package frama-c
Platform dedicated to the analysis of source code written in C
Install
Dune Dependency
Authors
-
MMichele Alberti
-
TThibaud Antignac
-
GGergö Barany
-
PPatrick Baudin
-
NNicolas Bellec
-
TThibaut Benjamin
-
AAllan Blanchard
-
LLionel Blatter
-
FFrançois Bobot
-
RRichard Bonichon
-
VVincent Botbol
-
QQuentin Bouillaguet
-
DDavid Bühler
-
ZZakaria Chihani
-
LLoïc Correnson
-
JJulien Crétin
-
PPascal Cuoq
-
ZZaynah Dargaye
-
BBasile Desloges
-
JJean-Christophe Filliâtre
-
PPhilippe Herrmann
-
MMaxime Jacquemin
-
FFlorent Kirchner
-
AAlexander Kogtenkov
-
RRemi Lazarini
-
TTristan Le Gall
-
JJean-Christophe Léchenet
-
MMatthieu Lemerre
-
DDara Ly
-
DDavid Maison
-
CClaude Marché
-
AAndré Maroneze
-
TThibault Martin
-
FFonenantsoa Maurica
-
MMelody Méaulle
-
BBenjamin Monate
-
YYannick Moy
-
PPierre Nigron
-
AAnne Pacalet
-
VValentin Perrelle
-
GGuillaume Petiot
-
DDario Pinto
-
VVirgile Prevosto
-
AArmand Puccetti
-
FFélix Ridoux
-
VVirgile Robles
-
JJan Rochel
-
MMuriel Roger
-
JJulien Signoles
-
NNicolas Stouls
-
KKostyantyn Vorobyov
-
BBoris Yakobowski
Maintainers
Sources
frama-c-29.0-Copper.tar.gz
sha256=d2fbb3b8d0ff83945872e9e6fa258e934a706360e698dae3b4d5f971addf7493
doc/src/frama-c-wp.core/MemLoader.ml.html
Source file MemLoader.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
(**************************************************************************) (* *) (* This file is part of WP plug-in of Frama-C. *) (* *) (* Copyright (C) 2007-2024 *) (* CEA (Commissariat a l'energie atomique et aux energies *) (* alternatives) *) (* *) (* you can redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation, version 2.1. *) (* *) (* It is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* See the GNU Lesser General Public License version 2.1 *) (* for more details (enclosed in the file licenses/LGPLv2.1). *) (* *) (**************************************************************************) (* -------------------------------------------------------------------------- *) (* --- Memory Model --- *) (* -------------------------------------------------------------------------- *) open Cil_types open Cil_datatype open Definitions open Ctypes open Lang open Lang.F open Sigs (* -------------------------------------------------------------------------- *) (* --- Compound Loader --- *) (* -------------------------------------------------------------------------- *) let cluster () = Definitions.cluster ~id:"Compound" ~title:"Memory Compound Loader" () module type Model = sig module Chunk : Chunk module Sigma : Sigma with type chunk = Chunk.t val name : string type loc val sizeof : c_object -> term val field : loc -> fieldinfo -> loc val shift : loc -> c_object -> term -> loc val to_addr : loc -> term val to_region_pointer : loc -> int * term val of_region_pointer : int -> c_object -> term -> loc val value_footprint: c_object -> loc -> Sigma.domain val init_footprint: c_object -> loc -> Sigma.domain val frames : c_object -> loc -> Chunk.t -> frame list val last : Sigma.t -> c_object -> loc -> term val havoc : c_object -> loc -> length:term -> Chunk.t -> fresh:term -> current:term -> term val eqmem : c_object -> loc -> Chunk.t -> term -> term -> pred val eqmem_forall : c_object -> loc -> Chunk.t -> term -> term -> var list * pred * pred val load_int : Sigma.t -> c_int -> loc -> term val load_float : Sigma.t -> c_float -> loc -> term val load_pointer : Sigma.t -> typ -> loc -> loc val store_int : Sigma.t -> c_int -> loc -> term -> Chunk.t * term val store_float : Sigma.t -> c_float -> loc -> term -> Chunk.t * term val store_pointer : Sigma.t -> typ -> loc -> term -> Chunk.t * term val is_init_atom : Sigma.t -> loc -> term val is_init_range : Sigma.t -> c_object -> loc -> term -> pred val set_init_atom : Sigma.t -> loc -> term -> Chunk.t * term val set_init : c_object -> loc -> length:term -> Chunk.t -> current:term -> term (* val monotonic_init : Sigma.t -> Sigma.t -> pred *) end module Make (M : Model) = struct type chunk = M.Chunk.t module Chunk = M.Chunk module Sigma = M.Sigma module Domain = M.Sigma.Chunk.Set let signature ft = let s = Sigma.create () in let xs = ref [] in let cs = ref [] in Domain.iter (fun c -> cs := c :: !cs ; xs := (Sigma.get s c) :: !xs ; ) ft ; List.rev !xs , List.rev !cs , s let domain obj loc = M.Sigma.Chunk.Set.union (M.value_footprint obj loc) (M.init_footprint obj loc) let pp_rid fmt r = if r <> 0 then Format.fprintf fmt "_R%03d" r (* -------------------------------------------------------------------------- *) (* --- Frame Lemmas for Compound Access --- *) (* -------------------------------------------------------------------------- *) let memories sigma chunks = List.map (Sigma.value sigma) chunks let assigned sigma c m chunks = List.map (fun c0 -> if Chunk.equal c0 c then m else Sigma.value sigma c0) chunks let frame_lemmas phi obj loc params chunks = begin let prefix = Fun.debug phi in let sigma = Sigma.create () in List.iteri (fun i chunk -> List.iter (fun (name,triggers,conditions,m1,m2) -> let mem1 = assigned sigma chunk m1 chunks in let mem2 = assigned sigma chunk m2 chunks in let value1 = e_fun phi (params @ mem1) in let value2 = e_fun phi (params @ mem2) in let vars1 = F.vars value1 in let vars2 = F.vars value2 in let l_triggers = if Vars.subset vars1 vars2 then [ (Trigger.of_term value2 :: triggers ) ] else if Vars.subset vars2 vars1 then [ (Trigger.of_term value1 :: triggers ) ] else [ (Trigger.of_term value1 :: triggers ); (Trigger.of_term value2 :: triggers ) ] in let l_name = Format.asprintf "%s_%s_%s%d" prefix name (Chunk.basename_of_chunk chunk) i in let l_lemma = F.p_hyps conditions (p_equal value1 value2) in Definitions.define_lemma { l_kind = Admit ; l_name ; l_triggers ; l_forall = F.p_vars l_lemma ; l_lemma = l_lemma ; l_cluster = cluster () ; } ) (M.frames obj loc chunk) ) chunks end (* -------------------------------------------------------------------------- *) (* --- Loader utils --- *) (* -------------------------------------------------------------------------- *) module AKEY = struct type t = int * base * Matrix.t and base = I of c_int | F of c_float | P | C of compinfo let make r elt ds = let base = match elt with | C_int i -> I i | C_float f -> F f | C_pointer _ -> P | C_comp c -> C c | C_array _ -> raise (Invalid_argument "Wp.EqArray") in r, base , ds let key = function | I i -> Ctypes.i_name i | F f -> Ctypes.f_name f | P -> "ptr" | C c -> Lang.comp_id c let key_init = function | (I _ | F _ | P) as b -> key b ^ "_init" | C c -> Lang.comp_init_id c let obj = function | I i -> C_int i | F f -> C_float f | P -> C_pointer Cil.voidPtrType | C c -> C_comp c let tau = function | I _ -> Lang.t_int | F f -> Lang.t_float f | P -> Lang.t_addr () | C c -> Lang.t_comp c let tau_init = function | I _ | F _ | P -> Lang.t_bool | C c -> Lang.t_init c let compare (r,a,p) (s,b,q) = if r = s then let cmp = String.compare (key a) (key b) in if cmp <> 0 then cmp else Matrix.compare p q else r - s let pretty fmt (r,a,ds) = Format.fprintf fmt "%s%a%a" (key a) pp_rid r Matrix.pp_suffix_id ds end module type LOAD_INFO = sig val kind : Lang.datakind val footprint : c_object -> M.loc -> M.Sigma.domain val t_comp : compinfo -> Lang.tau val t_array : AKEY.base -> Lang.tau val comp_id : compinfo -> string val array_id : AKEY.base -> string val load : M.Sigma.t -> c_object -> M.loc -> term end module VALUE_LOAD_INFO = struct let kind = KValue let footprint = M.value_footprint let t_comp = Lang.t_comp let t_array = AKEY.tau let comp_id = Lang.comp_id let array_id = AKEY.key let load_rec = ref (fun _ _ _ -> assert false) let load sigma = !load_rec sigma end module INIT_LOAD_INFO = struct let kind = KInit let footprint = M.init_footprint let t_comp = Lang.t_init let t_array = AKEY.tau_init let comp_id = Lang.comp_init_id let array_id = AKEY.key_init let load_rec = ref (fun _ _ _ -> assert false) let load sigma = !load_rec sigma end (* -------------------------------------------------------------------------- *) (* --- Compound Loader --- *) (* -------------------------------------------------------------------------- *) module COMP_KEY = struct type t = int * compinfo let compare (r,c) (r',c') = if r=r' then Compinfo.compare c c' else r-r' let pretty fmt (r,c) = Format.fprintf fmt "%d:%a" r Compinfo.pretty c end module COMP_GEN (Info : LOAD_INFO) = WpContext.Generator(COMP_KEY) (struct let name = M.name ^ ".COMP" ^ (if Info.kind = KInit then "INIT" else "") type key = int * compinfo type data = lfun * chunk list let generate (r,c) = let x = Lang.freshvar ~basename:"p" (Lang.t_addr()) in let v = e_var x in let obj = C_comp c in let loc = M.of_region_pointer r obj v in (* t_pointer -> loc *) let domain = Info.footprint obj loc in let result = Info.t_comp c in let lfun = Lang.generated_f ~context:true ~result "Load%a_%s" pp_rid r (Info.comp_id c) in let xms,chunks,sigma = signature domain in let prms = x :: xms in let dfun = match c.cfields with | None -> Definitions.Logic result | Some fields -> let def = List.map (fun f -> let fd = cfield ~kind:Info.kind f in let ft = object_of f.ftype in let fv = Info.load sigma ft (M.field loc f) in let pr = F.e_apply (F.e_lambda prms fv) in F.set_builtin_field lfun fd pr ; fd,fv ) fields in Definitions.Function( result , Def , e_record def ) in Definitions.define_symbol { d_lfun = lfun ; d_types = 0 ; d_params = prms ; d_definition = dfun ; d_cluster = cluster () ; } ; frame_lemmas lfun obj loc [v] chunks ; lfun , chunks let compile = Lang.local generate end) module COMP = COMP_GEN(VALUE_LOAD_INFO) module COMP_INIT = COMP_GEN(INIT_LOAD_INFO) (* -------------------------------------------------------------------------- *) (* --- Array Loader --- *) (* -------------------------------------------------------------------------- *) module ARRAY_GEN(Info: LOAD_INFO) = WpContext.Generator(AKEY) (struct open Matrix let name = M.name ^ ".ARRAY" ^ (if Info.kind=KInit then "INIT" else "") type key = AKEY.t type data = lfun * chunk list let generate (r,a,ds) = let x = Lang.freshvar ~basename:"p" (Lang.t_addr()) in let v = e_var x in let obj = AKEY.obj a in let loc = M.of_region_pointer r obj v in (* t_pointer -> loc *) let domain = Info.footprint obj loc in let result = Matrix.cc_tau (Info.t_array a) ds in let lfun = Lang.generated_f ~result ~context:true "Array%a_%s%a" pp_rid r (Info.array_id a) Matrix.pp_suffix_id ds in let prefix = Lang.Fun.debug lfun in let name = prefix ^ "_access" in let xms,chunks,sigma = signature domain in let env = Matrix.cc_env ds in let prms = x :: env.size_var @ xms in let phi = e_fun lfun (v :: env.size_val @ List.map e_var xms) in let va = List.fold_left e_get phi env.index_val in let ofs = e_sum env.index_offset in let vm = Info.load sigma obj (M.shift loc obj ofs) in let lemma = p_hyps env.index_range (p_equal va vm) in let cluster = cluster () in Definitions.define_symbol { d_lfun = lfun ; d_types = 0 ; d_params = prms ; d_definition = Logic result ; d_cluster = cluster ; } ; Definitions.define_lemma { l_kind = Admit ; l_name = name ; l_forall = F.p_vars lemma ; l_triggers = [[Trigger.of_term va]] ; l_lemma = lemma ; l_cluster = cluster ; } ; let pr = F.e_lambda (prms @ env.index_var) vm in let nk = List.length env.index_var in Lang.F.set_builtin_get lfun (fun es ks -> if List.length ks = nk then F.e_apply pr (es @ ks) else raise Not_found ) ; if env.length <> None then begin let ns = List.map F.e_var env.size_var in frame_lemmas lfun obj loc (v::ns) chunks end ; lfun , chunks let compile = Lang.local generate end) module ARRAY = ARRAY_GEN(VALUE_LOAD_INFO) module ARRAY_INIT = ARRAY_GEN(INIT_LOAD_INFO) (* -------------------------------------------------------------------------- *) (* --- Loaders --- *) (* -------------------------------------------------------------------------- *) module LOADER_GEN (ATOM: sig val load_int : M.Sigma.t -> c_int -> M.loc -> term val load_float : M.Sigma.t -> c_float -> M.loc -> term val load_pointer : M.Sigma.t -> typ -> M.loc -> term end) (COMP: sig val get : (int*compinfo) -> (lfun * chunk list) end) (ARRAY: sig val get : (int*AKEY.base*Matrix.t) -> (lfun * chunk list) end) = struct let load_comp sigma comp loc = let r , p = M.to_region_pointer loc in let f , m = COMP.get (r,comp) in F.e_fun f (p :: memories sigma m) let load_array sigma a loc = let r , p = M.to_region_pointer loc in let e , ns = Ctypes.array_dimensions a in let ds = Matrix.of_dims ns in let f , m = ARRAY.get @@ AKEY.make r e ds in F.e_fun f (p :: Matrix.cc_dims ns @ memories sigma m) let load sigma obj loc = match obj with | C_int i -> ATOM.load_int sigma i loc | C_float f -> ATOM.load_float sigma f loc | C_pointer t -> ATOM.load_pointer sigma t loc | C_comp c -> load_comp sigma c loc | C_array a -> load_array sigma a loc end module VALUE_LOADER = LOADER_GEN (struct let load_int = M.load_int let load_float = M.load_float let load_pointer sigma t loc = snd @@ M.to_region_pointer @@ M.load_pointer sigma t loc end) (COMP)(ARRAY) let load_comp = VALUE_LOADER.load_comp let load_array = VALUE_LOADER.load_array let load_value = VALUE_LOADER.load let () = VALUE_LOAD_INFO.load_rec := load_value let load sigma obj loc = let open Sigs in match obj with | C_int i -> Val (M.load_int sigma i loc) | C_float f -> Val (M.load_float sigma f loc) | C_pointer t -> Loc (M.load_pointer sigma t loc) | C_comp c -> Val (load_comp sigma c loc) | C_array a -> Val (load_array sigma a loc) (* -------------------------------------------------------------------------- *) (* --- Initialized --- *) (* -------------------------------------------------------------------------- *) let isinitrec = ref (fun _ _ _ -> assert false) module IS_INIT_COMP = WpContext.Generator(COMP_KEY) (struct let name = M.name ^ ".IS_INIT_COMP" type key = int * compinfo type data = lfun * chunk list let generate (r,c) = let x = Lang.freshvar ~basename:"p" (Lang.t_addr()) in let obj = C_comp c in let loc = M.of_region_pointer r obj (e_var x) in let domain = M.init_footprint obj loc in let cluster = cluster () in (* Is_init: structural definition *) let name = Format.asprintf "Is%s%a" (Lang.comp_init_id c) pp_rid r in let lfun = Lang.generated_p name in let xms,chunks,sigma = signature domain in let params = x :: xms in let def = match c.cfields with | None -> Logic Lang.t_prop | Some fields -> let def = p_all (fun f -> !isinitrec sigma (object_of f.ftype) (M.field loc f)) fields in Predicate(Def, def) in Definitions.define_symbol { d_lfun = lfun ; d_types = 0 ; d_params = params ; d_definition = def ; d_cluster = cluster ; } ; (* Is_init: full-range definition *) let is_init_p = p_call lfun (List.map e_var (x :: xms)) in let is_init_r = M.is_init_range sigma obj loc e_one in let lemma = p_equiv is_init_p is_init_r in Definitions.define_lemma { l_kind = Admit ; l_name = name ^ "_range" ; l_forall = params ; l_triggers = [] ; l_lemma = lemma ; l_cluster = cluster ; } ; lfun , chunks let compile = Lang.local generate end) module IS_ARRAY_INIT = WpContext.Generator(AKEY) (struct open Matrix let name = M.name ^ ".IS_ARRAY_INIT" type key = AKEY.t type data = lfun * chunk list let generate (r,a,ds) = let x = Lang.freshvar ~basename:"p" (Lang.t_addr()) in let v = e_var x in let obj = AKEY.obj a in let loc = M.of_region_pointer r obj v in let domain = M.init_footprint obj loc in let name = Format.asprintf "IsInitArray%a_%s%a" pp_rid r (AKEY.key a) Matrix.pp_suffix_id ds in let lfun = Lang.generated_p name in let xmem,chunks,sigma = signature domain in let env = Matrix.cc_env ds in let params = x :: env.size_var @ xmem in let ofs = e_sum env.index_offset in let vm = !isinitrec sigma obj (M.shift loc obj ofs) in let def = p_forall env.index_var (p_hyps env.index_range vm) in let cluster = cluster () in (* Is_init: structural definition *) Definitions.define_symbol { d_lfun = lfun ; d_types = 0 ; d_params = params ; d_definition = Predicate (Def, def) ; d_cluster = cluster ; } ; (* Is_init: range definition *) begin match env.length with None -> () | Some len -> let is_init_p = p_call lfun (List.map e_var params) in let is_init_r = M.is_init_range sigma obj loc len in let lemma = p_equiv is_init_p is_init_r in Definitions.define_lemma { l_kind = Admit ; l_name = name ^ "_range" ; l_forall = params ; l_triggers = [] ; l_lemma = lemma ; l_cluster = cluster ; } end ; lfun , chunks let compile = Lang.local generate end) let initialized_comp sigma comp loc = let r , p = M.to_region_pointer loc in let f , m = IS_INIT_COMP.get (r,comp) in F.p_call f (p :: memories sigma m) let initialized_array sigma ainfo loc = let r , p = M.to_region_pointer loc in let e , ns = Ctypes.array_dimensions ainfo in let ds = Matrix.of_dims ns in let f , m = IS_ARRAY_INIT.get @@ AKEY.make r e ds in F.p_call f (p :: Matrix.cc_dims ns @ memories sigma m) let initialized_loc sigma obj loc = match obj with | C_int _ | C_float _ | C_pointer _ -> p_bool (M.is_init_atom sigma loc) | C_comp ci -> initialized_comp sigma ci loc | C_array a -> initialized_array sigma a loc let () = isinitrec := initialized_loc let initialized sigma = function | Rloc(obj, loc) -> initialized_loc sigma obj loc | Rrange(loc, obj, Some low, Some up) -> let x = Lang.freshvar ~basename:"i" Lang.t_int in let v = e_var x in let hyps = [ p_leq low v ; p_leq v up] in let loc = M.shift loc obj v in p_forall [x] (p_hyps hyps (initialized_loc sigma obj loc)) | Rrange(_l, _, low, up) -> Wp_parameters.abort ~current:true "Invalid infinite range @[<hov 2>+@,(%a@,..%a)@]" Vset.pp_bound low Vset.pp_bound up module INIT_LOADER = LOADER_GEN (struct let load_int sigma _ = M.is_init_atom sigma let load_float sigma _ = M.is_init_atom sigma let load_pointer sigma _ = M.is_init_atom sigma end)(COMP_INIT)(ARRAY_INIT) let load_init = INIT_LOADER.load let () = INIT_LOAD_INFO.load_rec := load_init (* -------------------------------------------------------------------------- *) (* --- Havocs --- *) (* -------------------------------------------------------------------------- *) let gen_havoc_length get_domain s obj loc length = let ps = ref [] in Domain.iter (fun chunk -> let pre = Sigma.value s.pre chunk in let post = Sigma.value s.post chunk in let tau = Chunk.tau_of_chunk chunk in let basename = Chunk.basename_of_chunk chunk ^ "_undef" in let fresh = F.e_var (Lang.freshvar ~basename tau) in let havoc = M.havoc obj loc ~length chunk ~fresh ~current:pre in ps := Set(post,havoc) :: !ps ) (get_domain obj loc) ; !ps let havoc_length = gen_havoc_length M.value_footprint let havoc seq obj loc = havoc_length seq obj loc F.e_one let havoc_init_length = gen_havoc_length M.init_footprint let havoc_init seq obj loc = havoc_init_length seq obj loc F.e_one (* let set_init_length s obj loc length = let ps = ref [] in Domain.iter (fun chunk -> let pre = Sigma.value s.pre chunk in let post = Sigma.value s.post chunk in let set = M.set_init obj loc ~length chunk ~current:pre in ps := Set(post,set) :: !ps ) (M.init_footprint obj loc) ; !ps let set_init seq obj loc = set_init_length seq obj loc F.e_one *) (* -------------------------------------------------------------------------- *) (* --- Stored & Copied --- *) (* -------------------------------------------------------------------------- *) let updated_init_atom seq loc value = let chunk_init,mem_init = M.set_init_atom seq.pre loc value in Set(Sigma.value seq.post chunk_init,mem_init) let updated_atom seq obj loc value = let phi_store sigma = match obj with | C_int i -> M.store_int sigma i | C_float f -> M.store_float sigma f | C_pointer ty -> M.store_pointer sigma ty | _ -> failwith "MemLoader updated_atom called on a non atomic type" in let chunk_store,mem_store = phi_store seq.pre loc value in Set(Sigma.value seq.post chunk_store,mem_store) let stored seq obj loc value = match obj with | C_int _ | C_float _ | C_pointer _ -> [ updated_atom seq obj loc value ] | C_comp _ | C_array _ -> Set(load_value seq.post obj loc, value) :: havoc seq obj loc let stored_init seq obj loc value = match obj with | C_int _ | C_float _ | C_pointer _ -> [ updated_init_atom seq loc value ] | C_comp _ | C_array _ -> Set(load_init seq.post obj loc, value) :: havoc_init seq obj loc let copied s obj p q = stored s obj p (load_value s.pre obj q) let copied_init s obj p q = stored_init s obj p (load_init s.pre obj q) (* -------------------------------------------------------------------------- *) (* --- Assigned --- *) (* -------------------------------------------------------------------------- *) let assigned_loc seq obj loc = match obj with | C_int _ | C_float _ | C_pointer _ -> let value = Lang.freshvar ~basename:"v" (Lang.tau_of_object obj) in let init = Lang.freshvar ~basename:"i" (Lang.init_of_object obj) in [ updated_init_atom seq loc (e_var init) ; updated_atom seq obj loc (e_var value) ] | C_comp _ | C_array _ -> havoc seq obj loc @ havoc_init seq obj loc let assigned_range s obj l a b = havoc_length s obj (M.shift l obj a) (e_range a b) @ havoc_init_length s obj (M.shift l obj a) (e_range a b) let assigned seq obj sloc = (* Assert (M.monotonic_init seq.pre seq.post) :: *) match sloc with | Sloc loc -> assigned_loc seq obj loc | Sdescr(xs,loc,condition) -> let ps = ref [] in Domain.iter (fun c -> let m1 = Sigma.value seq.pre c in let m2 = Sigma.value seq.post c in let p,separated,equal = M.eqmem_forall obj loc c m1 m2 in let sep_from_all = F.p_forall xs (F.p_imply condition separated) in let phi = F.p_forall p (F.p_imply sep_from_all equal) in ps := Assert phi :: !ps ) (domain obj loc) ; !ps | Sarray(loc,obj,n) -> assigned_range seq obj loc e_zero (e_int (n-1)) | Srange(loc,obj,u,v) -> let a = match u with Some a -> a | None -> e_zero in let b = match v with Some b -> b | None -> M.last seq.pre obj loc in assigned_range seq obj loc a b (* -------------------------------------------------------------------------- *) end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>