package frama-c
Platform dedicated to the analysis of source code written in C
Install
Dune Dependency
Authors
-
MMichele Alberti
-
TThibaud Antignac
-
GGergö Barany
-
PPatrick Baudin
-
NNicolas Bellec
-
TThibaut Benjamin
-
AAllan Blanchard
-
LLionel Blatter
-
FFrançois Bobot
-
RRichard Bonichon
-
VVincent Botbol
-
QQuentin Bouillaguet
-
DDavid Bühler
-
ZZakaria Chihani
-
LLoïc Correnson
-
JJulien Crétin
-
PPascal Cuoq
-
ZZaynah Dargaye
-
BBasile Desloges
-
JJean-Christophe Filliâtre
-
PPhilippe Herrmann
-
MMaxime Jacquemin
-
FFlorent Kirchner
-
AAlexander Kogtenkov
-
RRemi Lazarini
-
TTristan Le Gall
-
JJean-Christophe Léchenet
-
MMatthieu Lemerre
-
DDara Ly
-
DDavid Maison
-
CClaude Marché
-
AAndré Maroneze
-
TThibault Martin
-
FFonenantsoa Maurica
-
MMelody Méaulle
-
BBenjamin Monate
-
YYannick Moy
-
PPierre Nigron
-
AAnne Pacalet
-
VValentin Perrelle
-
GGuillaume Petiot
-
DDario Pinto
-
VVirgile Prevosto
-
AArmand Puccetti
-
FFélix Ridoux
-
VVirgile Robles
-
JJan Rochel
-
MMuriel Roger
-
JJulien Signoles
-
NNicolas Stouls
-
KKostyantyn Vorobyov
-
BBoris Yakobowski
Maintainers
Sources
frama-c-29.0-Copper.tar.gz
sha256=d2fbb3b8d0ff83945872e9e6fa258e934a706360e698dae3b4d5f971addf7493
doc/src/frama-c-wp.core/Sigs.ml.html
Source file Sigs.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
(**************************************************************************) (* *) (* This file is part of WP plug-in of Frama-C. *) (* *) (* Copyright (C) 2007-2024 *) (* CEA (Commissariat a l'energie atomique et aux energies *) (* alternatives) *) (* *) (* you can redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation, version 2.1. *) (* *) (* It is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* See the GNU Lesser General Public License version 2.1 *) (* for more details (enclosed in the file licenses/LGPLv2.1). *) (* *) (**************************************************************************) (* -------------------------------------------------------------------------- *) (** Common Types and Signatures *) (* -------------------------------------------------------------------------- *) open Cil_types open Ctypes open Lang open Lang.F open Interpreted_automata (* -------------------------------------------------------------------------- *) (** {1 General Definitions} *) (* -------------------------------------------------------------------------- *) type 'a sequence = { pre : 'a ; post : 'a } type 'a binder = { bind: 'b 'c. 'a -> ('b -> 'c) -> 'b -> 'c } (** Oriented equality or arbitrary relation *) type equation = | Set of term * term (** [Set(a,b)] is [a := b]. *) | Assert of pred (** Access conditions *) type acs = | RW (** Read-Write Access *) | RD (** Read-Only Access *) | OBJ (** Valid Object Pointer *) (** Abstract location or concrete value *) type 'a value = | Val of term | Loc of 'a (** Contiguous set of locations *) type 'a rloc = | Rloc of c_object * 'a | Rrange of 'a * c_object * term option * term option (** Structured set of locations *) type 'a sloc = | Sloc of 'a | Sarray of 'a * c_object * int (** full sized range (optimized assigns) *) | Srange of 'a * c_object * term option * term option | Sdescr of var list * 'a * pred (** Typed set of locations *) type 'a region = (c_object * 'a sloc) list (** Logical values, locations, or sets of *) type 'a logic = | Vexp of term | Vloc of 'a | Vset of Vset.set | Lset of 'a sloc list (** Scope management for locals and formals *) type scope = Enter | Leave (** Container for the returned value of a function *) type 'a result = | R_loc of 'a | R_var of var (** Polarity of predicate compilation *) type polarity = [ `Positive | `Negative | `NoPolarity ] (** Frame Conditions. Consider a function [phi(m)] over memory [m], we want memories [m1,m2] and condition [p] such that [p(m1,m2) -> phi(m1) = phi(m2)]. - [name] used for generating lemma - [triggers] for the lemma - [conditions] for the frame lemma to hold - [mem1,mem2] to two memories for which the lemma holds *) type frame = string * Definitions.trigger list * pred list * term * term (* -------------------------------------------------------------------------- *) (** {1 Reversing Models} It is sometimes possible to reverse memory models abstractions into ACSL left-values via the definitions below. *) (* -------------------------------------------------------------------------- *) (** Reversed ACSL left-value *) type s_lval = s_host * s_offset list and s_host = | Mvar of varinfo (** Variable *) | Mmem of term (** Pointed value *) | Mval of s_lval (** Pointed value of another abstract left-value *) and s_offset = Mfield of fieldinfo | Mindex of term (** Reversed abstract value *) type mval = | Mterm (** Not a state-related value *) | Maddr of s_lval (** The value is the address of an l-value in current memory *) | Mlval of s_lval * datakind (** The value is the value of an l-value in current memory *) | Mchunk of string * datakind (** The value is an abstract memory chunk (description) *) (** Reversed update *) type update = Mstore of s_lval * term (** An update of the ACSL left-value with the given value *) (* -------------------------------------------------------------------------- *) (** {1 Memory Models} *) (* -------------------------------------------------------------------------- *) (** Memory Chunks. The concrete memory is partionned into a vector of abstract data. Each component of the partition is called a {i memory chunk} and holds an abstract representation of some part of the memory. Remark: memory chunks are not required to be independant from each other, provided the memory model implementation is consistent with the chosen representation. Conversely, a given object might be represented by several memory chunks. See {!Model.domain}. *) module type Chunk = sig type t val self : string (** Chunk names, for pretty-printing. *) val hash : t -> int val equal : t -> t -> bool val compare : t -> t -> int val pretty : Format.formatter -> t -> unit val tau_of_chunk : t -> tau (** The type of data hold in a chunk. *) val basename_of_chunk : t -> string (** Used when generating fresh variables for a chunk. *) val is_framed : t -> bool (** Whether the chunk is local to a function call. Means the chunk is separated from anyother call side-effects. If [true], entails that a function assigning everything can not modify the chunk. Only used for optimisation, it would be safe to always return [false]. *) end (** Memory Environments. Represents the content of the memory, {i via} a vector of logic variables for each memory chunk. *) module type Sigma = sig type chunk (** The type of memory chunks. *) module Chunk : Qed.Collection.S with type t = chunk (** Memory footprint. *) type domain = Chunk.Set.t (** Environment assigning logic variables to chunk. Memory chunk variables are assigned lazily. Hence, the vector is empty unless a chunk is accessed. Pay attention to this when you merge or havoc chunks. New chunks are generated from the context pool of {!Lang.freshvar}. *) type t val pretty : Format.formatter -> t -> unit (** For debugging purpose *) val create : unit -> t (** Initially empty environment. *) val mem : t -> chunk -> bool (** Whether a chunk has been assigned. *) val get : t -> chunk -> var (** Lazily get the variable for a chunk. *) val value : t -> chunk -> term (** Same as [Lang.F.e_var] of [get]. *) val copy : t -> t (** Duplicate the environment. Fresh chunks in the copy are {i not} duplicated into the source environment. *) val join : t -> t -> Passive.t (** Make two environment pairwise equal {i via} the passive form. Missing chunks in one environment are added with the corresponding variable of the other environment. When both environments don't agree on a chunk, their variables are added to the passive form. *) val assigned : pre:t -> post:t -> domain -> pred Bag.t (** Make chunks equal outside of some domain. This is similar to [join], but outside the given footprint of an assigns clause. Although, the function returns the equality predicates instead of a passive form. Like in [join], missing chunks are reported from one side to the other one, and common chunks are added to the equality bag. *) val choose : t -> t -> t (** Make the union of each sigma, choosing the minimal variable in case of conflict. Both initial environments are kept unchanged. *) val merge : t -> t -> t * Passive.t * Passive.t (** Make the union of each sigma, choosing a {i new} variable for each conflict, and returns the corresponding joins. Both initial environments are kept unchanged. *) val merge_list : t list -> t * Passive.t list (** Same than {!merge} but for a list of sigmas. Much more efficient than folding merge step by step. *) val iter : (chunk -> var -> unit) -> t -> unit (** Iterates over the chunks and associated variables already accessed so far in the environment. *) val iter2 : (chunk -> var option -> var option -> unit) -> t -> t -> unit (** Same as [iter] for both environments. *) val havoc_chunk : t -> chunk -> t (** Generate a new fresh variable for the given chunk. *) val havoc : t -> domain -> t (** All the chunks in the provided footprint are generated and made fresh. Existing chunk variables {i outside} the footprint are copied into the new environment. The original environement itself is kept unchanged. More efficient than iterating [havoc_chunk] over the footprint. *) val havoc_any : call:bool -> t -> t (** All the chunks are made fresh. As an optimisation, when [~call:true] is set, only non-local chunks are made fresh. Local chunks are those for which [Chunk.is_frame] returns [true]. *) val remove_chunks : t -> domain -> t (** Return a copy of the environment where chunks in the footprint have been removed. Keep the original environment unchanged. *) val domain : t -> domain (** Footprint of a memory environment. That is, the set of accessed chunks so far in the environment. *) val union : domain -> domain -> domain (** Same as [Chunk.Set.union] *) val empty : domain (** Same as [Chunk.Set.empty] *) val writes : t sequence -> domain (** [writes s] indicates which chunks are new in [s.post] compared to [s.pre]. *) end (** Memory Models. *) module type Model = sig (** {2 Model Definition} *) val configure : unit -> WpContext.rollback (** Initializers to be run before using the model. Typically push {!Context} values and returns a function to rollback. *) val configure_ia: automaton -> vertex binder (** Given an automaton, return a vertex's binder. Currently used by the automata compiler to bind current vertex. See {!StmtSemantics}. *) val datatype : string (** For projectification. Must be unique among models. *) val hypotheses : MemoryContext.partition -> MemoryContext.partition (** Computes the memory model partitionning of the memory locations. This function typically adds new elements to the partition received in input (that can be empty). *) module Chunk : Chunk (** Memory model chunks. *) module Heap : Qed.Collection.S with type t = Chunk.t (** Chunks Sets and Maps. *) module Sigma : Sigma with type chunk = Chunk.t and module Chunk = Heap (** Model Environments. *) type loc (** Representation of the memory location in the model. *) type chunk = Chunk.t type sigma = Sigma.t type domain = Sigma.domain type segment = loc rloc (** {2 Reversing the Model} *) type state (** Internal (private) memory state description for later reversing the model. *) (** Returns a memory state description from a memory environement. *) val state : sigma -> state (** Try to interpret a term as an in-memory operation located at this program point. Only best-effort shall be performed, otherwise return [Mvalue]. Recognized [Cil] patterns: - [Mvar x,[Mindex 0]] is rendered as [*x] when [x] has a pointer type - [Mmem p,[Mfield f;...]] is rendered as [p->f...] like in Cil - [Mmem p,[Mindex k;...]] is rendered as [p[k]...] to catch Cil [Mem(AddPI(p,k)),...] *) val lookup : state -> term -> mval (** Try to interpret a sequence of states into updates. The result shall be exhaustive with respect to values that are printed as [Sigs.mval] values at [post] label {i via} the [lookup] function. Otherwise, those values would not be pretty-printed to the user. *) val updates : state sequence -> Vars.t -> update Bag.t (** Propagate a sequent substitution inside the memory state. *) val apply : (term -> term) -> state -> state (** Debug *) val iter : (mval -> term -> unit) -> state -> unit val pretty : Format.formatter -> loc -> unit (** pretty printing of memory location *) (** {2 Memory Model API} *) val vars : loc -> Vars.t (** Return the logic variables from which the given location depend on. *) val occurs : var -> loc -> bool (** Test if a location depend on a given logic variable *) val null : loc (** Return the location of the null pointer *) val literal : eid:int -> Cstring.cst -> loc (** Return the memory location of a constant string, the id is a unique identifier. *) val cvar : varinfo -> loc (** Return the location of a C variable. *) val pointer_loc : term -> loc (** Interpret an address value (a pointer) as an abstract location. Might fail on memory models not supporting pointers. *) val pointer_val : loc -> term (** Return the adress value (a pointer) of an abstract location. Might fail on memory models not capable of representing pointers. *) val field : loc -> fieldinfo -> loc (** Return the memory location obtained by field access from a given memory location. *) val shift : loc -> c_object -> term -> loc (** Return the memory location obtained by array access at an index represented by the given {!term}. The element of the array are of the given {!c_object} type. *) val base_addr : loc -> loc (** Return the memory location of the base address of a given memory location. *) val base_offset : loc -> term (** Return the offset of the location, in bytes, from its base_addr. *) val block_length : sigma -> c_object -> loc -> term (** Returns the length (in bytes) of the allocated block containing the given location. *) val cast : c_object sequence -> loc -> loc (** Cast a memory location into another memory location. For [cast ty loc] the cast is done from [ty.pre] to [ty.post]. Might fail on memory models not supporting pointer casts. *) val loc_of_int : c_object -> term -> loc (** Cast a term representing an absolute memory address (to some c_object) given as an integer, into an abstract memory location. *) val int_of_loc : c_int -> loc -> term (** Cast a memory location into its absolute memory address, given as an integer with the given C-type. *) val domain : c_object -> loc -> domain (** Compute the set of chunks that hold the value of an object with the given C-type. It is safe to retun an over-approximation of the chunks involved. *) val is_well_formed : sigma -> pred (** Provides the constraint corresponding to the kind of data stored by all chunks in sigma. *) val load : sigma -> c_object -> loc -> loc value (** Return the value of the object of the given type at the given location in the given memory state. *) val load_init : sigma -> c_object -> loc -> term (** Return the initialization status at the given location in the given memory state. *) val copied : sigma sequence -> c_object -> loc -> loc -> equation list (** Return a set of equations that express a copy between two memory state. [copied sigma ty loc1 loc2] returns a set of formula expressing that the content for an object [ty] is the same in [sigma.pre] at [loc1] and in [sigma.post] at [loc2]. *) val copied_init : sigma sequence -> c_object -> loc -> loc -> equation list (** Return a set of equations that express a copy of an initialized state between two memory state. [copied sigma ty loc1 loc2] returns a set of formula expressing that the initialization status for an object [ty] is the same in [sigma.pre] at [loc1] and in [sigma.post] at [loc2]. *) val stored : sigma sequence -> c_object -> loc -> term -> equation list (** Return a set of formula that express a modification between two memory state. [stored sigma ty loc t] returns a set of formula expressing that [sigma.pre] and [sigma.post] are identical except for an object [ty] at location [loc] which is represented by [t] in [sigma.post]. *) val stored_init : sigma sequence -> c_object -> loc -> term -> equation list (** Return a set of formula that express a modification of the initialization status between two memory state. [stored_init sigma ty loc t] returns a set of formula expressing that [sigma.pre] and [sigma.post] are identical except for an object [ty] at location [loc] which has a new init represented by [t] in [sigma.post]. *) val assigned : sigma sequence -> c_object -> loc sloc -> equation list (** Return a set of formula that express that two memory state are the same except at the given set of memory location. This function can over-approximate the set of given memory location (e.g it can return [true] as if the all set of memory location was given). *) val is_null : loc -> pred (** Return the formula that check if a given location is null *) val loc_eq : loc -> loc -> pred val loc_lt : loc -> loc -> pred val loc_neq : loc -> loc -> pred val loc_leq : loc -> loc -> pred (** Memory location comparisons *) val loc_diff : c_object -> loc -> loc -> term (** Compute the length in bytes between two memory locations *) val valid : sigma -> acs -> segment -> pred (** Return the formula that tests if a memory state is valid (according to {!acs}) in the given memory state at the given segment. *) val frame : sigma -> pred list (** Assert the memory is a proper heap state preceeding the function entry point. *) val alloc : sigma -> varinfo list -> sigma (** Allocates new chunk for the validity of variables. *) val initialized : sigma -> segment -> pred (** Return the formula that tests if a memory state is initialized (according to {!acs}) in the given memory state at the given segment. *) val invalid : sigma -> segment -> pred (** Returns the formula that tests if the entire memory is invalid for write access. *) val scope : sigma sequence -> scope -> varinfo list -> pred list (** Manage the scope of variables. Returns the updated memory model and hypotheses modeling the new validity-scope of the variables. *) val global : sigma -> term -> pred (** Given a pointer value [p], assumes this pointer [p] (when valid) is allocated outside the function frame under analysis. This means separated from the formals and locals of the function. *) val included : segment -> segment -> pred (** Return the formula that tests if two segment are included *) val separated : segment -> segment -> pred (** Return the formula that tests if two segment are separated *) end (* -------------------------------------------------------------------------- *) (** {1 C and ACSL Compilers} *) (* -------------------------------------------------------------------------- *) (** Compiler for C expressions *) module type CodeSemantics = sig module M : Model (** The underlying memory model *) type loc = M.loc type nonrec value = loc value type nonrec result = loc result type sigma = M.Sigma.t val pp_value : Format.formatter -> value -> unit val cval : value -> term (** Evaluate an abstract value. May fail because of [M.pointer_val]. *) val cloc : value -> loc (** Interpret a value as a location. May fail because of [M.pointer_loc]. *) val cast : typ -> typ -> value -> value (** Applies a pointer cast or a conversion. [cast tr te ve] transforms a value [ve] with type [te] into a value with type [tr]. *) val equal_typ : typ -> value -> value -> pred (** Computes the value of [(a==b)] provided both [a] and [b] are values with the given type. *) val not_equal_typ : typ -> value -> value -> pred (** Computes the value of [(a==b)] provided both [a] and [b] are values with the given type. *) val equal_obj : c_object -> value -> value -> pred (** Same as [equal_typ] with an object type. *) val not_equal_obj : c_object -> value -> value -> pred (** Same as [not_equal_typ] with an object type. *) val exp : sigma -> exp -> value (** Evaluate the expression on the given memory state. *) val cond : sigma -> exp -> pred (** Evaluate the conditional expression on the given memory state. *) val lval : sigma -> lval -> loc (** Evaluate the left-value on the given memory state. *) val call : sigma -> exp -> loc (** Address of a function pointer. Handles [AddrOf], [StartOf] and [Lval] as usual. *) val instance_of : loc -> kernel_function -> pred (** Check whether a function pointer is (an instance of) some kernel function. Currently, the meaning of "{i being an instance of}" is simply equality. *) val loc_of_exp : sigma -> exp -> loc (** Compile an expression as a location. May (also) fail because of [M.pointer_val]. *) val val_of_exp : sigma -> exp -> term (** Compile an expression as a term. May (also) fail because of [M.pointer_loc]. *) val result : sigma -> typ -> result -> term (** Value of an abstract result container. *) val return : sigma -> typ -> exp -> term (** Return an expression with a given type. Short cut for compiling the expression, cast into the desired type, and finally converted to a term. *) val is_zero : sigma -> c_object -> loc -> pred (** Express that the object (of specified type) at the given location is filled with zeroes. *) (** Express that all objects in a range of locations have a given value. More precisely, [is_exp_range sigma loc ty a b v] express that value at [( ty* )loc + k] equals [v], forall [a <= k <= b]. Value [v=None] stands for zero. *) val is_exp_range : sigma -> loc -> c_object -> term -> term -> value option -> pred val unchanged : M.sigma -> M.sigma -> varinfo -> pred (** Express that a given variable has the same value in two memory states. *) type warned_hyp = Warning.Set.t * (pred * pred) val init : sigma:M.sigma -> varinfo -> init option -> warned_hyp list (** Express that some variable has some initial value at the given memory state. The first predicate states the value, the second, the initialization status. Note: we DO NOT merge values and initialization status hypotheses as the factorization performed by Qed can make predicates too hard to simplify later. Remark: [None] initializer are interpreted as zeroes. This is consistent with the [init option] associated with global variables in CIL, for which the default initializer are zeroes. This function is called for global initializers and local initializers ([Cil.Local_init]). It is not called for local variables without initializers as they do not have a [Cil.init option]. *) end (** Compiler for ACSL expressions *) module type LogicSemantics = sig module M : Model (** Underlying memory model *) type loc = M.loc type nonrec value = M.loc value type nonrec logic = M.loc logic type nonrec region = M.loc region type nonrec result = M.loc result type sigma = M.Sigma.t (** {2 Frames} Frames are compilation environment for ACSL. A frame typically manages the current function, formal paramters, the memory environments at different labels and the [\result] and [\exit_status] values. The frame also holds the {i gamma} environment responsible for accumulating typing constraints, and the {i pool} for generating fresh logic variables. Notice that a [frame] is not responsible for holding the environment at label [Here], since this is managed by a specific compilation environment, see {!env} below. *) type frame val pp_frame : Format.formatter -> frame -> unit (** Get the current frame, or raise a fatal error if none. *) val get_frame : unit -> frame (** Execute the given closure with the specified current frame. The [Lang.gamma] and [Lang.pool] contexts are also set accordingly. *) val in_frame : frame -> ('a -> 'b) -> 'a -> 'b (** Get the memory environment at the given label. A fresh environment is created lazily if required. The label must {i not} be [Here]. *) val mem_at_frame : frame -> Clabels.c_label -> sigma (** Update a frame with a specific environment for the given label. *) val set_at_frame : frame -> Clabels.c_label -> sigma -> unit (** Chek if a frame already has a specific envioronement for the given label. *) val has_at_frame : frame -> Clabels.c_label -> bool (** Same as [mem_at_frame] but for the current frame. *) val mem_frame : Clabels.c_label -> sigma (** Full featured constructor for frames, with fresh pool and gamma. *) val mk_frame : ?kf:Cil_types.kernel_function -> ?result:result -> ?status:Lang.F.var -> ?formals:value Cil_datatype.Varinfo.Map.t -> ?labels:sigma Clabels.LabelMap.t -> ?descr:string -> unit -> frame (** Make a local frame reusing the {i current} pool and gamma. *) val local : descr:string -> frame (** Make a fresh frame with the given function. *) val frame : kernel_function -> frame type call (** Internal call data. *) (** Create call data from the callee point of view, deriving data (gamma and pools) from the current frame. If [result] is specified, the called function will stored its result at the provided location in the current frame (the callee). *) val call : ?result:M.loc -> kernel_function -> value list -> call (** Derive a frame from the call data suitable for compiling the called function contracts in the provided pre-state. *) val call_pre : sigma -> call -> sigma -> frame (** Derive a frame from the call data suitable for compiling the called function contracts in the provided pre-state and post-state. *) val call_post : sigma -> call -> sigma sequence -> frame (** Result type of the current function in the current frame. *) val return : unit -> typ (** Result location of the current function in the current frame. *) val result : unit -> result (** Exit status for the current frame. *) val status : unit -> var (** Returns the current gamma environment from the current frame. *) val guards : frame -> pred list (** {2 Compilation Environment} *) type env (** Compilation environment for terms and predicates. Manages the {i current} memory state and the memory state at [Here]. Remark: don't confuse the {i current} memory state with the memory state {i at label} [Here]. The current memory state is the one we have at hand when compiling a term or a predicate. Hence, inside [\at(e,L)] the current memory state when compiling [e] is the one at [L]. *) (** Create a new environment. Current and [Here] memory points are initialized to [~here], if provided. The logic variables stand for formal parameters of ACSL logic function and ACSL predicates. *) val mk_env : ?here:sigma -> ?lvars:logic_var list -> unit -> env (** The {i current} memory state. Must be propertly initialized with a specific {!move} before. *) val current : env -> sigma (** Move the compilation environment to the specified [Here] memory state. This memory state becomes also the new {i current} one. *) val move_at : env -> sigma -> env (** Returns the memory state at the requested label. Uses the local environment for [Here] and the current frame otherwize. *) val mem_at : env -> Clabels.c_label -> sigma (** Returns a new environment where the current memory state is moved to to the corresponding label. Suitable for compiling [e] inside [\at(e,L)] ACSL construct. *) val env_at : env -> Clabels.c_label -> env (** {2 Compilers} *) (** Compile a term l-value into a (typed) abstract location *) val lval : env -> Cil_types.term_lval -> Cil_types.typ * M.loc (** Compile a term expression. *) val term : env -> Cil_types.term -> term (** Compile a predicate. The polarity is used to generate a weaker or stronger predicate in case of unsupported feature from WP or the underlying memory model. *) val pred : polarity -> env -> Cil_types.predicate -> pred (** Compile a predicate call. *) val call_pred: env -> Cil_types.logic_info -> Cil_types.logic_label list -> term list -> pred (** Compile a term representing a set of memory locations into an abstract region. *) val region : env -> Cil_types.term -> region (** Computes the region assigned by a list of froms. *) val assigned_of_lval : env -> Cil_types.lval -> region (** Computes the region assigned by a list of froms. *) val assigned_of_froms : env -> from list -> region (** Computes the region assigned by an assigns clause. [None] means everyhting is assigned. *) val assigned_of_assigns : env -> assigns -> region option (** Same as [term] above but reject any set of locations. *) val val_of_term : env -> Cil_types.term -> term (** Same as [term] above but expects a single loc or a single pointer value. *) val loc_of_term : env -> Cil_types.term -> loc (** Compile a lemma definition. *) val lemma : LogicUsage.logic_lemma -> Definitions.dlemma (** {2 Regions} *) (** Qed variables appearing in a region expression. *) val vars : region -> Vars.t (** Member of vars. *) val occurs : var -> region -> bool (** Check assigns inclusion. Compute a formula that checks whether written locations are either invalid (at the given memory location) or included in some assignable region. When [~unfold:n && n <> 0], compound memory locations are expanded field-by-field and arrays, cell-by-cell (by quantification). Up to [n] levels are unfolded, -1 means unlimited. *) val check_assigns : unfold:int -> sigma -> written:region -> assignable:region -> pred end (** Compiler for Performing Assigns *) module type LogicAssigns = sig module M : Model module L : LogicSemantics with module M = M open M (** Memory footprint of a region. *) val domain : loc region -> Heap.set (** Relates two memory states corresponding to an assigns clause with the specified set of locations. *) val apply_assigns : sigma sequence -> loc region -> pred list end (** All Compilers Together *) module type Compiler = sig module M : Model module C : CodeSemantics with module M = M module L : LogicSemantics with module M = M module A : LogicAssigns with module M = M and module L = L end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>