package frama-c
Platform dedicated to the analysis of source code written in C
Install
Dune Dependency
Authors
-
MMichele Alberti
-
TThibaud Antignac
-
GGergö Barany
-
PPatrick Baudin
-
NNicolas Bellec
-
TThibaut Benjamin
-
AAllan Blanchard
-
LLionel Blatter
-
FFrançois Bobot
-
RRichard Bonichon
-
VVincent Botbol
-
QQuentin Bouillaguet
-
DDavid Bühler
-
ZZakaria Chihani
-
LLoïc Correnson
-
JJulien Crétin
-
PPascal Cuoq
-
ZZaynah Dargaye
-
BBasile Desloges
-
JJean-Christophe Filliâtre
-
PPhilippe Herrmann
-
MMaxime Jacquemin
-
FFlorent Kirchner
-
AAlexander Kogtenkov
-
RRemi Lazarini
-
TTristan Le Gall
-
JJean-Christophe Léchenet
-
MMatthieu Lemerre
-
DDara Ly
-
DDavid Maison
-
CClaude Marché
-
AAndré Maroneze
-
TThibault Martin
-
FFonenantsoa Maurica
-
MMelody Méaulle
-
BBenjamin Monate
-
YYannick Moy
-
PPierre Nigron
-
AAnne Pacalet
-
VValentin Perrelle
-
GGuillaume Petiot
-
DDario Pinto
-
VVirgile Prevosto
-
AArmand Puccetti
-
FFélix Ridoux
-
VVirgile Robles
-
JJan Rochel
-
MMuriel Roger
-
JJulien Signoles
-
NNicolas Stouls
-
KKostyantyn Vorobyov
-
BBoris Yakobowski
Maintainers
Sources
frama-c-29.0-Copper.tar.gz
sha256=d2fbb3b8d0ff83945872e9e6fa258e934a706360e698dae3b4d5f971addf7493
doc/src/frama-c-wp.core/Cmath.ml.html
Source file Cmath.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
(**************************************************************************) (* *) (* This file is part of WP plug-in of Frama-C. *) (* *) (* Copyright (C) 2007-2024 *) (* CEA (Commissariat a l'energie atomique et aux energies *) (* alternatives) *) (* *) (* you can redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation, version 2.1. *) (* *) (* It is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* See the GNU Lesser General Public License version 2.1 *) (* for more details (enclosed in the file licenses/LGPLv2.1). *) (* *) (**************************************************************************) open Qed open Logic open Lang open Lang.F let f_builtin ~library ?(injective=false) ?(result=Real) ?(params=[Real]) ?ext name = assert (name.[0] == '\\') ; let call = match ext with Some call -> call | None -> String.sub name 1 (String.length name - 1) in let link = Engine.F_call call in let category = let open Qed.Logic in if injective then Injection else Function in let signature = List.map LogicBuiltins.kind_of_tau params in let params = List.map Kind.of_tau params in let lfun = extern_s ~library ~category ~result ~params ~link name in LogicBuiltins.(add_builtin name signature lfun) ; lfun (* -------------------------------------------------------------------------- *) (* --- Real Of Int --- *) (* -------------------------------------------------------------------------- *) let f_real_of_int = extern_f ~library:"qed" ~category:Qed.Logic.Injection ~result:Logic.Real ~params:[Logic.Sint] "real_of_int" let builtin_real_of_int e = match F.repr e with | Qed.Logic.Kint k -> F.e_real (Q.of_bigint k) | _ -> raise Not_found (* -------------------------------------------------------------------------- *) (* --- Truncate --- *) (* -------------------------------------------------------------------------- *) let f_truncate = f_builtin ~library:"truncate" ~result:Int "\\truncate" let f_ceil = f_builtin ~library:"truncate" ~result:Int "\\ceil" let f_floor = f_builtin ~library:"truncate" ~result:Int "\\floor" let builtin_truncate f e = let open Qed.Logic in match F.repr e with | Kint _ -> e | Kreal r when Q.(equal r zero) -> e_zero | Kreal r -> begin try (* Waiting for Z-Arith to have truncation to big-int *) let truncated = int_of_float (Q.to_float r) in let reversed = Q.of_int truncated in let base = F.e_int truncated in if Q.equal r reversed then base else if f == f_ceil && Q.(lt zero r) then F.(e_add base e_one) else if f == f_floor && Q.(lt r zero) then F.(e_sub base e_one) else base with _ -> raise Not_found end | Fun( f , [e] ) when f == f_real_of_int -> e | _ -> raise Not_found (* -------------------------------------------------------------------------- *) (* --- Conversions --- *) (* -------------------------------------------------------------------------- *) let int_of_real x = e_fun f_truncate [x] let real_of_int x = e_fun f_real_of_int [x] let int_of_bool a = e_neq a F.e_zero (* if a != 0 then true else false *) let bool_of_int a = e_if a F.e_one F.e_zero (* if a then 1 else 0 *) (* -------------------------------------------------------------------------- *) (* --- Sign --- *) (* -------------------------------------------------------------------------- *) (* rewrite a=b when a or b is f(x) for functions f such as 0 <= f(x) && ( f(x) = 0 <-> x = 0 ) *) let builtin_positive_eq lfun ~domain ~zero ~injective a b = let open Qed.Logic in begin match F.repr a , F.repr b with | Fun(f,[a]) , Fun(f',[b]) when injective && f == lfun && f' == lfun && domain a && domain b -> (* injective a in domain && b in domain -> ( f(a) = f(b) <-> a = b ) *) e_eq a b | Fun(f,[a]) , _ when f == lfun && domain a -> if QED.eval_lt b zero then (* a in domain && b < 0 -> ( f(a) = b <-> false ) *) e_false else if QED.eval_eq zero b then (* a in domain && b = 0 -> ( f(a) = 0 <-> a = 0 ) *) e_eq a zero else raise Not_found | _ -> raise Not_found end (* rewrite a<=b when a or b is f(x) for functions f such as 0 <= f(x) && f(x) = 0 <-> x = 0 *) let builtin_positive_leq lfun ~domain ~zero ~monotonic a b = let open Qed.Logic in begin match F.repr a , F.repr b with | Fun(f,[a]) , Fun(f',[b]) when monotonic && f == lfun && f' == lfun && domain a && domain b -> (* increasing && a in domain && b in domain -> ( f(a) <= f(b) <-> a <= b) *) e_leq a b | Fun(f,[a]) , _ when f == lfun && domain a -> if QED.eval_lt b zero then (* a in domain && b < 0 -> ( f(a) <= b <-> false ) *) e_false else if QED.eval_eq zero b then (* a in domain && b = 0 -> ( f(a) <= b <-> a = 0 )*) e_eq a zero else raise Not_found | _ , Fun(f,[b]) when f == lfun && domain b && QED.eval_leq a zero -> (* b in domain && a <= 0 -> ( a <= f(b) <-> true *) e_true | _ -> raise Not_found end (* rewrite a=b when a or b is f(x) for functions f such as 0 < f(x) *) let builtin_strict_eq lfun ~domain ~zero ~injective a b = let open Qed.Logic in begin match F.repr a , F.repr b with | Fun(f,[a]) , Fun(f',[b]) when injective && f == lfun && f' == lfun && domain a && domain b -> (* injective && a in domain && b in domain -> ( f(a) = f(b) <-> a = b ) *) e_eq a b | Fun(f,[a]) , _ when f == lfun && domain a && QED.eval_leq b zero -> (* a in domain && b <= 0 -> ( f(a) = b <-> false ) *) e_false | _ -> raise Not_found end (* rewrite a<=b when a or b is f(x) for functions f such as 0 < f(x) *) let builtin_strict_leq lfun ~domain ~zero ~monotonic a b = let open Qed.Logic in begin match F.repr a , F.repr b with | Fun(f,[a]) , Fun(f',[b]) when monotonic && f == lfun && f' == lfun && domain a && domain b -> (* increasing && a in domain && b in domain -> ( f(a) <= f(b) <-> a <= b ) *) e_leq a b | Fun(f,[a]) , _ when f == lfun && domain a && QED.eval_leq b zero -> (* a in domain && b <= 0 -> ( f(a) <= b <-> false ) *) e_false | _ , Fun(f,[b]) when f == lfun && domain b && QED.eval_leq a zero -> (* b in domain && a <= 0 -> ( a <= f(b) <-> true ) *) e_true | _ -> raise Not_found end (* -------------------------------------------------------------------------- *) (* --- Absolute --- *) (* -------------------------------------------------------------------------- *) let f_iabs = extern_f ~library:"cmath" ~link:(Qed.Engine.F_call "IAbs.abs") "\\iabs" let f_rabs = extern_f ~library:"cmath" ~result:Real ~params:[Sreal] ~link:(Qed.Engine.F_call "RAbs.abs") "\\rabs" let () = begin LogicBuiltins.(add_builtin "\\abs" [Z] f_iabs) ; LogicBuiltins.(add_builtin "\\abs" [R] f_rabs) ; end let domain_abs _x = true let builtin_abs f z e = let open Qed.Logic in match F.repr e with | Times(k,a) -> e_times (Integer.abs k) (e_fun f [a]) | Kint k -> e_zint (Integer.abs k) | Kreal r when Q.lt r Q.zero -> e_real (Q.neg r) | _ -> match is_true (e_leq z e) with | Yes -> e | No -> e_opp e | Maybe -> raise Not_found let builtin_iabs_eq = builtin_positive_eq f_iabs ~domain:domain_abs ~zero:e_zero ~injective:false let builtin_iabs_leq = builtin_positive_leq f_iabs ~domain:domain_abs ~zero:e_zero ~monotonic:false let builtin_rabs_eq = builtin_positive_eq f_rabs ~domain:domain_abs ~zero:e_zero_real ~injective:false let builtin_rabs_leq = builtin_positive_leq f_rabs ~domain:domain_abs ~zero:e_zero_real ~monotonic:false (* -------------------------------------------------------------------------- *) (* --- Square Root --- *) (* -------------------------------------------------------------------------- *) let f_sqrt = f_builtin ~library:"sqrt" "\\sqrt" let domain_sqrt x = QED.eval_leq e_zero_real x let builtin_sqrt e = let open Qed.Logic in match F.repr e with | Kreal r when r == Q.zero -> F.e_zero_real (* srqt(0)==0 *) | Kreal r when r == Q.one -> F.e_one_real (* srqt(1)==1 *) | Mul[a;b] when eval_eq a b -> (* a==b ==> sqrt(a*b)==|a| *) e_fun f_rabs [a] (* a is smaller *) | _ -> raise Not_found let builtin_sqrt_eq = builtin_positive_eq f_sqrt ~domain:domain_sqrt ~zero:e_zero_real ~injective:true let builtin_sqrt_leq = builtin_positive_leq f_sqrt ~domain:domain_sqrt ~zero:e_zero_real ~monotonic:true (* -------------------------------------------------------------------------- *) (* --- Exponential --- *) (* -------------------------------------------------------------------------- *) let f_exp = f_builtin ~library:"exponential" ~injective:true "\\exp" let f_log = f_builtin ~library:"exponential" "\\log" let f_log10 = f_builtin ~library:"exponential" "\\log10" let f_pow = f_builtin ~library:"power" ~params:[Real;Real] "\\pow" let () = ignore f_log10 let domain_exp _x = true let domain_log x = QED.eval_lt e_zero_real x let builtin_exp e = let open Qed.Logic in match F.repr e with | Kreal r when r == Q.zero -> F.e_one_real (* exp(0)==1 *) | Times(n,r) when n == Z.minus_one -> (* exp(-r) = 1/exp(r) *) F.e_div F.e_one_real (F.e_fun f_exp [r]) | Fun( f , [x] ) when f == f_log && domain_log x -> (* 0<x ==> exp(log(x)) = x *) x | _ -> raise Not_found let builtin_log e = let open Qed.Logic in match F.repr e with | Kreal r when r == Q.one -> F.e_zero_real (* log(1) == 0 *) | Fun( f , [x] ) when f == f_exp -> x (* log(exp(x)) == x *) | Fun( f , [x;n] ) when f == f_pow && domain_log x -> (* 0<x ==> log(x^n) == n*log(x) *) F.e_mul n (F.e_fun f_log [x]) | _ -> raise Not_found (* a^n = e^(n.log a) *) let builtin_pow a n = let open Qed.Logic in match F.repr n with | Kreal r when Q.(equal r zero) -> F.e_one_real (* a^0 == 1 *) | Kreal r when Q.(equal r one) -> a (* a^1 == a *) | _ -> raise Not_found let builtin_exp_eq = builtin_strict_eq f_exp ~domain:domain_exp ~zero:e_zero_real ~injective:true let builtin_exp_leq = builtin_strict_leq f_exp ~domain:domain_exp ~zero:e_zero_real ~monotonic:true (* -------------------------------------------------------------------------- *) (* --- Trigonometry --- *) (* -------------------------------------------------------------------------- *) let f_sin = f_builtin ~library:"trigonometry" "\\sin" let f_cos = f_builtin ~library:"trigonometry" "\\cos" let f_tan = f_builtin ~library:"trigonometry" "\\tan" let f_asin = f_builtin ~library:"arctrigo" "\\asin" let f_acos = f_builtin ~library:"arctrigo" "\\acos" let f_atan = f_builtin ~library:"arctrigo" ~injective:true "\\atan" let domain_asin_acos x = QED.eval_leq x e_one_real && QED.eval_leq e_minus_one_real x let domain_atan _x = true let builtin_trigo f_arc ~domain e = match F.repr e with | Fun(f,[x]) when f == f_arc && domain x -> x | _ -> raise Not_found (* -------------------------------------------------------------------------- *) (* --- Hyperbolic --- *) (* -------------------------------------------------------------------------- *) let () = begin ignore (f_builtin ~library:"hyperbolic" "\\sinh") ; ignore (f_builtin ~library:"hyperbolic" "\\cosh") ; ignore (f_builtin ~library:"hyperbolic" "\\tanh") ; end (* -------------------------------------------------------------------------- *) (* --- Polar Coordinates --- *) (* -------------------------------------------------------------------------- *) let () = begin ignore (f_builtin ~library:"polar" ~params:[Real;Real] "\\atan2") ; ignore (f_builtin ~library:"polar" ~params:[Real;Real] "\\hypot") ; end (* -------------------------------------------------------------------------- *) (* --- Registry --- *) (* -------------------------------------------------------------------------- *) let () = Context.register begin fun () -> F.set_builtin_1 f_real_of_int builtin_real_of_int ; F.set_builtin_1 f_truncate (builtin_truncate f_truncate) ; F.set_builtin_1 f_ceil (builtin_truncate f_ceil) ; F.set_builtin_1 f_floor (builtin_truncate f_floor) ; F.set_builtin_1 f_iabs (builtin_abs f_iabs e_zero) ; F.set_builtin_1 f_rabs (builtin_abs f_rabs e_zero_real) ; F.set_builtin_eq f_iabs builtin_iabs_eq ; F.set_builtin_eq f_rabs builtin_rabs_eq ; F.set_builtin_leq f_iabs builtin_iabs_leq ; F.set_builtin_leq f_rabs builtin_rabs_leq ; F.set_builtin_1 f_sqrt builtin_sqrt ; F.set_builtin_eq f_sqrt builtin_sqrt_eq ; F.set_builtin_leq f_sqrt builtin_sqrt_leq ; F.set_builtin_1 f_log builtin_log ; F.set_builtin_1 f_exp builtin_exp ; F.set_builtin_eq f_exp builtin_exp_eq ; F.set_builtin_leq f_exp builtin_exp_leq ; F.set_builtin_2 f_pow builtin_pow ; F.set_builtin_1 f_sin (builtin_trigo f_asin ~domain:domain_asin_acos) ; F.set_builtin_1 f_cos (builtin_trigo f_acos ~domain:domain_asin_acos) ; F.set_builtin_1 f_tan (builtin_trigo f_atan ~domain:domain_atan) ; end (* -------------------------------------------------------------------------- *)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>