package frama-c
Platform dedicated to the analysis of source code written in C
Install
Dune Dependency
Authors
-
MMichele Alberti
-
TThibaud Antignac
-
GGergö Barany
-
PPatrick Baudin
-
NNicolas Bellec
-
TThibaut Benjamin
-
AAllan Blanchard
-
LLionel Blatter
-
FFrançois Bobot
-
RRichard Bonichon
-
VVincent Botbol
-
QQuentin Bouillaguet
-
DDavid Bühler
-
ZZakaria Chihani
-
LLoïc Correnson
-
JJulien Crétin
-
PPascal Cuoq
-
ZZaynah Dargaye
-
BBasile Desloges
-
JJean-Christophe Filliâtre
-
PPhilippe Herrmann
-
MMaxime Jacquemin
-
FFlorent Kirchner
-
AAlexander Kogtenkov
-
RRemi Lazarini
-
TTristan Le Gall
-
JJean-Christophe Léchenet
-
MMatthieu Lemerre
-
DDara Ly
-
DDavid Maison
-
CClaude Marché
-
AAndré Maroneze
-
TThibault Martin
-
FFonenantsoa Maurica
-
MMelody Méaulle
-
BBenjamin Monate
-
YYannick Moy
-
PPierre Nigron
-
AAnne Pacalet
-
VValentin Perrelle
-
GGuillaume Petiot
-
DDario Pinto
-
VVirgile Prevosto
-
AArmand Puccetti
-
FFélix Ridoux
-
VVirgile Robles
-
JJan Rochel
-
MMuriel Roger
-
JJulien Signoles
-
NNicolas Stouls
-
KKostyantyn Vorobyov
-
BBoris Yakobowski
Maintainers
Sources
frama-c-29.0-Copper.tar.gz
sha256=d2fbb3b8d0ff83945872e9e6fa258e934a706360e698dae3b4d5f971addf7493
doc/src/frama-c-wp.core/Lang.ml.html
Source file Lang.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
(**************************************************************************) (* *) (* This file is part of WP plug-in of Frama-C. *) (* *) (* Copyright (C) 2007-2024 *) (* CEA (Commissariat a l'energie atomique et aux energies *) (* alternatives) *) (* *) (* you can redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation, version 2.1. *) (* *) (* It is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* See the GNU Lesser General Public License version 2.1 *) (* for more details (enclosed in the file licenses/LGPLv2.1). *) (* *) (**************************************************************************) (* -------------------------------------------------------------------------- *) (* --- Logical Language --- *) (* -------------------------------------------------------------------------- *) open Cil_types open Cil_datatype open Ctypes open Qed open Qed.Logic let dkey_pretty = Wp_parameters.register_category "pretty" (* -------------------------------------------------------------------------- *) let basename def name = let rec lookup def s k n = if k < n then let c = s.[k] in if ('a' <= c && c <= 'z') || ('A' <= c && c <= 'Z') then String.sub s k 1 else lookup def s (succ k) n else def in lookup def name 0 (String.length name) (* -------------------------------------------------------------------------- *) (* Naming Prefixes Names starting with a lower-case character belong to logic language or external model(s). 'pointer' Pointer type 'Lit_<hex>' String Literal Values 'Str_<eid>' String Literal Pointers 'S_<s>' Structure <s> 'U_<u>' Union <u> 'F_<c>_<f>' Field <f> in compound <c> 'A_<t>' ACSL Logic type <t> 'C_<c>' ACSL Constructor <c> 'P_<p>' ACSL Predicate <p> (see LogicUsage.get_name) 'L_<f>' ACSL Logic function <f> (see LogicUsage.get_name) 'FixP_<p>' ACSL Recursive Predicate <p> (see LogicUsage.get_name) 'FixL_<f>' ACSL Recursive Logic function <f> (see LogicUsage.get_name) 'Q_<l>' ACSL Lemma or Axiom 'S_<n>' Set comprehension predicate 'Is<phi>' Typing predicate for type <phi> 'Null<phi>' Null value for type <phi> *) let avoid_leading_backlash s = if s.[0]='\\' then let s = Bytes.of_string s in Bytes.set s 0 '_'; Bytes.to_string s else s let comp_id c = let prefix = if c.cstruct then 'S' else 'U' in if c.corig_name = "" then Printf.sprintf "%c%d" prefix c.ckey else Printf.sprintf "%c%d_%s" prefix c.ckey c.corig_name let field_id f = let c = f.fcomp in if c.corig_name = "" then Printf.sprintf "F%d_%s" c.ckey f.fname else Printf.sprintf "F%d_%s_%s" c.ckey c.corig_name f.fname let init_id (f: 'a -> string) (x: 'a) = "Init_" ^ (f x) let comp_init_id = init_id comp_id let field_init_id = init_id field_id let type_id l = Printf.sprintf "A_%s" l.lt_name let logic_id f = let name = avoid_leading_backlash (LogicUsage.get_name f) in if f.l_type = None then Printf.sprintf "P_%s" name else Printf.sprintf "L_%s" name let ctor_id c = Printf.sprintf "C_%s" (avoid_leading_backlash c.ctor_name) let lemma_id l = Printf.sprintf "Q_%s" (avoid_leading_backlash l) (* -------------------------------------------------------------------------- *) type library = string type datakind = KValue | KInit type adt = | Mtype of mdt (* Model type *) | Mrecord of mdt * fields (* Model record-type *) | Atype of logic_type_info (* Logic Type *) | Comp of compinfo * datakind (* C-code struct or union *) (** name to print to the provers *) and mdt = string extern and 'a extern = { ext_id : int; ext_link : 'a ; ext_library : library; (** a library which it depends on *) ext_debug : string; (** just for printing during debugging *) } and fields = { mutable fields : field list } and field = | Mfield of mdt * fields * string * tau | Cfield of fieldinfo * datakind and tau = (field,adt) Logic.datatype let pointer = Context.create "Lang.pointer" let floats = Context.create "Lang.floats" let new_extern_id = ref (-1) let new_extern ~debug ~library ~link = incr new_extern_id; {ext_id = !new_extern_id; ext_library = library; ext_debug = debug; ext_link = link} let ext_compare a b = Datatype.Int.compare a.ext_id b.ext_id (* -------------------------------------------------------------------------- *) (* --- Sorting & Typing --- *) (* -------------------------------------------------------------------------- *) let sort_of_object = function | C_int _ -> Logic.Sint | C_pointer _ | C_comp _ | C_array _ -> Logic.Sdata | C_float f -> Qed.Kind.of_tau (Context.get floats f) let init_sort_of_object = function | C_int _ | C_float _ | C_pointer _ -> Logic.Sbool | C_comp _ | C_array _ -> Logic.Sdata let sort_of_ctype t = sort_of_object (Ctypes.object_of t) let sort_of_ltype t = match Logic_utils.unroll_type ~unroll_typedef:false t with | Ctype typ -> sort_of_ctype typ | Ltype _ | Lvar _ | Larrow _ -> Logic.Sdata | Linteger -> Logic.Sint | Lreal -> Logic.Sreal let t_int = Logic.Int let t_bool = Logic.Bool let t_real = Logic.Real let t_prop = Logic.Prop let t_addr () = Context.get pointer let t_float f = Context.get floats f let t_comp c = Logic.Data(Comp (c, KValue),[]) let t_init c = Logic.Data(Comp (c, KInit), []) let t_array a = Logic.Array(Logic.Int,a) let t_farray a b = Logic.Array(a,b) let t_datatype adt ts = Logic.Data(adt,ts) let rec t_matrix a n = if n > 0 then t_matrix (t_array a) (pred n) else a let rec tau_of_object = function | C_int _ -> Logic.Int | C_float f -> t_float f | C_pointer _ -> Context.get pointer | C_comp c -> t_comp c | C_array { arr_element = typ } -> t_array (tau_of_ctype typ) and tau_of_ctype typ = tau_of_object (Ctypes.object_of typ) let poly = Context.create "Wp.Lang.poly" let rec init_of_object = function | C_int _ | C_float _ | C_pointer _ -> Logic.Bool | C_comp c -> t_init c | C_array { arr_element = typ } -> t_array (init_of_ctype typ) and init_of_ctype typ = init_of_object (Ctypes.object_of typ) let rec varpoly k x = function | [] -> Warning.error "Unbound type parameter <%s>" x | y::ys -> if x = y then k else varpoly (succ k) x ys type t_builtin = E_mdt of mdt | E_poly of (tau list -> tau) let builtin_types = Context.create "Wp.Lang.builtin_types" let find_builtin name = Context.get builtin_types name let adt lt = try match find_builtin lt.lt_name with | E_mdt m -> Mtype m | E_poly _ -> assert false with Not_found -> Atype lt let atype lt ts = try match find_builtin lt.lt_name with | E_mdt m -> Logic.Data(Mtype m,ts) | E_poly ftau -> ftau ts with Not_found -> Logic.Data(Atype lt,ts) let rec tau_of_ltype t = match Logic_utils.unroll_type ~unroll_typedef:false t with | Linteger -> Logic.Int | Lreal -> Logic.Real | Ctype typ -> tau_of_ctype typ | Lvar x -> Logic.Tvar (varpoly 1 x (Context.get poly)) | Larrow _ -> Warning.error "array type non-supported(%a)" Printer.pp_logic_type t | Ltype _ as b when Logic_const.is_boolean_type b -> Logic.Bool | Ltype(lt,lts) -> atype lt (List.map tau_of_ltype lts) let tau_of_return = function None -> Logic.Prop | Some t -> tau_of_ltype t (* -------------------------------------------------------------------------- *) (* --- Datatypes --- *) (* -------------------------------------------------------------------------- *) module ADT = struct type t = adt let basename = function | Mtype a -> basename "M" a.ext_link | Mrecord(r,_) -> basename "R" r.ext_link | Comp (c,KValue) -> basename (if c.cstruct then "S" else "U") c.corig_name | Comp (c,KInit) -> basename (if c.cstruct then "IS" else "IU") c.corig_name | Atype lt -> basename "A" lt.lt_name let debug = function | Mtype a -> a.ext_debug | Mrecord(a,_) -> a.ext_debug | Comp (c, KValue) -> comp_id c | Comp (c, KInit) -> comp_init_id c | Atype lt -> type_id lt let hash = function | Mtype a | Mrecord(a,_) -> FCHashtbl.hash a | Comp (c, KValue) -> Compinfo.hash c | Comp (c, KInit) -> 13 * Compinfo.hash c | Atype lt -> Logic_type_info.hash lt let compare a b = if a==b then 0 else match a,b with | Mtype a , Mtype b -> ext_compare a b | Mtype _ , _ -> (-1) | _ , Mtype _ -> 1 | Mrecord(a,_) , Mrecord(b,_) -> ext_compare a b | Mrecord _ , _ -> (-1) | _ , Mrecord _ -> 1 | Comp (a, KValue) , Comp (b, KValue) | Comp (a, KInit) , Comp (b, KInit) -> Compinfo.compare a b | Comp (_, KValue) , Comp (_, KInit) -> (-1) | Comp (_, KInit) , Comp (_, KValue) -> 1 | Comp _ , _ -> (-1) | _ , Comp _ -> 1 | Atype a , Atype b -> Logic_type_info.compare a b let equal a b = (compare a b = 0) let pretty fmt a = Format.pp_print_string fmt (debug a) end (* -------------------------------------------------------------------------- *) (* --- Datatypes --- *) (* -------------------------------------------------------------------------- *) let get_builtin_type ~name = match find_builtin name with | E_mdt m -> Mtype m | E_poly _ -> assert false let mem_builtin_type ~name = try ignore (find_builtin name) ; true with Not_found -> false let is_builtin lt = mem_builtin_type ~name:lt.lt_name let is_builtin_type ~name = function | Data(Mtype m,_) -> begin try match find_builtin name with | E_mdt m0 -> m == m0 | _ -> false with Not_found -> false end | _ -> false let datatype ~library name = let m = new_extern ~link:name ~library ~debug:name in Mtype m let field_observers = ref [] let field_observe fd = List.iter (fun k -> k fd) !field_observers ; fd let on_field f = field_observers := f :: !field_observers let cfield ?(kind=KValue) fd = field_observe @@ Cfield(fd,kind) let record ~link ~library fts = let m = new_extern ~link ~library ~debug:link in let r = { fields = [] } in let fs = List.map (fun (f,t) -> field_observe @@ Mfield(m,r,f,t)) fts in r.fields <- fs ; Mrecord(m,r) let field t f = match t with | Mrecord(_,r) -> begin try List.find (function Mfield(_,_,g,_) -> f = g | _ -> false) r.fields with Not_found -> Wp_parameters.fatal "No field <%s> in record" f end | _ -> Wp_parameters.fatal "No field <%s> in type '%a'" f ADT.pretty t let comp c = Comp (c, KValue) let comp_init c = Comp (c, KInit) let fields_of_adt = function | Mrecord(_,r) -> r.fields | Comp (c, k) -> List.map (fun f -> Cfield (f, k)) (Option.value ~default:[] c.cfields) | _ -> [] let fields_of_tau = function | Record fts -> List.map fst fts | Data(adt,_) -> fields_of_adt adt | _ -> [] let fields_of_field = function | Mfield(_,r,_,_) -> r.fields | Cfield(f, k) -> List.map (fun f -> Cfield (f, k)) (Option.value ~default:[] f.fcomp.cfields) let tau_of_field = function | Mfield(_,_,_,t) -> t | Cfield(f, KValue) -> tau_of_ctype f.ftype | Cfield(f, KInit) -> init_of_ctype f.ftype let tau_of_record = function | Mfield(mdt,fs,_,_) -> Logic.Data(Mrecord(mdt,fs),[]) | Cfield(f, KValue) -> t_comp f.fcomp | Cfield(f, KInit) -> t_init f.fcomp module Field = struct type t = field let debug = function | Mfield(_,_,f,_) -> f | Cfield(f, KValue) -> field_id f | Cfield(f, KInit) -> field_init_id f let hash = function | Mfield(_,_,f,_) -> FCHashtbl.hash f | Cfield(f, KValue) -> Fieldinfo.hash f | Cfield(f, KInit) -> 13 * Fieldinfo.hash f let compare f g = if f==g then 0 else match f , g with | Mfield(_,_,f,_) , Mfield(_,_,g,_) -> String.compare f g | Mfield _ , Cfield _ -> (-1) | Cfield _ , Mfield _ -> 1 | Cfield(f, KValue) , Cfield(g, KValue) | Cfield(f, KInit) , Cfield(g, KInit) -> Fieldinfo.compare f g | Cfield(_, KInit), Cfield(_, KValue) -> (-1) | Cfield(_, KValue), Cfield(_, KInit) -> 1 let equal f g = (compare f g = 0) let pretty fmt f = Format.pp_print_string fmt (debug f) let sort = function | Mfield(_,_,_,s) -> Qed.Kind.of_tau s | Cfield(f, KValue) -> sort_of_object (Ctypes.object_of f.ftype) | Cfield(f, KInit) -> init_sort_of_object (Ctypes.object_of f.ftype) end (* -------------------------------------------------------------------------- *) (* --- Functions & Predicates --- *) (* -------------------------------------------------------------------------- *) type lfun = | ACSL of Cil_types.logic_info (** Registered in Definition.t, only *) | CTOR of Cil_types.logic_ctor_info (** Not registered in Definition.t, directly converted/printed *) | FUN of lsymbol (** Generated or External function *) and lsymbol = { m_category : lfun category ; m_params : sort list ; m_result : sort ; m_typeof : tau option list -> tau ; m_source : source ; m_coloring : bool ; } and source = | Generated of WpContext.context option * string | Extern of Engine.link extern let lfun_observers = ref [] let lfun_observe lf = List.iter (fun k -> k lf) !lfun_observers ; lf let on_lfun f = lfun_observers := f :: !lfun_observers let acsl lf = lfun_observe (ACSL lf) let ctor cf = lfun_observe (CTOR cf) let lsymbol m = lfun_observe (FUN m) let tau_of_lfun phi ts = match phi with | ACSL f -> tau_of_return f.l_type | CTOR c -> if c.ctor_type.lt_params = [] then Logic.Data(Atype c.ctor_type,[]) else raise Not_found | FUN m -> match m.m_result with | Sint -> Int | Sreal -> Real | Sbool -> Bool | _ -> m.m_typeof ts let is_coloring_lfun = function | ACSL _ | CTOR _ -> false | FUN { m_coloring } -> m_coloring type balance = Nary | Left | Right let not_found _ = raise Not_found let generated ?(context=false) name = let ctxt = if context then Some (WpContext.get_context ()) else None in Generated(ctxt,name) let symbolf ?library ?context ?link ?(balance=Nary) (* specify a default for link *) ?(category=Logic.Function) ?(params=[]) ?(sort=Logic.Sdata) ?(result:tau option) ?(coloring=false) ?(typecheck:(tau option list -> tau) option) name = let buffer = Buffer.create 80 in Format.kfprintf (fun fmt -> Format.pp_print_flush fmt () ; let name = Buffer.contents buffer in let source = match library with | None -> assert (link = None); generated ?context name | Some th -> let conv n = function | Nary -> Engine.F_call n | Left -> Engine.F_left n | Right -> Engine.F_right n in let link = match link with | None -> conv name balance | Some info -> info in Extern (new_extern ~library:th ~link ~debug:name) in let typeof = match typecheck with Some phi -> phi | None -> match result with Some t -> fun _ -> t | None -> not_found in let result = match result with Some t -> Kind.of_tau t | None -> sort in lsymbol { m_category = category ; m_params = params ; m_result = result ; m_typeof = typeof ; m_source = source ; m_coloring = coloring ; } ) (Format.formatter_of_buffer buffer) name let extern_s ~library ?link ?category ?params ?sort ?result ?coloring ?typecheck name = symbolf ~library ?category ?params ?sort ?result ?coloring ?typecheck ?link "%s" name let extern_f ~library ?link ?balance ?category ?params ?sort ?result ?coloring ?typecheck name = symbolf ~library ?category ?params ?link ?balance ?sort ?result ?coloring ?typecheck name let extern_p ~library ?bool ?prop ?link ?(params=[]) ?(coloring=false) () = let link = match bool,prop,link with | Some b , Some p , None -> Engine.F_bool_prop(b,p) | _ , _ , Some info -> info | _ , _ , _ -> assert false in let debug = Export.debug link in lsymbol { m_category = Logic.Function; m_params = params ; m_result = Logic.Sprop; m_typeof = not_found; m_source = Extern (new_extern ~library ~link ~debug) ; m_coloring = coloring ; } let extern_fp ~library ?(params=[]) ?link ?(coloring=false) phi = let link = match link with | None -> Engine.F_call phi | Some link -> Engine.F_call link in lsymbol { m_category = Logic.Function ; m_params = params ; m_result = Logic.Sprop; m_typeof = not_found; m_source = Extern (new_extern ~library ~link ~debug:phi) ; m_coloring = coloring ; } let generated_f ?context ?category ?params ?sort ?result ?coloring name = symbolf ?context ?category ?params ?sort ?result ?coloring name let generated_p ?context ?(coloring=false) name = lsymbol { m_category = Logic.Function ; m_params = [] ; m_result = Logic.Sprop; m_typeof = not_found; m_source = generated ?context name ; m_coloring = coloring ; } let extern_t name ~link ~library = new_extern ~link ~library ~debug:name module Fun = struct type t = lfun let debug = function | ACSL f -> logic_id f | CTOR c -> ctor_id c | FUN({m_source=Generated(_,n)}) -> n | FUN({m_source=Extern e}) -> e.ext_debug let hash = function | ACSL f -> Logic_info.hash f | CTOR c -> Logic_ctor_info.hash c | FUN({m_source=Generated(_,n)}) -> Datatype.String.hash n | FUN({m_source=Extern e}) -> e.ext_id let compare_context c1 c2 = match c1 , c2 with | None , None -> 0 | None , _ -> (-1) | _ , None -> 1 | Some c1 , Some c2 -> WpContext.S.compare c1 c2 let compare_source s1 s2 = match s1 , s2 with | Generated(m1,f1), Generated(m2,f2) -> let cmp = String.compare f1 f2 in if cmp<>0 then cmp else compare_context m1 m2 | Extern f , Extern g -> ext_compare f g | Generated _ , Extern _ -> (-1) | Extern _ , Generated _ -> 1 let compare f g = if f==g then 0 else match f , g with | FUN {m_source=mf} , FUN {m_source=mg} -> compare_source mf mg | FUN _ , _ -> (-1) | _ , FUN _ -> 1 | ACSL f , ACSL g -> Logic_info.compare f g | ACSL _ , _ -> (-1) | _ , ACSL _ -> 1 | CTOR c , CTOR d -> Logic_ctor_info.compare c d let equal f g = (compare f g = 0) let pretty fmt f = Format.pp_print_string fmt (debug f) let category = function | FUN m -> m.m_category | ACSL _ -> Logic.Function | CTOR _ -> Logic.Constructor let sort = function | FUN m -> m.m_result | ACSL { l_type=None } -> Logic.Sprop | ACSL { l_type=Some t } -> sort_of_ltype t | CTOR _ -> Logic.Sdata let parameters = ref (fun _ -> []) let params = function | FUN m -> m.m_params | CTOR ct -> List.map sort_of_ltype ct.ctor_params | (ACSL _) as f -> !parameters f end let parameters phi = Fun.parameters := phi class virtual idprinting = object(self) method virtual sanitize : string -> string method sanitize_type = self#sanitize method sanitize_field = self#sanitize method sanitize_fun = self#sanitize method datatype = function | Mtype a -> a.ext_link | Mrecord(a,_) -> a.ext_link | Comp(c, KValue) -> self#sanitize_type (comp_id c) | Comp(c, KInit) -> self#sanitize_type (comp_init_id c) | Atype lt -> self#sanitize_type (type_id lt) method field = function | Mfield(_,_,f,_) -> self#sanitize_field f | Cfield(f, KValue) -> self#sanitize_field (field_id f) | Cfield(f, KInit) -> self#sanitize_field (field_init_id f) method link = function | ACSL f -> Engine.F_call (self#sanitize_fun (logic_id f)) | CTOR c -> Engine.F_call (self#sanitize_fun (ctor_id c)) | FUN({m_source=Generated(_,n)}) -> Engine.F_call (self#sanitize_fun n) | FUN({m_source=Extern e}) -> e.ext_link end let name_of_lfun = function | ACSL f -> logic_id f | CTOR c -> ctor_id c | FUN({m_source=Generated(_,f)}) -> f | FUN({m_source=Extern e}) -> e.ext_debug let context_of_lfun = function | ACSL _ | CTOR _ | FUN({m_source=Extern _}) -> None | FUN({m_source=Generated(ctxt,_)}) -> ctxt let name_of_field = function | Mfield(_,_,f,_) -> f | Cfield(f, KValue) -> field_id f | Cfield(f, KInit) -> field_init_id f (* -------------------------------------------------------------------------- *) (* --- Terms --- *) (* -------------------------------------------------------------------------- *) module F = struct module QZERO = Qed.Term.Make(ADT)(Field)(Fun) (* -------------------------------------------------------------------------- *) (* --- Qed Projectified State --- *) (* -------------------------------------------------------------------------- *) module DATA = Datatype.Make (struct type t = QZERO.state let name = "Wp.Qed" let rehash = Datatype.identity let structural_descr = Structural_descr.t_unknown let reprs = [QZERO.get_state ()] let equal = Datatype.undefined let compare = Datatype.undefined let hash = Datatype.undefined let copy _old = QZERO.create () let pretty = Datatype.undefined let mem_project _ _ = false end) module STATE = State_builder.Register(DATA) (struct type t = QZERO.state let create = QZERO.create let clear = QZERO.clr_state let get = QZERO.get_state let set = QZERO.set_state let clear_some_projects _ _ = false end) (struct let name = "Wp.Qed" let dependencies = [Ast.self] let unique_name = name end) include (STATE : sig end) (* For OCaml-4.0 *) (* -------------------------------------------------------------------------- *) (* --- Term API --- *) (* -------------------------------------------------------------------------- *) module Pretty = Qed.Pretty.Make(QZERO) module QED = struct include QZERO let typeof ?(field=tau_of_field) ?(record=tau_of_record) ?(call=tau_of_lfun) e = QZERO.typeof ~field ~record ~call e end include QED (* Hide force parameter. *) let set_builtin f = QZERO.set_builtin f let set_builtin' f = QZERO.set_builtin' f let set_builtin_eq f = QZERO.set_builtin_eq f let set_builtin_leq f = QZERO.set_builtin_leq f let set_builtin_get f = QZERO.set_builtin_get f let set_builtin_field f = QZERO.set_builtin_field f (* -------------------------------------------------------------------------- *) (* --- Term Extensions --- *) (* -------------------------------------------------------------------------- *) type unop = term -> term type binop = term -> term -> term let e_zero = QED.constant (e_zint Z.zero) let e_one = QED.constant (e_zint Z.one) let e_minus_one = QED.constant (e_zint Z.minus_one) let e_minus_one_real = QED.constant (e_real Q.minus_one) let e_one_real = QED.constant (e_real Q.one) let e_zero_real = QED.constant (e_real Q.zero) let e_int64 z = e_zint (Z.of_string (Int64.to_string z)) let e_fact k e = e_times (Z.of_int k) e let e_bigint z = e_zint (Z.of_string (Integer.to_string z)) let e_range a b = e_sum [b;e_one;e_opp a] let e_setfield r f v = (*TODO:NUPW: check for UNIONS *) let r = List.map (fun g -> g,if Field.equal f g then v else e_getfield r g) (fields_of_field f) in e_record r (* -------------------------------------------------------------------------- *) (* --- Predicates --- *) (* -------------------------------------------------------------------------- *) type pred = term type cmp = term -> term -> pred type operator = pred -> pred -> pred let p_bool t = t let e_prop t = t let p_bools xs = xs let e_props xs = xs let e_lift f = f let p_lift f = f let is_zero e = match QED.repr e with | Kint z -> Integer.equal z Integer.zero | _ -> false let eqp = equal let comparep = compare let is_ptrue = is_true let is_pfalse = is_false let is_equal a b = is_true (e_eq a b) let is_int e = try typeof e = Qed.Logic.Int with Not_found -> false let is_real e = try typeof e = Qed.Logic.Real with Not_found -> false let is_prop e = try match typeof e with Qed.Logic.Prop | Qed.Logic.Bool -> true | _ -> false with Not_found -> false let is_arith e = try match typeof e with Qed.Logic.Int | Qed.Logic.Real -> true | _ -> false with Not_found -> false let p_equal = e_eq let p_equals = List.map (fun (x,y) -> p_equal x y) let p_neq = e_neq let p_leq = e_leq let p_lt = e_lt let p_positive e = e_leq e_zero e let p_true = e_true let p_false = e_false let p_not = e_not let p_bind = e_bind let p_forall = e_forall let p_exists = e_exists let p_subst = e_subst let p_subst_var = e_subst_var let p_and p q = e_and [p;q] let p_or p q = e_or [p;q] let p_imply h p = e_imply [h] p let p_hyps hs p = e_imply hs p let p_equiv = e_equiv let p_if = e_if let p_conj = e_and let p_disj = e_or let p_all f xs = e_and (List.map f xs) let p_any f xs = e_or (List.map f xs) let e_vars e = List.sort Var.compare (Vars.elements (vars e)) let p_vars = e_vars let p_call = e_fun ~result:Prop let p_close = e_close_forall let occurs x t = Vars.mem x (vars t) let intersect a b = Vars.intersect (vars a) (vars b) let occursp = occurs let intersectp = intersect let varsp = vars let p_expr = repr let e_expr = repr let pp_tau = Pretty.pp_tau let context_pp = Context.create "Lang.F.pp" let pp_term fmt e = if Wp_parameters.has_dkey dkey_pretty then QED.debug fmt e else match Context.get_opt context_pp with | Some env -> Pretty.pp_term_env env fmt e | None -> let env = Pretty.known Pretty.empty (QED.vars e) in Pretty.pp_term env fmt e let pp_pred = pp_term let pp_var fmt x = pp_term fmt (e_var x) let pp_vars fmt xs = begin Format.fprintf fmt "@[<hov 2>{" ; Vars.iter (fun x -> Format.fprintf fmt "@ %a" pp_var x) xs ; Format.fprintf fmt " }@]" ; end let debugp = QED.debug type env = Pretty.env let env xs = Pretty.known Pretty.empty xs let marker = Pretty.marks let mark_e = QED.mark let mark_p = QED.mark let define f env m = List.fold_left (fun env t -> let x,env_x = Pretty.fresh env t in f env x t ; env_x) env (QED.defs m) let pp_eterm = Pretty.pp_term let pp_epred = Pretty.pp_term module Pmap = Tmap module Pset = Tset let set_builtin_1 f r = set_builtin f (function [e] -> r e | _ -> raise Not_found) let set_builtin_2 f r = set_builtin f (function [a;b] -> r a b | _ -> raise Not_found) let set_builtin_2' f r = set_builtin' f (function [a;b] -> r a b | _ -> raise Not_found) let set_builtin_eqp = set_builtin_eq end open F module N = struct let ( + ) = e_add let ( ~-: ) x = e_sub e_zero x let ( - ) = e_sub let ( * ) = e_mul let ( / ) = e_div let ( mod ) = e_mod let ( = ) = p_equal let ( < ) = p_lt let ( > ) x y = p_lt y x let ( <= ) = p_leq let ( >= ) x y = p_leq y x let ( <> ) = p_neq let ( ==> ) = p_imply let ( &&: ) = p_and let ( ||: ) = p_or let not = p_not let ( $ ) = e_fun let ( $$ ) = p_call end (* -------------------------------------------------------------------------- *) (* --- Local Assumptions --- *) (* -------------------------------------------------------------------------- *) type gamma = { mutable hyps : pred list ; } let cpool = Context.create "Lang.pool" let cgamma = Context.create "Lang.gamma" let add_vars pool = function | None -> () | Some xs -> F.add_vars pool xs let new_pool ?copy ?(vars = Vars.empty) () = let pool = F.pool ?copy () in F.add_vars pool vars ; pool let new_gamma ?copy () = match copy with | None -> { hyps=[] } | Some g -> { hyps = g.hyps } let get_pool () = Context.get cpool let get_gamma () = Context.get cgamma let has_gamma () = Context.defined cgamma let freshvar ?basename tau = F.fresh (Context.get cpool) ?basename tau let freshen x = F.alpha (Context.get cpool) x let local ?pool ?vars ?gamma f = let pool = match pool with None -> F.pool () | Some p -> p in add_vars pool vars ; let gamma = match gamma with None -> { hyps=[] } | Some g -> g in Context.bind cpool pool (Context.bind cgamma gamma f) let sigma () = F.sigma ~pool:(Context.get cpool) () let alpha () = let sigma = sigma () in let alpha = ref Tmap.empty in let lookup e x = try Tmap.find e !alpha with Not_found -> let y = F.Subst.fresh sigma (F.tau_of_var x) in let ey = e_var y in alpha := Tmap.add e ey !alpha; ey in let compute e = match F.repr e with | Fvar x -> lookup e x | _ -> raise Not_found in F.Subst.add_fun sigma compute ; sigma let subst xs vs = let sigma = sigma () in begin try List.iter2 (fun x v -> F.Subst.add sigma (e_var x) v) xs vs with Invalid_argument _ -> raise (Invalid_argument "Wp.Lang.Subst.sigma") end ; sigma let e_subst f = let sigma = sigma () in F.Subst.add_fun sigma f ; F.e_subst sigma let p_subst f = let sigma = sigma () in F.Subst.add_fun sigma f ; F.p_subst sigma (* -------------------------------------------------------------------------- *) (* --- Hypotheses --- *) (* -------------------------------------------------------------------------- *) let masked = ref false let without_assume job x = if !masked then job x else try masked := true ; let y = job x in masked := false ; y with err -> masked := false ; raise err let assume p = if p != p_true && not !masked then let d = Context.get cgamma in d.hyps <- p :: d.hyps let hypotheses g = g.hyps let get_hypotheses () = (Context.get cgamma).hyps let filter_hypotheses xs = let d = Context.get cgamma in let vars = List.fold_right Vars.add xs Vars.empty in let matches p = Vars.intersect vars (varsp p) in let hs_with_vars , hs_without_vars = List.partition matches d.hyps in d.hyps <- hs_without_vars ; hs_with_vars (** For why3_api but circular dependency *) module For_export = struct type specific_equality = { for_tau:(tau -> bool); mk_new_eq:F.binop; } (** delay the create at most as possible (due to constants handling in qed) *) let state = ref None let init = ref (fun () -> ()) let add_init f = let old = !init in init := (fun () -> old (); f ()) let get_state () = match !state with | None -> let st = QZERO.create () in QZERO.in_state st !init (); state := Some st; st | Some st -> st let rebuild ?cache t = QZERO.rebuild_in_state (get_state ()) ?cache t let set_builtin f c = add_init (fun () -> QZERO.set_builtin ~force:true f c) let set_builtin' f c = add_init (fun () -> QZERO.set_builtin' ~force:true f c) let set_builtin_eq f c = add_init (fun () -> QZERO.set_builtin_eq ~force:true f c) let set_builtin_leq f c = add_init (fun () -> QZERO.set_builtin_leq ~force:true f c) let in_state f v = QZERO.in_state (get_state ()) f v end (* -------------------------------------------------------------------------- *) (* --- Simplifier --- *) (* -------------------------------------------------------------------------- *) exception Contradiction class type simplifier = object method name : string method copy : simplifier method assume : F.pred -> unit method target : F.pred -> unit method fixpoint : unit method infer : F.pred list method equivalent_exp : F.term -> F.term method weaker_hyp : F.pred -> F.pred method equivalent_branch : F.pred -> F.pred method stronger_goal : F.pred -> F.pred end let is_atomic_pred = function | Neq _ | Eq _ | Leq _ | Lt _ | Fun _ -> true | _ -> false let is_literal p = match repr p with | Not p -> is_atomic_pred (repr p) | _ -> is_atomic_pred (repr p) let iter_consequence_literals f_literal p = let f_literal = (fun p -> if QED.lc_closed p then f_literal p else ()) in let rec aux_pos p = match repr p with | And ps -> List.iter aux_pos ps | Not p -> aux_neg p | Bind((Forall|Exists),_,a) -> aux_pos (QED.lc_repr a) | rep when is_atomic_pred rep -> f_literal p | _ -> () and aux_neg p = match repr p with | Imply (hs,p) -> List.iter aux_pos hs ; aux_neg p | Or ps -> List.iter aux_neg ps | Not p -> aux_pos p | Bind((Forall|Exists),_,a) -> aux_neg (QED.lc_repr a) | rep when is_atomic_pred rep -> f_literal (e_not p) | _ -> () in aux_pos p (* -------------------------------------------------------------------------- *)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>