package frama-c
Platform dedicated to the analysis of source code written in C
Install
Dune Dependency
Authors
-
MMichele Alberti
-
TThibaud Antignac
-
GGergö Barany
-
PPatrick Baudin
-
NNicolas Bellec
-
TThibaut Benjamin
-
AAllan Blanchard
-
LLionel Blatter
-
FFrançois Bobot
-
RRichard Bonichon
-
VVincent Botbol
-
QQuentin Bouillaguet
-
DDavid Bühler
-
ZZakaria Chihani
-
LLoïc Correnson
-
JJulien Crétin
-
PPascal Cuoq
-
ZZaynah Dargaye
-
BBasile Desloges
-
JJean-Christophe Filliâtre
-
PPhilippe Herrmann
-
MMaxime Jacquemin
-
FFlorent Kirchner
-
AAlexander Kogtenkov
-
RRemi Lazarini
-
TTristan Le Gall
-
JJean-Christophe Léchenet
-
MMatthieu Lemerre
-
DDara Ly
-
DDavid Maison
-
CClaude Marché
-
AAndré Maroneze
-
TThibault Martin
-
FFonenantsoa Maurica
-
MMelody Méaulle
-
BBenjamin Monate
-
YYannick Moy
-
PPierre Nigron
-
AAnne Pacalet
-
VValentin Perrelle
-
GGuillaume Petiot
-
DDario Pinto
-
VVirgile Prevosto
-
AArmand Puccetti
-
FFélix Ridoux
-
VVirgile Robles
-
JJan Rochel
-
MMuriel Roger
-
JJulien Signoles
-
NNicolas Stouls
-
KKostyantyn Vorobyov
-
BBoris Yakobowski
Maintainers
Sources
frama-c-29.0-Copper.tar.gz
sha256=d2fbb3b8d0ff83945872e9e6fa258e934a706360e698dae3b4d5f971addf7493
doc/src/frama-c-wp.core/Definitions.ml.html
Source file Definitions.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
(**************************************************************************) (* *) (* This file is part of WP plug-in of Frama-C. *) (* *) (* Copyright (C) 2007-2024 *) (* CEA (Commissariat a l'energie atomique et aux energies *) (* alternatives) *) (* *) (* you can redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation, version 2.1. *) (* *) (* It is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* See the GNU Lesser General Public License version 2.1 *) (* for more details (enclosed in the file licenses/LGPLv2.1). *) (* *) (**************************************************************************) (* -------------------------------------------------------------------------- *) (* --- Logic Definitions --- *) (* -------------------------------------------------------------------------- *) open LogicUsage open Cil_types open Cil_datatype open Qed.Logic open Lang open Lang.F type trigger = (var,lfun) Qed.Engine.ftrigger type typedef = (tau,field,lfun) Qed.Engine.ftypedef let rec rev_iter f = function | [] -> () | x::w -> rev_iter f w ; f x type cluster = { c_id : string ; c_title : string ; c_position : Filepath.position option ; mutable c_age : int ; mutable c_records : compinfo list ; mutable c_irecords : compinfo list ; mutable c_types : logic_type_info list ; mutable c_symbols : dfun list ; mutable c_lemmas : dlemma list ; } and dlemma = { l_name : string ; l_cluster : cluster ; l_kind : predicate_kind ; l_forall : var list ; l_triggers : trigger list list (* OR of AND triggers *) ; l_lemma : pred ; } and dfun = { d_lfun : lfun ; d_cluster : cluster ; d_types : int ; d_params : var list ; d_definition : definition ; } and definition = | Logic of tau (* return type of an abstract function *) | Function of tau * recursion * term | Predicate of recursion * pred | Inductive of dlemma list and recursion = Def | Rec module Trigger = struct open Qed.Engine let rec of_exp mode t = match F.repr t with | Fvar x -> TgVar x | Aget(a,k) -> TgGet(of_exp Cterm a,of_exp Cterm k) | Aset(a,k,v) -> TgSet(of_exp Cterm a,of_exp Cterm k,of_exp Cterm v) | Fun(f,ts) -> let ts = List.map (of_exp Cterm) ts in begin match mode with | Cterm -> TgFun(f,ts) | Cprop -> TgProp(f,ts) end | _ -> TgAny let of_term t = of_exp Cterm t let of_pred p = of_exp Cprop (F.e_prop p) let rec collect xs = function | TgAny -> xs | TgVar x -> Vars.add x xs | TgGet(a,k) -> collect (collect xs a) k | TgSet(a,k,v) -> collect (collect (collect xs a) k) v | TgFun(_,ts) | TgProp(_,ts) -> List.fold_left collect xs ts let vars = collect Vars.empty (* let rec pretty fmt = function * | TgAny -> assert false * | TgVar x -> Lang.F.QED.Var.pretty fmt x * | TgGet(t,k) -> Format.fprintf fmt "@[<hov 2>%a[%a]@]" pretty t pretty k * | TgSet(t,k,v) -> Format.fprintf fmt "@[<hov 2>%a[%a@ <- %a]@]" pretty t pretty k pretty v * | TgFun(f,ts) -> * | TgProp(f,ts) -> call Cprop f fmt ts *) end (* -------------------------------------------------------------------------- *) (* --- Registry --- *) (* -------------------------------------------------------------------------- *) module Cluster = WpContext.Index (struct type key = string type data = cluster let name = "Definitions.Cluster" let compare = String.compare let pretty = Format.pp_print_string end) module Symbol = WpContext.Index (struct type key = lfun type data = dfun let name = "Definitions.Symbol" let compare = Lang.Fun.compare let pretty = Lang.Fun.pretty end) module Lemma = WpContext.Index (struct type key = string type data = dlemma let name = "Definitions.Lemma" let compare = String.compare let pretty = Format.pp_print_string end) let touch c = c.c_age <- succ c.c_age let () = begin Symbol.callback (fun _ f -> touch f.d_cluster ; f.d_cluster.c_symbols <- f :: f.d_cluster.c_symbols) ; Lemma.callback (fun _ a -> touch a.l_cluster ; a.l_cluster.c_lemmas <- a :: a.l_cluster.c_lemmas) ; end let find_symbol = Symbol.find let define_symbol f = Symbol.define f.d_lfun f let update_symbol f = Symbol.update f.d_lfun f let find_name = Lemma.find let find_lemma l = Lemma.find l.lem_name let compile_lemma cc l = Lemma.compile (fun _name -> cc l) l.lem_name let define_lemma l = Lemma.define l.l_name l let define_type c t = begin touch c ; c.c_types <- t :: c.c_types ; end let parameters f = if WpContext.is_defined () then try List.map Lang.F.QED.sort_of_var (Symbol.find f).d_params with Not_found -> [] else [] let () = Lang.parameters parameters (* -------------------------------------------------------------------------- *) (* --- Helpers --- *) (* -------------------------------------------------------------------------- *) let cluster_id c = c.c_id let cluster_title c = c.c_title let cluster_position c = c.c_position let cluster_age c = c.c_age let cluster_compare a b = String.compare a.c_id b.c_id let pp_cluster fmt c = Format.pp_print_string fmt c.c_id let iter f = Cluster.iter_sorted (fun _key c -> f c) let newcluster ~id ?title ?position () = { c_id = id ; c_title = (match title with Some t -> t | None -> id) ; c_position = position ; c_age = 0 ; c_types = [] ; c_records = [] ; c_irecords = [] ; c_symbols = [] ; c_lemmas = [] ; } let cluster ~id ?title ?position () = Cluster.memoize (fun id -> newcluster ~id ?title ?position ()) id let dummy () = cluster ~id:"dummy" () let axiomatic ax = Cluster.memoize (fun id -> let title = Printf.sprintf "Axiomatic '%s'" ax.ax_name in let position = ax.ax_position in let cluster = newcluster ~id ~title ~position () in cluster) (Printf.sprintf "A_%s" ax.ax_name) let section = function | Toplevel 0 -> cluster ~id:"Axiomatic" ~title:"Global Definitions" () | Toplevel n -> let id = "Axiomatic" ^ string_of_int n in let title = Printf.sprintf "Global Definitions (continued #%d)" n in cluster ~id ~title () | Axiomatic ax -> axiomatic ax let compinfo c = Cluster.memoize (fun id -> let title = if c.cstruct then Printf.sprintf "Struct '%s'" c.cname else Printf.sprintf "Union '%s'" c.cname in let cluster = newcluster ~id ~title () in cluster.c_records <- [c] ; cluster) (Lang.comp_id c) let icompinfo c = Cluster.memoize (fun id -> let title = if c.cstruct then Printf.sprintf "Init Struct '%s'" c.cname else Printf.sprintf "Init Union '%s'" c.cname in let cluster = newcluster ~id ~title () in cluster.c_irecords <- [c] ; cluster) (Lang.comp_init_id c) let matrix () = cluster ~id:"Matrix" ~title:"Basic Arrays" () let call_fun ~result lfun cc es = Symbol.compile (Lang.local cc) lfun ; e_fun ~result lfun es let call_pred lfun cc es = Symbol.compile (Lang.local cc) lfun ; p_call lfun es (* -------------------------------------------------------------------------- *) (* --- Cluster Dependencies --- *) (* -------------------------------------------------------------------------- *) module DT = Logic_type_info.Set module DR = Compinfo.Set module DS = Datatype.String.Set module DF = Set.Make(Lang.Fun) module DC = Set.Make (struct type t = cluster let compare = cluster_compare end) (* -------------------------------------------------------------------------- *) (* --- Markers (test and set) --- *) (* -------------------------------------------------------------------------- *) type axioms = cluster * logic_lemma list class virtual visitor main = object(self) val mutable terms = Tset.empty val mutable types = DT.empty val mutable comps = DR.empty val mutable icomps = DR.empty val mutable symbols = DF.empty val mutable dlemmas = DS.empty val mutable lemmas = DS.empty val mutable clusters = DC.empty val mutable theories = DS.empty val mutable locals = DC.add main DC.empty method set_local c = locals <- DC.add c locals method do_local c = if DC.mem c locals then true else (self#vcluster c ; false) method private vtau_of_ltype lt = let tau = Lang.tau_of_ltype lt in self#vtau tau ; tau method vtype t = if not (DT.mem t types) then begin types <- DT.add t types ; let cluster = section (LogicUsage.section_of_type t) in if self#do_local cluster && not (Lang.is_builtin t) then begin let def = match t.lt_def with | None -> Qed.Engine.Tabs | Some (LTsyn lt) -> Qed.Engine.Tdef (self#vtau_of_ltype lt) | Some (LTsum cs) -> let cases = List.map (fun c -> Lang.ctor c , List.map self#vtau_of_ltype c.ctor_params ) cs in Qed.Engine.Tsum cases in self#on_type t def ; end end method vcomp r = if not (DR.mem r comps) then begin comps <- DR.add r comps ; let c = compinfo r in if self#do_local c then begin let fts = Option.map (List.map (fun f -> let t = Lang.tau_of_ctype f.ftype in self#vtau t ; cfield f , t )) r.cfields in self#on_comp r fts ; end end method vicomp r = if not (DR.mem r icomps) then begin icomps <- DR.add r icomps ; let c = icompinfo r in if self#do_local c then begin let fts = Option.map (List.map (fun f -> let t = Lang.init_of_ctype f.ftype in self#vtau t ; cfield ~kind:KInit f , t )) r.cfields in self#on_icomp r fts ; end end method vfield = function | Mfield(a,_,_,_) -> self#vlibrary a.ext_library | Cfield(f, KValue) -> self#vcomp f.fcomp | Cfield(f, KInit) -> self#vicomp f.fcomp method vadt = function | Mtype a | Mrecord(a,_) -> self#vlibrary a.ext_library | Comp(r, KValue) -> self#vcomp r | Comp(r, KInit) -> self#vicomp r | Atype t -> self#vtype t method vtau = function | Prop | Bool | Int | Real | Tvar _ -> () | Array(a,b) -> self#vtau a ; self#vtau b | Record _ -> assert false | Data(a,ts) -> self#vadt a ; List.iter self#vtau ts method vparam x = self#vtau (tau_of_var x) method private repr ~bool t = begin try self#vtau (Lang.F.typeof t); with Not_found -> Wp_parameters.debug ~level:2 "@[<hov 2>Untyped term: %a@]" F.pp_term t ; end ; match F.repr t with | Fun(f,_) -> self#vsymbol f | Rget(_,f) -> self#vfield f | Rdef fts -> List.iter (fun (f,_) -> self#vfield f) fts | Fvar x -> self#vparam x | Bind(_,qt,_) -> self#vtau qt | True | False | Kint _ | Kreal _ | Bvar _ | Times _ | Add _ | Mul _ | Div _ | Mod _ | Aget _ | Aset _ | Apply _ -> () | Acst _ -> self#on_library "const" | Eq _ | Neq _ | Leq _ | Lt _ | And _ | Or _ | Not _ | Imply _ | If _ -> if bool then self#on_library "bool" method vterm t = if not (Tset.mem t terms) then begin terms <- Tset.add t terms ; self#repr ~bool:true t ; F.lc_iter self#vterm t ; end method vpred p = let t = F.e_prop p in if not (Tset.mem t terms) then begin self#repr ~bool:false t ; F.lc_iter (fun e -> if F.is_prop e then self#vpred (F.p_bool e) else self#vterm e) t end method private vdefinition = function | Logic t -> self#vtau t | Function(t,_,e) -> self#vtau t ; self#vterm e | Predicate(_,p) -> self#vpred p | Inductive _ -> () method private vproperties = function | Logic _ | Function _ | Predicate _ -> () | Inductive cases -> List.iter (fun l -> self#vdlemma l) cases method private vdfun d = let old_terms = terms in terms <- Tset.empty ; begin try List.iter self#vparam d.d_params ; self#vdefinition d.d_definition ; self#vproperties d.d_definition ; self#on_dfun d ; with e -> terms <- old_terms ; raise e end ; terms <- old_terms method private vlfun f = match Symbol.find f with | exception Not_found -> Wp_parameters.fatal "Undefined symbol '%a'" Fun.pretty f | d -> let c = d.d_cluster in if self#do_local c then self#vdfun d method vsymbol f = if not (DF.mem f symbols) then begin symbols <- DF.add f symbols ; match f with | FUN { m_source = Extern e } -> self#vlibrary e.ext_library | FUN { m_source = Generated _ } | ACSL _ -> self#vlfun f | CTOR c -> self#vadt (Lang.adt c.ctor_type) end method private vtrigger = function | Qed.Engine.TgAny -> () | Qed.Engine.TgVar x -> self#vparam x | Qed.Engine.TgGet(a,k) -> begin self#vtrigger a ; self#vtrigger k ; end | Qed.Engine.TgSet(a,k,v) -> begin self#vtrigger a ; self#vtrigger k ; self#vtrigger v ; end | Qed.Engine.TgFun(f,tgs) | Qed.Engine.TgProp(f,tgs) -> self#vsymbol f ; List.iter self#vtrigger tgs method private vdlemma a = if not (DS.mem a.l_name dlemmas) then begin dlemmas <- DS.add a.l_name dlemmas ; List.iter self#vparam a.l_forall ; List.iter (List.iter self#vtrigger) a.l_triggers ; self#vpred a.l_lemma ; end method vlemma lem = let l = lem.lem_name in if not (DS.mem l lemmas) then begin lemmas <- DS.add l lemmas ; try let a = Lemma.find l in if self#do_local a.l_cluster then (self#vdlemma a; self#on_dlemma a) with Not_found -> Wp_parameters.fatal "Lemma '%s' undefined" l end method vcluster c = if not (DC.mem c clusters) then begin clusters <- DC.add c clusters ; self#on_cluster c ; end method vlibrary thy = if not (DS.mem thy theories) then begin theories <- DS.add thy theories ; try let deps = LogicBuiltins.dependencies thy in List.iter self#vlibrary deps ; self#on_library thy ; with Not_found -> Wp_parameters.fatal ~current:false "Unknown library '%s'" thy end method vgoal (axioms : axioms option) prop = match axioms with | None -> (* Visit a goal *) begin let hs = LogicUsage.proof_context () in List.iter self#vlemma hs ; self#vpred prop ; end | Some(cluster,hs) -> (* Visit the goal corresponding to a lemma *) begin self#section (cluster_title cluster) ; self#set_local cluster ; List.iter self#vlemma hs ; self#vpred prop ; end method vtypes = (* Visit the types *) rev_iter self#vcomp main.c_records ; rev_iter self#vicomp main.c_irecords ; rev_iter self#vtype main.c_types method vsymbols = (* Visit the definitions *) rev_iter (fun d -> self#vsymbol d.d_lfun) main.c_symbols ; method vlemmas = (* Visit the lemmas *) rev_iter (fun l -> self#vdlemma l; self#on_dlemma l) main.c_lemmas ; method vself = (* Visit a cluster *) begin self#vtypes ; self#vsymbols ; self#vlemmas ; end method virtual section : string -> unit method virtual on_library : string -> unit method virtual on_cluster : cluster -> unit method virtual on_type : logic_type_info -> typedef -> unit method virtual on_comp : compinfo -> (field * tau) list option -> unit method virtual on_icomp : compinfo -> (field * tau) list option -> unit method virtual on_dlemma : dlemma -> unit method virtual on_dfun : dfun -> unit end (* -------------------------------------------------------------------------- *)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>