------------- *) (* --- Validity --- *) (* -------------------------------------------------------------------------- *) (** [vset_from_validity base] returns the logical set of all valid bytes of [base]. **) let vset_from_validity = function | Base.Empty -> Vset.empty | Base.Invalid -> Vset.singleton F.e_zero | Base.Known (min_valid, max_valid) | Base.Unknown (min_valid, Some max_valid, _) -> (* valid between min_valid .. max_valid inclusive *) let mn = F.e_bigint Integer.(e_div min_valid eight) in let mx = F.e_bigint Integer.(e_div max_valid eight) in Vset.range (Some mn) (Some mx) | Base.Variable { Base.min_alloc = min_valid } -> (* valid between 0 .. min_valid inclusive *) let mn_valid = F.e_bigint Integer.(e_div min_valid eight) in Vset.range (Some F.e_zero) (Some mn_valid) | Base.Unknown (_, None, _) -> Vset.empty let valid_range : sigma -> acs -> range -> pred = fun _ acs r -> let for_writing = match acs with RW -> true | RD -> false | OBJ -> true (* TODO: *) in let l, base_offset = match r with | LOC (l, n) -> let a = a_offset l.loc_t in let b = F.e_add a (F.e_sub n F.e_one) in l, Vset.range (Some a) (Some b) | RANGE (l, r) -> l, Vset.lift_add (Vset.singleton l.loc_t) r in let valid_base set base = if for_writing && (Base.is_read_only base) then F.p_false else let base_vset = vset_from_validity (Base.validity base) in Vset.subset set base_vset in fold_ite_pred (valid_base base_offset) l (** [valid sigma acs seg] returns the formula that tests if a given memory segment [seg] (in bytes) is valid (according to [acs]) at memory state [sigma]. **) let valid : sigma -> acs -> segment -> pred = fun s acs seg -> valid_range s acs (range_of_rloc seg) let invalid = fun _ _ -> F.p_true (* TODO *) (* -------------------------------------------------------------------------- *) (* --- Scope --- *) (* -------------------------------------------------------------------------- *) let alloc_sigma : sigma -> varinfo list -> sigma = fun sigma xs -> let alloc sigma x = let havoc s c = Sigma.havoc_chunk s (M_base c) in let v = V.cvar x in List.fold_left havoc sigma (V.domain v) in List.fold_left alloc sigma xs let alloc_pred _ _ _ = [] let alloc sigma xs = if xs = [] then sigma else alloc_sigma sigma xs let scope : sigma sequence -> scope -> varinfo list -> pred list = fun seq scope xs -> match scope with | Enter -> [] | Leave -> alloc_pred seq xs () let scope seq sc xs = let preds = scope seq sc xs in debug "[scope pre:%a post:%a xs:%a] -> preds:%a" Sigma.pretty seq.pre Sigma.pretty seq.post (Pretty_utils.pp_iter ~sep:" " List.iter Varinfo.pretty) xs (Pretty_utils.pp_iter ~sep:" " List.iter pp_pred) preds; preds let global : sigma -> term (*addr*) -> pred = fun _ _ -> F.p_true (* True is harmless and WP never call this function... *) (* -------------------------------------------------------------------------- *) (* --- Separation --- *) (* -------------------------------------------------------------------------- *) let range_to_base_offset = function | LOC (l, n) -> let a = a_offset l.loc_t in let b = F.e_add a n in l, Vset.range (Some a) (Some b) | RANGE (l, r) -> l, Vset.lift_add (Vset.singleton l.loc_t) r let included : segment -> segment -> pred = fun s1 s2 -> (* (b1 = b2) -> (r1 \in r2) *) let l1, vs1 = range_to_base_offset (range_of_rloc s1) in let l2, vs2 = range_to_base_offset (range_of_rloc s2) in p_and (p_equal (a_base l1.loc_t) (a_base l2.loc_t)) (Vset.subset vs1 vs2) let separated : segment -> segment -> pred = fun s1 s2 -> (* (b1 = b2) -> (r1 \cap r2) = \empty *) let l1, vs1 = range_to_base_offset (range_of_rloc s1) in let l2, vs2 = range_to_base_offset (range_of_rloc s2) in p_and (p_equal (a_base l1.loc_t) (a_base l2.loc_t)) (Vset.disjoint vs1 vs2) let initialized _sigma _l = F.p_true (* todo *) let is_well_formed _ = F.p_true (* todo *) let base_offset _loc = assert false (* TODO *) type domain = Sigma.domain let no_binder = { bind = fun _ f v -> f v } let configure_ia _ = no_binder (* todo *) let hypotheses x = x (* todo *) let frame _sigma = [] (* todo *) end (* -------------------------------------------------------------------------- *) (* --- EVA Instance --- *) (* -------------------------------------------------------------------------- *) module Eva = struct open Cvalue let datatype = "Eva" let configure () = if not (Wp_eva.is_computed ()) then Wp_parameters.abort ~current:true "Could not use Eva memory model without a previous run of the analysis."; (fun () -> ()) module State = struct type t = Model.t let bottom = Model.bottom let join = Model.join let of_kinstr k = Wp_eva.get_cvalue_state k let of_stmt s = Wp_eva.get_cvalue_state (Kstmt s) let of_kf kf = let state = ref bottom in let vis = object inherit Cil.nopCilVisitor method !vstmt stmt = state := join (of_stmt stmt) !state; Cil.DoChildren end in ignore (Cil.visitCilFunction vis (Kernel_function.get_definition kf)); !state let pretty = Model.pretty end type t = V.t type state = Model.t let null = V.inject Base.null Ival.zero let literal ~eid cstr = let b = Base.of_string_exp (Cstring.str_cil ~eid cstr) in Base.id b, V.inject b Ival.zero let cvar x = V.inject (Base.of_varinfo x) Ival.zero let field v fd = let bsize = Ctypes.field_offset fd |> Integer.of_int in let offs = Ival.inject_singleton bsize in Cvalue.V.shift offs v let shift v obj t = let bsize = 8 * Ctypes.sizeof_object obj |> Integer.of_int in let offs = match F.repr t with | Logic.Kint z -> Ival.inject_singleton (Integer.mul bsize z) | _ -> Ival.top in Cvalue.V.shift offs v let base_addr v = Cvalue.V.fold_topset_ok (fun b _ v -> Cvalue.V.add b Ival.zero v) v (Cvalue.V.bottom) let load state v obj = let bsize = 8 * Ctypes.sizeof_object obj in let bits = Locations.loc_bytes_to_loc_bits v in let int_base = bsize |> Integer.of_int |> Int_Base.inject in let vloc = Locations.make_loc bits int_base in Cvalue.Model.find state vloc let domain v = Cvalue.V.fold_topset_ok (fun b _ acc -> b :: acc) v [] let logic_ival ival = fun x -> (* assert (not (Ival.is_float ival)); (* by integer offsets *) *) match Ival.project_small_set ival with | Some is -> F.p_any (fun i -> F.p_equal x (F.e_bigint i)) is | None -> begin match Ival.min_and_max ival with | Some mn, Some mx -> F.p_and (F.p_leq (F.e_bigint mn) x) (F.p_leq x (F.e_bigint mx)) | Some mn, None -> F.p_leq (F.e_bigint mn) x | None, Some mx -> F.p_leq x (F.e_bigint mx) | None, None -> F.p_true end let offset v = fun x -> let ivals = Cvalue.V.fold_topset_ok (fun _ ival acc -> ival :: acc) v [] in F.p_any (fun ival -> logic_ival ival x) ivals let pretty = Cvalue.V.pretty end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>