package frama-c
Platform dedicated to the analysis of source code written in C
Install
Dune Dependency
Authors
-
MMichele Alberti
-
TThibaud Antignac
-
GGergö Barany
-
PPatrick Baudin
-
NNicolas Bellec
-
TThibaut Benjamin
-
AAllan Blanchard
-
LLionel Blatter
-
FFrançois Bobot
-
RRichard Bonichon
-
VVincent Botbol
-
QQuentin Bouillaguet
-
DDavid Bühler
-
ZZakaria Chihani
-
LLoïc Correnson
-
JJulien Crétin
-
PPascal Cuoq
-
ZZaynah Dargaye
-
BBasile Desloges
-
JJean-Christophe Filliâtre
-
PPhilippe Herrmann
-
MMaxime Jacquemin
-
FFlorent Kirchner
-
AAlexander Kogtenkov
-
RRemi Lazarini
-
TTristan Le Gall
-
JJean-Christophe Léchenet
-
MMatthieu Lemerre
-
DDara Ly
-
DDavid Maison
-
CClaude Marché
-
AAndré Maroneze
-
TThibault Martin
-
FFonenantsoa Maurica
-
MMelody Méaulle
-
BBenjamin Monate
-
YYannick Moy
-
PPierre Nigron
-
AAnne Pacalet
-
VValentin Perrelle
-
GGuillaume Petiot
-
DDario Pinto
-
VVirgile Prevosto
-
AArmand Puccetti
-
FFélix Ridoux
-
VVirgile Robles
-
JJan Rochel
-
MMuriel Roger
-
JJulien Signoles
-
NNicolas Stouls
-
KKostyantyn Vorobyov
-
BBoris Yakobowski
Maintainers
Sources
frama-c-29.0-Copper.tar.gz
sha256=d2fbb3b8d0ff83945872e9e6fa258e934a706360e698dae3b4d5f971addf7493
doc/src/frama-c-wp.core/Vset.ml.html
Source file Vset.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
(**************************************************************************) (* *) (* This file is part of WP plug-in of Frama-C. *) (* *) (* Copyright (C) 2007-2024 *) (* CEA (Commissariat a l'energie atomique et aux energies *) (* alternatives) *) (* *) (* you can redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation, version 2.1. *) (* *) (* It is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* See the GNU Lesser General Public License version 2.1 *) (* for more details (enclosed in the file licenses/LGPLv2.1). *) (* *) (**************************************************************************) open Qed open Lang open Lang.F (* -------------------------------------------------------------------------- *) (* --- Logical Sets --- *) (* -------------------------------------------------------------------------- *) type set = vset list and vset = | Set of tau * term | Singleton of term | Range of term option * term option | Descr of var list * term * pred let occurs_opt x = function | None -> false | Some t -> occurs x t let occurs_vset x = function | Set(_,t) | Singleton t -> occurs x t | Range(a,b) -> occurs_opt x a || occurs_opt x b | Descr(xs,t,p) -> if List.exists (Var.equal x) xs then false else (occurs x t || occursp x p) let occurs x = List.exists (occurs_vset x) let vars_opt = function None -> Vars.empty | Some e -> F.vars e let vars_vset = function | Set(_,t) -> F.vars t | Singleton t -> F.vars t | Range(a,b) -> Vars.union (vars_opt a) (vars_opt b) | Descr(xs,t,p) -> List.fold_left (fun xs x -> Vars.remove x xs) (Vars.union (F.vars t) (F.varsp p)) xs let vars vset = List.fold_left (fun xs s -> Vars.union xs (vars_vset s)) Vars.empty vset (* -------------------------------------------------------------------------- *) (* --- Pretty --- *) (* -------------------------------------------------------------------------- *) let pp_bound fmt = function | None -> () | Some e -> F.pp_term fmt e let pp_vset fmt = function | Set(_,t) -> F.pp_term fmt t | Singleton x -> Format.fprintf fmt "@[<hov 2>{ %a }@]" F.pp_term x | Range(None,None) -> Format.pp_print_string fmt "[..]" | Range(a,b) -> Format.fprintf fmt "@[<hov 2>[%a@,..%a]@]" pp_bound a pp_bound b | Descr _ -> Format.fprintf fmt "{ <comprehension> }" let pretty fmt = function | [] -> Format.pp_print_string fmt "{}" | [v] -> pp_vset fmt v | v::vs -> Format.fprintf fmt "@[<hov 2>(%a" pp_vset v ; List.iter (fun v -> Format.fprintf fmt "@ + %a" pp_vset v) vs ; Format.fprintf fmt ")@]" (* -------------------------------------------------------------------------- *) (* --- Set Operations --- *) (* -------------------------------------------------------------------------- *) let library = "vset" let adt_set = Lang.datatype ~library "set" let tau_of_set te = Logic.Data( adt_set , [te] ) let p_member = Lang.extern_p ~library ~bool:"member_bool" ~prop:"member" () let f_empty = Lang.extern_f ~library "empty" let f_union = Lang.extern_f ~library "union" let f_inter = Lang.extern_f ~library "inter" let f_range = Lang.extern_f ~library "range" let f_range_sup = Lang.extern_f ~library "range_sup" let f_range_inf = Lang.extern_f ~library "range_inf" let f_range_all = Lang.extern_f ~library "range_all" let f_singleton = Lang.extern_f ~library "singleton" let single a b = match a,b with | Some x , Some y when F.QED.equal x y -> a | _ -> None let test_range x y a b = let p_inf = match a with Some a -> p_leq a x | None -> p_true in let p_sup = match b with Some b -> p_leq y b | None -> p_true in p_and p_inf p_sup let sub_range x y a b = match single a b with | Some z -> p_and (p_equal x z) (p_equal y z) | None -> p_imply (p_leq x y) (test_range x y a b) let in_size x n = p_and (p_leq e_zero x) (p_lt x (e_int n)) let in_range x a b = match single a b with | Some y -> p_equal x y | None -> test_range x x a b let ordered ~limit ~strict a b = match a , b with | Some x , Some y -> if strict then p_lt x y else p_leq x y | _ -> if limit then p_true else p_false let member x xs = p_any (function | Set(_,s) -> p_call p_member [x;s] | Singleton e -> p_equal x e | Range(a,b) -> in_range x a b | Descr(xs,t,p) -> p_exists xs (p_and (p_equal x t) p) ) xs let empty = [] let singleton x = [Singleton x] let range a b = [Range(a,b)] let union xs ys = (xs @ ys) let descr = function | Set(t,s) -> let x = Lang.freshvar t in let e = e_var x in [x] , e , p_call p_member [e;s] | Singleton e -> ( [] , e , p_true ) | Range(a,b) -> let x = Lang.freshvar ~basename:"k" Logic.Int in let e = e_var x in [x] , e , in_range e a b | Descr(xs,t,p) -> xs, t, p (* -------------------------------------------------------------------------- *) (* --- Concretize --- *) (* -------------------------------------------------------------------------- *) let concretize_vset = function | Set(_,s) -> s | Singleton e -> e_fun f_singleton [e] | Range(None,None) -> e_fun f_range_all [] | Range(None,Some b) -> e_fun f_range_inf [b] | Range(Some a,None) -> e_fun f_range_sup [a] | Range(Some a,Some b) -> e_fun f_range [a;b] | Descr _ -> Warning.error "Concretization for comprehension sets not implemented yet" let concretize = function | [] -> e_fun f_empty [] | x::xs -> List.fold_left (fun w x -> e_fun f_union [w;concretize_vset x]) (concretize_vset x) xs let inter xs ys = e_fun f_inter [xs;ys] (* -------------------------------------------------------------------------- *) (* --- Emptyness --- *) (* -------------------------------------------------------------------------- *) let p_empty s = p_equal s (e_fun f_empty []) let is_empty xs = p_all (function | Set(_,s) -> p_empty s | Singleton _ -> p_false | Range(Some a,Some b) -> p_lt b a | Range _ -> p_false | Descr(xs,t,p) -> p_forall xs (p_imply p (p_empty t)) ) xs (* -------------------------------------------------------------------------- *) (* --- Inclusion --- *) (* -------------------------------------------------------------------------- *) let subrange a b = function | [Range(c,d)] -> p_imply (match a,b with | Some a , Some b -> p_leq a b | _ -> p_true) (p_and (match c,a with | None,_ -> p_true | Some _,None -> p_false | Some c,Some a -> p_leq c a) (match b,d with | _,None -> p_true | None,Some _ -> p_false | Some b,Some d -> p_leq b d)) | ys -> let x = Lang.freshvar ~basename:"k" Logic.Int in let k = e_var x in p_forall [x] (p_imply (in_range k a b) (member k ys)) let subset xs ys = p_all (function | Set(t,s) -> let x = Lang.freshvar t in let e = e_var x in p_forall [x] (p_imply (p_call p_member [e;s]) (member e ys)) | Singleton e -> member e ys | Descr(xs,t,p) -> p_forall xs (p_imply p (member t ys)) | Range(a,b) -> subrange a b ys ) xs (* -------------------------------------------------------------------------- *) (* --- Equality --- *) (* -------------------------------------------------------------------------- *) let equal xs ys = p_and (subset xs ys) (subset ys xs) (* -------------------------------------------------------------------------- *) (* --- Separation --- *) (* -------------------------------------------------------------------------- *) let empty_range a b = match a,b with | None,_ | _,None -> p_false | Some x , Some y -> p_lt y x let disjoint_bounds left right = match left , right with | None,_ | _,None -> p_false | Some x , Some y -> p_lt x y let disjoint_vset x y = match x , y with | Singleton x , Singleton y -> p_neq x y | Singleton e , Range(a,b) | Range(a,b) , Singleton e -> p_not (in_range e a b) | Range(a,b) , Range(c,d) -> p_disj [ empty_range a b ; empty_range c d ; disjoint_bounds b c ; disjoint_bounds d a ; ] | Singleton x , Descr(xs,t,p) | Descr(xs,t,p) , Singleton x -> p_forall xs (p_imply p (p_neq x t)) | Range(a,b) , Descr(xs,t,p) | Descr(xs,t,p) , Range(a,b) -> p_forall xs (p_imply p (p_not (in_range t a b))) | Descr(xs,ta,pa) , Descr(ys,tb,pb) -> p_forall xs (p_forall ys (p_hyps [pa;pb] (p_neq ta tb))) | Singleton e , Set(_,s) | Set(_,s) , Singleton e -> p_not (p_call p_member [e;s]) | Set _ , Set _ -> let xs,a,p = descr x in let ys,b,q = descr y in p_forall (xs @ ys) (p_hyps [p;q] (p_neq a b)) | Set(_,s) , w | w , Set(_,s) -> let xs,t,p = descr w in let t_in_s = p_call p_member [t;s] in p_forall xs (p_not (p_and p t_in_s)) let disjoint xs ys = let ws = List.fold_left (fun w x -> List.fold_left (fun w y -> disjoint_vset x y :: w) w ys ) [] xs in p_conj ws (* -------------------------------------------------------------------------- *) (* --- Lifting & Mapping --- *) (* -------------------------------------------------------------------------- *) let cartesian f xs ys = let zs = List.fold_left (fun w x -> List.fold_left (fun w y -> f x y :: w) w ys ) [] xs in List.rev zs let map_vset f x = let xs,t,p = descr x in Descr(xs,f t,p) let map f xs = List.map (function Singleton x -> Singleton (f x) | u -> map_vset f u) xs let map_opt f = function None -> None | Some x -> Some (f x) let map_opp xs = List.map (function | Singleton x -> Singleton (e_opp x) | Range(a,b) -> Range(map_opt e_opp b,map_opt e_opp a) | Descr(xs,t,p) -> Descr(xs,e_opp t,p) | (Set _) as w -> let xs,t,p = descr w in Descr(xs,e_opp t,p) ) xs let lift_vset f x y = let xs,ta,pa = descr x in let ys,tb,pb = descr y in Descr (xs @ ys , f ta tb , p_and pa pb) let lift f xs ys = cartesian (fun x y -> match x , y with | Singleton a , Singleton b -> Singleton (f a b) | _ -> lift_vset f x y ) xs ys let bound_shift a k = match a with | None -> None | Some x -> Some (e_add x k) let bound_add a b = match a,b with | None,_ | _,None -> None | Some x , Some y -> Some (e_add x y) let bound_sub a b = match a,b with | None,_ | _,None -> None | Some x , Some y -> Some (e_sub x y) let lift_add xs ys = cartesian (fun x y -> match x , y with | Singleton a , Singleton b -> Singleton(e_add a b) | Singleton u , Range(a,b) | Range(a,b) , Singleton u -> Range(map_opt (e_add u) a, map_opt (e_add u) b) | Range(a,b) , Range(c,d) -> Range(bound_add a c,bound_add b d) | _ -> lift_vset e_add x y ) xs ys let lift_sub xs ys = cartesian (fun x y -> match x , y with | Singleton a , Singleton b -> Singleton(e_sub a b) | Singleton u , Range(a,b) -> Range(bound_sub (Some u) b , bound_sub (Some u) a) | Range(a,b) , Singleton u -> Range(bound_sub a (Some u) , bound_sub b (Some u)) | Range(a,b) , Range(c,d) -> Range(bound_sub a d , bound_sub b c) | _ -> lift_vset e_sub x y ) xs ys (* -------------------------------------------------------------------------- *)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>