package frama-c
Platform dedicated to the analysis of source code written in C
Install
Dune Dependency
Authors
-
MMichele Alberti
-
TThibaud Antignac
-
GGergö Barany
-
PPatrick Baudin
-
NNicolas Bellec
-
TThibaut Benjamin
-
AAllan Blanchard
-
LLionel Blatter
-
FFrançois Bobot
-
RRichard Bonichon
-
VVincent Botbol
-
QQuentin Bouillaguet
-
DDavid Bühler
-
ZZakaria Chihani
-
LLoïc Correnson
-
JJulien Crétin
-
PPascal Cuoq
-
ZZaynah Dargaye
-
BBasile Desloges
-
JJean-Christophe Filliâtre
-
PPhilippe Herrmann
-
MMaxime Jacquemin
-
FFlorent Kirchner
-
AAlexander Kogtenkov
-
RRemi Lazarini
-
TTristan Le Gall
-
JJean-Christophe Léchenet
-
MMatthieu Lemerre
-
DDara Ly
-
DDavid Maison
-
CClaude Marché
-
AAndré Maroneze
-
TThibault Martin
-
FFonenantsoa Maurica
-
MMelody Méaulle
-
BBenjamin Monate
-
YYannick Moy
-
PPierre Nigron
-
AAnne Pacalet
-
VValentin Perrelle
-
GGuillaume Petiot
-
DDario Pinto
-
VVirgile Prevosto
-
AArmand Puccetti
-
FFélix Ridoux
-
VVirgile Robles
-
JJan Rochel
-
MMuriel Roger
-
JJulien Signoles
-
NNicolas Stouls
-
KKostyantyn Vorobyov
-
BBoris Yakobowski
Maintainers
Sources
frama-c-29.0-Copper.tar.gz
sha256=d2fbb3b8d0ff83945872e9e6fa258e934a706360e698dae3b4d5f971addf7493
doc/src/frama-c-wp.core/MemRegion.ml.html
Source file MemRegion.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
(**************************************************************************) (* *) (* This file is part of WP plug-in of Frama-C. *) (* *) (* Copyright (C) 2007-2024 *) (* CEA (Commissariat a l'energie atomique et aux energies *) (* alternatives) *) (* *) (* you can redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation, version 2.1. *) (* *) (* It is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* See the GNU Lesser General Public License version 2.1 *) (* for more details (enclosed in the file licenses/LGPLv2.1). *) (* *) (**************************************************************************) (* TODO DEVEL MODE *) [@@@ warning "-32-37-60"] (* -------------------------------------------------------------------------- *) (* --- Region Memory Model --- *) (* -------------------------------------------------------------------------- *) open Cil_types open Sigs open Definitions module Wp = Wp_parameters module F = Lang.F module L = Qed.Logic (* -------------------------------------------------------------------------- *) (* --- Why-3 Region Theory --- *) (* -------------------------------------------------------------------------- *) let library = "region" let cluster_region () = Definitions.cluster ~id:"Region" ~title:"Region Index Constructors" () (* Index *) let t_addr = MemAddr.t_addr let t_index = L.Data( Lang.datatype ~library "index" ,[] ) let f_addrof = Lang.extern_f ~library ~result:t_addr "addrof" let f_consistent = Lang.extern_fp ~library "consistent" let f_consistent_range = Lang.extern_fp ~library "consistent_range" let a_addrof l = F.e_fun f_addrof [l] let p_consistent l = F.p_call f_consistent [l] let p_consistent_range l n = F.p_call f_consistent_range [l;n] let p_range k n ps = F.(p_leq e_zero k :: p_lt k n :: ps) (* Null *) let f_inull = Lang.extern_f ~library ~result:t_index "inull" let l_inull = F.e_fun f_inull [] let p_inull l = F.p_equal MemAddr.null (a_addrof l) (* Constructors *) let region_ctor ~result = Lang.extern_f ~library ~category:L.Constructor ~result "%s" let f_addr_var = region_ctor ~result:t_addr "addr_var" let f_addr_ref = region_ctor ~result:t_addr "addr_ref" let f_base_var = region_ctor ~result:L.Int "base_var" let f_base_ref = region_ctor ~result:L.Int "base_ref" let f_index_var = region_ctor ~result:t_index "index_var" let f_index_ref = region_ctor ~result:t_index "index_ref" let f_index_mem = region_ctor ~result:t_index "index_mem" let a_addr_var x = F.e_fun f_addr_var [x] let a_addr_ref p = F.e_fun f_addr_ref [p] let l_index_var x = F.e_fun f_index_var [F.e_int x] let l_index_mem l k n = F.e_fun f_index_ref [l;k;n] let l_index_ref l = F.e_fun f_index_ref [l] (* Shifts *) let f_shift_index = Lang.extern_f ~library ~result:t_index "shift_index" let l_shift_index l p = F.e_fun f_shift_index [l;p] (* Bits *) let t_bits = L.Int (* -------------------------------------------------------------------------- *) (* --- Index Simplifiers --- *) (* -------------------------------------------------------------------------- *) type index_builtin = { index: (Lang.lfun -> F.term list -> F.term -> F.term) ; addrof : (F.term list -> F.term) ; consistent : (F.term list -> F.pred) ; } module IndexBuiltin = WpContext.Static (struct type key = Lang.lfun type data = index_builtin let name = "MemRegion.INDEXER" include Lang.Fun end) (* f enjoys shifting props: - f(l,p,...)+k == f(l,p+k,...) - &f(l,p,...) = &l+p *) let is_shiftable f = ( f == f_shift_index ) || ( f == f_index_mem) let phi_addrof index = match F.repr index with | L.Fun(f,[]) when f == f_inull -> MemAddr.null | L.Fun(f,[x]) when f == f_index_var -> a_addr_var x | L.Fun(f,[l]) when f == f_index_ref -> a_addr_ref (a_addrof l) | L.Fun(f,l::p::_) when is_shiftable f -> MemAddr.shift (a_addrof l) p | L.Fun(f,es) -> (IndexBuiltin.find f).addrof es | _ -> raise Not_found let phi_shift_index l p = if p == F.e_zero then l else match F.repr l with | L.Fun(f,l::q::w) when is_shiftable f -> F.e_fun f (l::(F.e_add p q)::w) | L.Fun(f,es) -> (IndexBuiltin.find f).index f es p | _ -> raise Not_found let phi_consistent index = match F.repr index with | L.Fun(f,[]) when f == f_inull -> F.e_false | L.Fun(f,[x]) when f == f_index_var -> F.e_neq x F.e_zero | L.Fun(f,[l]) when f == f_index_ref -> F.e_prop @@ p_consistent l | L.Fun(f,[l;k;n]) when f == f_index_mem -> F.e_prop @@ F.p_conj @@ p_range k n [p_consistent l] | L.Fun(f,es) -> F.e_prop @@ (IndexBuiltin.find f).consistent es | _ -> raise Not_found let phi_consistent_range index sizeof = match F.repr index with | L.Fun(f,[l;k;n]) when f == f_index_mem -> F.e_prop @@ F.p_conj @@ F.[ p_leq e_zero sizeof ; p_leq e_zero k ; p_leq (e_add k sizeof) n ; p_consistent l ; ] | _ -> raise Not_found let () = Context.register begin fun () -> MemAddr.register f_addr_var ~base:(F.e_fun f_base_var) ~offset:(fun _ -> F.e_zero) ; MemAddr.register f_addr_ref ~base:(F.e_fun f_base_ref) ; F.set_builtin_1 f_addrof phi_addrof ; F.set_builtin_1 f_consistent phi_consistent ; F.set_builtin_2 f_shift_index phi_shift_index ; F.set_builtin_2 f_consistent_range phi_consistent_range ; end let cid = ref 0 (* TODO: projectified *) let constructor ~basename ~params ~index ~addrof ~consistent = let id = incr cid ; !cid in let lfun = Lang.generated_f ~result:t_index "%s_%d" basename id in let ps = List.map F.e_var params in let l = F.e_fun lfun ps in let k = Lang.freshvar ~basename:"k" L.Int in let ofs = F.e_var k in (* Must compute properties before registering simplifiers *) let p_addrof = F.p_equal (a_addrof l) (addrof ps) in let p_consistent = F.p_equiv (p_consistent l) (consistent ps) in let p_index = F.p_equal (l_shift_index l ofs) (index lfun ps ofs) in IndexBuiltin.define lfun { index ; addrof ; consistent } ; fun cluster -> begin Definitions.define_symbol { d_cluster = cluster ; d_lfun = lfun ; d_params = params ; d_types = 0 ; d_definition = Logic t_index ; } ; Definitions.define_lemma { l_cluster = cluster ; l_kind = Admit ; l_name = Printf.sprintf "addrof_%s_%d" basename id ; l_forall = params ; l_triggers = [] ; l_lemma = p_addrof ; } ; Definitions.define_lemma { l_cluster = cluster ; l_kind = Admit ; l_name = Printf.sprintf "consistent_%s_%d" basename id ; l_forall = params ; l_triggers = [] ; l_lemma = p_consistent ; } ; if p_index != F.p_true then Definitions.define_lemma { l_cluster = cluster ; l_kind = Admit ; l_name = Printf.sprintf "index_%s_%d" basename id ; l_forall = params @ [k] ; l_triggers = [] ; l_lemma = p_index ; } ; lfun end (* -------------------------------------------------------------------------- *) (* --- Field Index Constructors --- *) (* -------------------------------------------------------------------------- *) module FIELD = struct type t = int list (* Overlay offsets *) let pretty fmt = function | [] -> Format.fprintf fmt "{}" | p::ps -> begin Format.fprintf fmt "@[<hov 2>{%d" p ; List.iter (fun p -> Format.fprintf fmt ",@,%d" p) ps ; Format.fprintf fmt "}@]" ; end let compare = Stdlib.compare (* Extract constant offset *) let offset k = let rec walk s a = match F.repr a with | L.Add es -> List.fold_left walk s es | L.Kint z -> (try s + Integer.to_int_exn z with Z.Overflow -> s) | _ -> s in walk 0 k let builtin_index f es q = match es with | [l;p] -> F.e_fun f [l;F.e_add q p] | _ -> raise Not_found let builtin_addrof = function | [l;p] -> MemAddr.shift (a_addrof l) p | _ -> raise Not_found let builtin_consistent fds = function | [l;p] -> F.p_and (p_consistent l) (F.p_any (fun fd -> F.p_equal (F.e_int fd) p) fds) | _ -> raise Not_found end (* Model Independant Generators *) module FIELD_GEN = WpContext.StaticGenerator(FIELD) (struct type key = FIELD.t type data = cluster -> Lang.lfun let name = "MemRegion.FIELD_GEN" let compile fds = let l = Lang.freshvar ~basename:"l" t_index in let p = Lang.freshvar ~basename:"p" L.Int in constructor ~basename:"field" ~params:[l;p] ~index:FIELD.builtin_index ~addrof:FIELD.builtin_addrof ~consistent:(FIELD.builtin_consistent fds) end) (* Model Dependent Definitions *) module FIELD_MODEL = WpContext.Generator(FIELD) (struct type key = FIELD.t type data = Lang.lfun let name = "MemRegion.FIELD_MODEL" let compile fds = FIELD_GEN.get fds @@ cluster_region () end) let l_field ovl l k = let fds = List.map (fun rg -> rg.Layout.ofs) ovl in F.e_fun (FIELD_MODEL.get fds) [l;k] (* -------------------------------------------------------------------------- *) (* --- Array Index Constructors --- *) (* -------------------------------------------------------------------------- *) module ARRAY = struct type t = int * int list let compare = Stdlib.compare let pretty fmt (s,ds) = Format.fprintf fmt "%d%a" s Layout.Matrix.pretty ds (* Coefficient from Matrix dimensions: c_i = \Pi_{i<j} d_j *) let coefs s ds = let rec walk cs s = function | d::ds -> walk (s::cs) (d*s) ds | [] -> cs in walk [] s ds (* All zeroes *) let zeroes = List.map (fun _ -> F.e_zero) (* Address shift with coefficient c_i for each index k_i *) let rec shift a cs ks = match cs , ks with | c::cs , k::ks -> shift (MemAddr.shift a (F.e_fact c k)) cs ks | _ -> a (* Address of an array index *) let builtin_addrof cs = function | l::ks -> shift (a_addrof l) cs ks | _ -> raise Not_found (* Add conditions (0 <= ki < ni) to [ps]. WARNING: ns = rev ds *) let rec add_range_dims ps ks ns = match ks , ns with | k::ks , n::ns -> add_range_dims F.(p_range k (e_int n) ps) ks ns | k::ks , [] -> add_range_dims F.(p_equal e_zero k :: ps) ks [] | [] , _ -> ps (* Consistent index. WARNING: ns = rev ds *) let builtin_consistent ns = function | l::ks -> F.p_conj (add_range_dims [p_consistent l] ks ns) | _ -> raise Not_found (* Extract linear forms *) let rec get_linear poly a = match F.repr a with | L.Add es -> List.fold_left get_linear poly es | L.Kint z -> (try (Integer.to_int_exn z,F.e_one)::poly with Z.Overflow -> (1,a)::poly) | L.Times(c,e) -> (try (Integer.to_int_exn c,e)::poly with Z.Overflow -> (1,a)::poly) | _ -> (1,a)::poly (* Some of linear form *) let rec add_linear s = function | (k,e)::poly -> add_linear (F.e_add s (F.e_fact k e)) poly | [] -> s (* Euclidian division *) (* euclid q r ci p = q',r' <-> p + ci.q + r = ci.q' + r' *) let rec euclid q r ci = function | [] -> q,r | (c,k)::poly -> let q0 = c / ci in let r0 = c mod ci in euclid (F.e_add q (F.e_fact q0 k)) ((r0,k)::r) ci poly (* Linear offset decomposed on each coefficient *) let rec add_linear_index cs ks ks' p = match cs , ks with | c :: cs , k :: ks -> let k' , r = euclid k [] c p in add_linear_index cs ks (k'::ks') r | _ -> List.rev_append ks' ks , p (* Linear offset and remainder delta *) let offset cs ks p = let ks',r = add_linear_index cs ks [] (get_linear [] p) in ks' , add_linear F.e_zero r (* Builtin simplifier *) let builtin_index cs f es p = match es with | l::ks -> let ks' , r = offset cs ks p in if Qed.Hcons.equal_list F.equal ks ks' then raise Not_found else let l' = F.e_fun f (l :: ks) in l_shift_index l' r | _ -> raise Not_found end module ARRAY_GEN = WpContext.StaticGenerator(ARRAY) (struct type key = ARRAY.t type data = (cluster -> Lang.lfun) let name = "MemRegion.ARRAY_GEN" let compile (s,ds) = let l = Lang.freshvar ~basename:"l" t_index in let ks = List.map (fun _ -> Lang.freshvar ~basename:"k" L.Int) ds in let cs = ARRAY.coefs s ds in let ns = List.rev ds in constructor ~basename:"array" ~params:(l::ks) ~index:(ARRAY.builtin_index cs) ~addrof:(ARRAY.builtin_addrof cs) ~consistent:(ARRAY.builtin_consistent ns) end) module ARRAY_MODEL = WpContext.Generator(ARRAY) (struct type key = ARRAY.t type data = Lang.lfun let name = "MemRegion.ARRAY_MODEL" let compile dim = ARRAY_GEN.get dim @@ cluster_region () end) let l_array s ds l ks = F.e_fun (ARRAY_MODEL.get (s,ds)) (l::ks) (* -------------------------------------------------------------------------- *) (* --- Model Context --- *) (* -------------------------------------------------------------------------- *) let datatype = "MemRegion" let configure () = begin let orig_pointer = Context.push Lang.pointer t_index in let orig_null = Context.push Cvalues.null p_inull in let rollback () = Context.pop Lang.pointer orig_pointer ; Context.pop Cvalues.null orig_null in rollback end let configure_ia = let no_binder = { bind = fun _ f v -> f v } in fun _vertex -> no_binder let hypotheses p = p let error msg = Warning.error ~source:"Region Model" msg (* -------------------------------------------------------------------------- *) (* --- Region Maps --- *) (* -------------------------------------------------------------------------- *) let map () = RegionAnalysis.get begin match WpContext.get_scope () with | WpContext.Global -> None | WpContext.Kf kf -> Some kf end (* -------------------------------------------------------------------------- *) (* --- Locations --- *) (* -------------------------------------------------------------------------- *) open Layout type region = Region.region type index = F.term let pp_index = F.pp_term let pp_region = Region.R.pretty let pp_value = Value.pretty pp_region let pp_args fmt = function | [] -> () | k::ks -> F.pp_term fmt k ; List.iter (fun k -> Format.fprintf fmt "@,,%a" F.pp_term k) ks let pp_field fmt k = if F.is_atomic k then Format.fprintf fmt "@,+%a" F.pp_term k else Format.fprintf fmt "@,+(%a)" F.pp_term k let pp_delta fmt k = if k != F.e_zero then pp_field fmt k type loc = | GarbledMix (* any possible location *) | Index of index (* unqualified address *) | Lref of region * index * region | Lmem of region * index * root * region value | Lraw of region * index * root * region option | Lfld of region * index * F.term * region overlay | Larr of region * index * F.term * F.term list * int * int list (* For Lxxx locations: - index: start index inside the chunk - term: additional shift index - term list: array index from start *) (* -------------------------------------------------------------------------- *) (* --- Loc Basics --- *) (* -------------------------------------------------------------------------- *) let null = Index l_inull let vars = function | GarbledMix -> F.Vars.empty | Index l | Lref(_,l,_) | Lmem(_,l,_,_) | Lraw(_,l,_,_) -> F.vars l | Lfld(_,l,k,_) -> F.Vars.union (F.vars l) (F.vars k) | Larr(_,l,k,ks,_,_) -> Qed.Hcons.fold_list F.Vars.union F.vars F.Vars.empty (l::k::ks) let occurs x = function | GarbledMix -> false | Index l | Lref(_,l,_) | Lmem(_,l,_,_) | Lraw(_,l,_,_) -> F.occurs x l | Lfld(_,l,k,_) -> F.occurs x l || F.occurs x k | Larr(_,l,k,ks,_,_) -> List.exists (F.occurs x) (l::k::ks) let pretty fmt = function | GarbledMix -> Format.pp_print_string fmt "garbled-mix" | Index l -> Format.fprintf fmt "@[<hov 2>Index(%a)@]" pp_index l | Lref(r,l,r') -> Format.fprintf fmt "@[<hov 2>Ref@,{%a->%a}@,(%a)@]" pp_region r pp_region r' pp_index l | Lmem(r,l,_,v) -> Format.fprintf fmt "@[<hov 2>Mem@,{%a:@,%a}@,(%a)@]" pp_region r pp_value v pp_index l | Lraw(r,l,_,None) -> Format.fprintf fmt "@[<hov 2>Raw@,{%a}@,(%a)" pp_region r pp_index l | Lraw(r,l,_,Some r') -> Format.fprintf fmt "@[<hov 2>Raw@,{%a->%a}@,(%a)" pp_region r pp_region r' pp_index l | Lfld(r,l,k,_) -> Format.fprintf fmt "@[<hov 2>Field@,{%a}@,(%a%a)@]" pp_region r pp_index l pp_field k | Larr(r,l,k,ks,_,_) -> Format.fprintf fmt "@[<hov 2>Index@,{%a}@,@[<hov 2>(%a[%a]%a)@]@]" pp_region r pp_index l pp_args ks pp_delta k (* -------------------------------------------------------------------------- *) (* --- Loc Constructors --- *) (* -------------------------------------------------------------------------- *) let rec index map (r:region) (l:index) (ofs:F.term) (len:int) = index_chunk map r l ofs len (Region.chunk map r) and index_chunk map (r:region) l ofs len = function | Mref r' -> Lref(r,l_shift_index l ofs,r') | Mraw(m,p) -> Lraw(r,l_shift_index l ofs,m,p) | Mmem(m,v) -> Lmem(r,l_shift_index l ofs,m,v) | Mcomp(_,[{ofs=0;reg;dim}]) -> index_dim map reg l ofs len dim | Mcomp(_,overlay) -> index_field map r l ofs len overlay and index_field map r l ofs len overlay = try let k = FIELD.offset ofs in let rg = List.find (Layout.Range.included k len) overlay in let fd = F.e_int k in let l' = l_field overlay l fd in index_dim map rg.reg l' (F.e_sub ofs fd) len rg.dim with Not_found -> Lfld(r,l,ofs,overlay) and index_dim map r l ofs len = function | Raw s | Dim(s,[]) -> index map r (l_index_mem l F.e_zero (F.e_int s)) ofs len | Dim(s,ds) -> index_array map r l (ARRAY.zeroes ds) ofs len s ds and index_array map r l ks ofs len s ds = let cs = ARRAY.coefs s ds in let ks,ofs = ARRAY.offset cs ks ofs in if len <= s then let l' = l_array s ds l ks in index map r l' ofs len else Larr(r,l,ofs,ks,s,ds) and shift_index_loc map loc ofs len = match loc with | GarbledMix -> GarbledMix | Index l -> Index (l_shift_index l ofs) | Lref(r,l,r') -> Lref(r,l_shift_index l ofs,r') | Lmem(r,l,m,v) -> Lmem(r,l_shift_index l ofs,m,v) | Lraw(r,l,m,p) -> Lraw(r,l_shift_index l ofs,m,p) | Lfld(r,l,k,overlay) -> index_field map r l (F.e_add k ofs) len overlay | Larr(r,l,k,ks,s,ds) -> index_array map r l ks (F.e_add k ofs) len s ds let cvar x = let map = map () in let region = Region.of_cvar map x in let id = if Cil.isConstType x.vtype then - x.vid else x.vid in index map region (l_index_var id) F.e_zero (Cil.bitsSizeOf x.vtype) let field loc fd = let map = map () in let ofs,len = Region.field_offset map fd in shift_index_loc map loc (F.e_int ofs) len let shift loc obj n = let map = map () in let s = Ctypes.bits_sizeof_object obj in shift_index_loc map loc (F.e_fact s n) s let pointer_loc l = Index l let pointer_val = function | GarbledMix -> error "Can not obtain address of Garbled-Mix location" | Index l | Lref(_,l,_) | Lmem(_,l,_,_) | Lraw(_,l,_,_) -> l | Lfld(_,l,k,overlay) -> l_field overlay l k | Larr(_,l,k,ks,s,ds) -> l_shift_index (l_array s ds l ks) k let loc_of_index re ty l = index (map()) re l F.e_zero (Cil.bitsSizeOf ty) (* -------------------------------------------------------------------------- *) (* --- Chunks --- *) (* -------------------------------------------------------------------------- *) type chunk = | Mu_alloc | Mu_raw of region * root | Mu_mem of region * root * region value module Chunk = struct type t = chunk let self = "region" let id = function | Mu_raw(r,_) | Mu_mem(r,_,_) -> Region.id r | Mu_alloc -> Region.noid let hash m = id m let compare m m' = if m==m then 0 else Stdlib.compare (id m) (id m') let equal m m' = m==m' || (id m = id m') let tau_of_value = function | Int _ -> L.Int | Float _ -> L.Real | Pointer _ -> t_index let tau_of_chunk = function | Mu_alloc -> MemMemory.t_malloc | Mu_raw _ -> t_bits | Mu_mem(_,root,v) -> let value = tau_of_value v in if Root.indexed root then L.Array(t_addr,value) else value let basename_of_chunk = function | Mu_raw _ -> "B" | Mu_mem(_,root,Int _) -> if Root.indexed root then "M" else "V" | Mu_mem(_,root,Float _) -> if Root.indexed root then "Mf" else "F" | Mu_mem(_,root,Pointer _) -> if Root.indexed root then "Mp" else "M" | Mu_alloc -> "A" let is_framed = function | Mu_raw(_,root) | Mu_mem(_,root,_) -> Root.framed root | Mu_alloc -> false let pretty fmt mu = Format.pp_print_string fmt (basename_of_chunk mu) end module Heap = struct include Qed.Collection.Make(Chunk) let empty = Set.empty let of_raw r rt = Set.singleton (Mu_raw(r,rt)) let of_mem r rt v = Set.singleton (Mu_mem(r,rt,v)) let rec of_region map r = match Region.chunk map r with | Mref _ -> Set.empty | Mraw(rt,_) -> of_raw r rt | Mmem(rt,v) -> of_mem r rt v | Mcomp(_,overlay) -> of_overlay map overlay and of_range map { reg } = of_region map reg and of_overlay map ovl = Qed.Hcons.fold_list Set.union (of_range map) empty ovl end module Sigma = Sigma.Make(Chunk)(Heap) type sigma = Sigma.t type domain = Sigma.domain let value_footprint _obj = function | GarbledMix | Index _ -> error "Can not compute Garbled-mix domain" | Lref _ -> Heap.empty | Lraw(r,_,rt,_) -> Heap.of_raw r rt | Lmem(r,_,rt,v) -> Heap.of_mem r rt v | Lfld(_,_,_,ovl) -> Heap.of_overlay (map()) ovl | Larr(r,_,_,_,_,_) -> Heap.of_region (map()) r let init_footprint _ _ = Heap.empty let is_well_formed _s = Lang.F.p_true let region_of_loc = function | (GarbledMix | Index _) as l -> error "Can not find region of %a" pretty l | Lref(r,_,_) | Lraw(r,_,_,_) | Lmem(r,_,_,_) | Lfld(r,_,_,_) | Larr(r,_,_,_,_,_) -> r (* -------------------------------------------------------------------------- *) (* --- Loader --- *) (* -------------------------------------------------------------------------- *) module MODEL = struct module Chunk = Chunk module Sigma = Sigma let name = "MemRegion.LOADER" type nonrec loc = loc let field = field let shift = shift let sizeof obj = Lang.F.e_int (Ctypes.bits_sizeof_object obj) let value_footprint = value_footprint let init_footprint = init_footprint let frames _ _ _ = [] let to_addr l = a_addrof (pointer_val l) let to_region_pointer l = Region.id (region_of_loc l) , pointer_val l let of_region_pointer r obj l = let map = map () in index map (Region.region map r) l F.e_zero (Ctypes.bits_sizeof_object obj) let load_mem sigma r rt v l = let m = Sigma.value sigma (Mu_mem(r,rt,v)) in if Root.indexed rt then F.e_get m (a_addrof l) else m let load_int sigma i = function | Lmem(r,l,rt,(Int i0 as v)) when i = i0 -> load_mem sigma r rt v l | l -> error "Can not load %a value from %a" Ctypes.pp_int i pretty l let load_float sigma f = function | Lmem(r,l,rt,(Float f0 as v)) when f = f0 -> load_mem sigma r rt v l | l -> error "Can not load %a value from %a" Ctypes.pp_float f pretty l let load_pointer sigma ty = function | Lmem(r,l,rt,(Pointer r' as v)) -> loc_of_index r' ty (load_mem sigma r rt v l) | Lref(_,l,r') -> loc_of_index r' ty (l_index_ref l) | l -> error "Can not load pointer value from %a" pretty l let havoc obj loc ~length (chunk:chunk) ~fresh ~current = match chunk with | Mu_alloc -> fresh | Mu_raw _ -> error "Can not havoc raw memories" | Mu_mem(_,root,_) -> if Layout.Root.indexed root then let addr = to_addr loc in let offset = F.e_fact (Ctypes.bits_sizeof_object obj) length in F.e_fun MemMemory.f_havoc [fresh;current;addr;offset] else fresh let eqmem obj loc chunk m1 m2 = match chunk with | Mu_alloc -> error "Can not compare allocation tables" | Mu_raw _ -> error "Can not compare raw memories" | Mu_mem(_,root,_) -> if Layout.Root.indexed root then let addr = to_addr loc in let offset = F.e_int (Ctypes.bits_sizeof_object obj) in F.p_call MemMemory.p_eqmem [m1;m2;addr;offset] else F.p_equal m1 m2 let eqmem_forall obj loc chunk m1 m2 = match chunk with | Mu_alloc -> error "Can not compare allocation tables" | Mu_raw _ -> error "Can not compare raw memories" | Mu_mem(_,root,_) -> if Layout.Root.indexed root then let xp = Lang.freshvar ~basename:"p" t_addr in let p = F.e_var xp in let a = to_addr loc in let n = F.e_int (Ctypes.bits_sizeof_object obj) in let separated = F.p_call MemAddr.p_separated [ p ; F.e_one ; a ; n ] in let equal = F.p_equal (F.e_get m1 p) (F.e_get m2 p) in [xp],separated,equal else [],F.p_true,F.p_equal m1 m2 let last _ = error "Can not compute last valid index" let store_mem sigma r rt v l value = let c = Mu_mem(r,rt,v) in if Root.indexed rt then c , F.e_set (Sigma.value sigma c) (a_addrof l) value else c , value let store_int sigma i loc value = match loc with | Lmem(r,l,rt,(Int i0 as v)) when i = i0 -> store_mem sigma r rt v l value | _ -> error "Can not store %a value into %a" Ctypes.pp_int i pretty loc let store_float sigma f loc value = match loc with | Lmem(r,l,rt,(Float f0 as v)) when f = f0 -> store_mem sigma r rt v l value | _ -> error "Can not store %a value into %a" Ctypes.pp_float f pretty loc let store_pointer sigma _ty loc value = match loc with | Lmem(r,l,rt,(Pointer _ as v)) -> store_mem sigma r rt v l value | _ -> error "Can not store pointer values into %a" pretty loc let set_init_atom _ _ _ = assert false let set_init _obj _loc ~length _chunk ~current = let _ = length in let _ = current in assert false let is_init_atom _ _ = assert false let is_init_range _ _ _ _ = assert false let monotonic_init _ _ = assert false end module LOADER = MemLoader.Make(MODEL) let load = LOADER.load let load_init = LOADER.load_init let load_value = LOADER.load_value let stored = LOADER.stored let stored_init = LOADER.stored_init let copied = LOADER.copied let copied_init = LOADER.copied_init let assigned = LOADER.assigned let initialized = LOADER.initialized let domain = LOADER.domain (* -------------------------------------------------------------------------- *) (* --- Loc Segments --- *) (* -------------------------------------------------------------------------- *) type segment = loc rloc let region_of_sloc = function Rloc(_,l) | Rrange(l,_,_,_) -> region_of_loc l let disjoint_region s1 s2 = let map = map () in let c1 = Region.chunks map (region_of_sloc s1) in let c2 = Region.chunks map (region_of_sloc s2) in not (Qed.Intset.intersect c1 c2) let addrof = MODEL.to_addr let sizeof = MODEL.sizeof let included s1 s2 = if disjoint_region s1 s2 then F.p_false else MemAddr.included ~shift ~addrof ~sizeof s1 s2 let separated s1 s2 = if disjoint_region s1 s2 then F.p_true else MemAddr.separated ~shift ~addrof ~sizeof s1 s2 (* -------------------------------------------------------------------------- *) (* --- TODO TODO TODO TODO TODO TODO TODO TODO TODO TODO TODO TODO TODO --- *) (* -------------------------------------------------------------------------- *) type state = unit let state _ = () let iter _ _ = () let lookup _ _ = Mterm let updates _ _ = Bag.empty let apply _ _ = () let literal ~eid _ = ignore eid ; GarbledMix let base_addr _l = GarbledMix let base_offset l = MemAddr.offset (addrof l) let block_length _s _obj _l = F.e_zero let cast _ _l = GarbledMix let loc_of_int _ _ = GarbledMix let int_of_loc _ _ = F.e_zero let not_yet_pointer () = error "Pointer comparison not yet implemented" let is_null _ = not_yet_pointer () let loc_eq _ _ = not_yet_pointer () let loc_lt _ _ = not_yet_pointer () let loc_leq _ _ = not_yet_pointer () let loc_neq _ _ = not_yet_pointer () let loc_diff _ _ _ = not_yet_pointer () let frame _sigma = [] let alloc sigma _xs = sigma let scope _seq _s _xs = [] let valid _sigma _acs _l = error "Validity not yet implemented" let invalid _sigma _l = error "Validity not yet implemented" let global _sigma _p = F.p_true
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>