package frama-c
Platform dedicated to the analysis of source code written in C
Install
Dune Dependency
Authors
-
MMichele Alberti
-
TThibaud Antignac
-
GGergö Barany
-
PPatrick Baudin
-
NNicolas Bellec
-
TThibaut Benjamin
-
AAllan Blanchard
-
LLionel Blatter
-
FFrançois Bobot
-
RRichard Bonichon
-
VVincent Botbol
-
QQuentin Bouillaguet
-
DDavid Bühler
-
ZZakaria Chihani
-
LLoïc Correnson
-
JJulien Crétin
-
PPascal Cuoq
-
ZZaynah Dargaye
-
BBasile Desloges
-
JJean-Christophe Filliâtre
-
PPhilippe Herrmann
-
MMaxime Jacquemin
-
FFlorent Kirchner
-
AAlexander Kogtenkov
-
RRemi Lazarini
-
TTristan Le Gall
-
JJean-Christophe Léchenet
-
MMatthieu Lemerre
-
DDara Ly
-
DDavid Maison
-
CClaude Marché
-
AAndré Maroneze
-
TThibault Martin
-
FFonenantsoa Maurica
-
MMelody Méaulle
-
BBenjamin Monate
-
YYannick Moy
-
PPierre Nigron
-
AAnne Pacalet
-
VValentin Perrelle
-
GGuillaume Petiot
-
DDario Pinto
-
VVirgile Prevosto
-
AArmand Puccetti
-
FFélix Ridoux
-
VVirgile Robles
-
JJan Rochel
-
MMuriel Roger
-
JJulien Signoles
-
NNicolas Stouls
-
KKostyantyn Vorobyov
-
BBoris Yakobowski
Maintainers
Sources
frama-c-29.0-Copper.tar.gz
sha256=d2fbb3b8d0ff83945872e9e6fa258e934a706360e698dae3b4d5f971addf7493
doc/src/frama-c-wp.core/MemAddr.ml.html
Source file MemAddr.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
(**************************************************************************) (* *) (* This file is part of WP plug-in of Frama-C. *) (* *) (* Copyright (C) 2007-2024 *) (* CEA (Commissariat a l'energie atomique et aux energies *) (* alternatives) *) (* *) (* you can redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation, version 2.1. *) (* *) (* It is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* See the GNU Lesser General Public License version 2.1 *) (* for more details (enclosed in the file licenses/LGPLv2.1). *) (* *) (**************************************************************************) open Lang.F (* -------------------------------------------------------------------------- *) (* --- Symbols registration --- *) (* -------------------------------------------------------------------------- *) let library = "memaddr" (* Warning: DO NOT register map types using this constructor: it hides types needed by ProverWhy3 for typing terms of the form x[i]. *) let t_addr = Qed.Logic.Data(Lang.datatype ~library "addr",[]) let t_table = Qed.Logic.Data(Lang.datatype ~library "table",[]) let f_base = Lang.extern_f ~library ~result:Qed.Logic.Int ~link:(Qed.Engine.F_subst ("base", "%1.base")) "base" let f_offset = Lang.extern_f ~library ~result:Qed.Logic.Int ~link:(Qed.Engine.F_subst ("offset", "%1.offset")) "offset" let f_shift = Lang.extern_f ~library ~result:t_addr "shift" let f_global = Lang.extern_f ~library ~result:t_addr ~category:Qed.Logic.Injection "global" let f_null = Lang.extern_f ~library ~result:t_addr "null" let p_addr_lt = Lang.extern_p ~library ~bool:"addr_lt_bool" ~prop:"addr_lt" () let p_addr_le = Lang.extern_p ~library ~bool:"addr_le_bool" ~prop:"addr_le" () let f_addr_of_int = Lang.extern_f ~category:Qed.Logic.Injection ~library ~result:t_addr "addr_of_int" let f_int_of_addr = Lang.extern_f ~category:Qed.Logic.Injection ~library ~result:Qed.Logic.Int "int_of_addr" let f_table_of_base = Lang.extern_f ~library ~category:Qed.Logic.Function ~result:t_table "table_of_base" let f_table_to_offset = Lang.extern_f ~library ~category:Qed.Logic.Injection ~result:Qed.Logic.Int "table_to_offset" let p_valid_rd = Lang.extern_fp ~library "valid_rd" let p_valid_rw = Lang.extern_fp ~library "valid_rw" let p_valid_obj = Lang.extern_fp ~library "valid_obj" let p_invalid = Lang.extern_fp ~library "invalid" let p_separated = Lang.extern_fp ~library "separated" let p_included = Lang.extern_fp ~library "included" (* base -> region *) let f_region = Lang.extern_f ~coloring:true ~library ~result:Qed.Logic.Int "region" (* allocation-table -> prop *) let p_linked = Lang.extern_fp ~coloring:true ~library "linked" (* -------------------------------------------------------------------------- *) (* --- API --- *) (* -------------------------------------------------------------------------- *) let base addr = e_fun f_base [ addr ] let offset addr = e_fun f_offset [ addr ] let null = constant (e_fun f_null []) let global base = e_fun f_global [ base ] let shift addr offset = e_fun f_shift [ addr ; offset ] let mk_addr base offset = shift (global base) offset let addr_lt addr1 addr2 = p_call p_addr_lt [ addr1 ; addr2 ] let addr_le addr1 addr2 = p_call p_addr_le [ addr1 ; addr2 ] let addr_of_int i = e_fun f_addr_of_int [ i ] let int_of_addr addr = e_fun f_int_of_addr [ addr ] let base_offset base offset = let offset_index = e_fun f_table_of_base [base] in e_fun f_table_to_offset [offset_index ; offset] (** Returns the offset in {i bytes} from the {i logic} offset (which is a memory cell index, actually) *) let valid_rd alloc addr size = p_call p_valid_rd [ alloc ; addr ; size ] let valid_rw alloc addr size = p_call p_valid_rw [ alloc ; addr ; size ] let valid_obj alloc addr size = p_call p_valid_obj [ alloc ; addr ; size ] let invalid alloc addr size = p_call p_invalid [ alloc ; addr ; size ] let region base = e_fun f_region [ base ] let linked memory = p_call p_linked [ memory ] (* -------------------------------------------------------------------------- *) (* --- Qed Simplifiers --- *) (* -------------------------------------------------------------------------- *) (* Pointer arithmetic for structure access and array access could be defined directly using the record [{ base = p.base; offset = p.offset + c*i + c' }]. However that gives very bad triggers for the memory model axiomatization, so `shift p (c*i+c')` was used instead. It is not sufficient for user axiomatisation because memory access in axioms require trigger with arithmetic operators which is badly handled by provers. So for each c and c', ie for each kind of structure access and array access a specific function is used `shift_xxx`. Moreover no simplification of `shift_xxx` is done for keeping the same terms in axioms and the goal. `base` and `offset` function simplify all the `shift_xxx` because it seems they don't appear often in axioms and they are useful for simplifying `separated`, `assigns` and pointer comparisons in goals. To sum up memory access should match, but not `\base`, `\offset`, `\separated`, ... *) type addr_builtin = { base: term list -> term ; offset: term list -> term ; } module ADDR_BUILTIN = WpContext.Static (struct type key = Lang.lfun type data = addr_builtin let name = "MemMemory.ADDR_BUILTIN" include Lang.Fun end) let phi_base l = match repr l with | Fun(f,[p;_]) when f==f_shift -> base p | Fun(f,[b]) when f==f_global -> b | Fun(f,[]) when f==f_null -> e_zero | Fun(f,args) -> (ADDR_BUILTIN.find f).base args | _ -> raise Not_found let phi_offset l = match repr l with | Fun(f,[p;k]) when f==f_shift -> e_add (offset p) k | Fun(f,_) when f==f_global || f==f_null -> e_zero | Fun(f,args) -> (ADDR_BUILTIN.find f).offset args | _ -> raise Not_found let phi_shift f p i = match repr p with | Fun(g,[q;j]) when f == g -> e_fun f [q;e_add i j] | _ -> raise Not_found let eq_shift a b = let p = base a in let q = base b in let i = offset a in let j = offset b in if i==j then p_equal p q else match is_equal p q with | No -> p_false | Yes -> p_equal i j | Maybe -> raise Not_found let eq_shift_gen phi a b = try phi a b with Not_found -> eq_shift a b let nop _ = raise Not_found let register ?(base=nop) ?(offset=nop) ?equal ?(linear=false) lfun = begin if base != nop || offset != nop then ADDR_BUILTIN.define lfun { base ; offset } ; if linear then set_builtin_2 lfun (phi_shift lfun) ; let phi_equal = match equal with | None -> eq_shift | Some phi -> eq_shift_gen phi in set_builtin_eqp lfun phi_equal ; end (* -------------------------------------------------------------------------- *) (* --- Simplifier for 'separated' --- *) (* -------------------------------------------------------------------------- *) let r_separated = function | [p;a;q;b] -> if a == e_one && b == e_one then e_neq p q else begin let a_negative = e_leq a e_zero in let b_negative = e_leq b e_zero in if a_negative == e_true || b_negative == e_true then e_true else let bp = base p in let bq = base q in match is_true (e_eq bp bq) with | No -> e_true (* Have S *) | Yes when (a_negative == e_false && b_negative == e_false) -> (* Reduced to S *) let p_ofs = offset p in let q_ofs = offset q in let p_ofs' = e_add p_ofs a in let q_ofs' = e_add q_ofs b in e_or [ e_leq q_ofs' p_ofs ; e_leq p_ofs' q_ofs ] | _ -> raise Not_found end | _ -> raise Not_found let is_separated args = is_true (r_separated args) (* -------------------------------------------------------------------------- *) (* --- Simplifier for 'included' --- *) (* -------------------------------------------------------------------------- *) (* See: tests/why3/test_memory.why logic a : int logic b : int predicate R = p.base = q.base /\ (q.offset <= p.offset) /\ (p.offset + a <= q.offset + b) predicate included = 0 < a -> ( 0 <= b and R ) predicate a_empty = a <= 0 predicate b_negative = b < 0 lemma SAME_P: p=q -> (R <-> a<=b) lemma SAME_A: a=b -> (R <-> p=q) goal INC_P: p=q -> (included <-> ( 0 < a -> a <= b )) (by SAME_P) goal INC_A: a=b -> 0 < a -> (included <-> R) (by SAME_A) goal INC_1: a_empty -> (included <-> true) goal INC_2: b_negative -> (included <-> a_empty) goal INC_3: not R -> (included <-> a_empty) goal INC_4: not a_empty -> not b_negative -> (included <-> R) *) let r_included = function | [p;a;q;b] -> if e_eq p q == e_true then e_imply [e_lt e_zero a] (e_leq a b) (* INC_P *) else if (e_eq a b == e_true) && (e_lt e_zero a == e_true) then e_eq p q (* INC_A *) else begin let a_empty = e_leq a e_zero in let b_negative = e_lt b e_zero in if a_empty == e_true then e_true (* INC_1 *) else if b_negative == e_true then a_empty (* INC_2 *) else let bp = base p in let bq = base q in match is_true (e_eq bp bq) with | No -> a_empty (* INC_3 *) | Yes when (a_empty == e_false && b_negative == e_false) -> (* INC_4 *) let p_ofs = offset p in let q_ofs = offset q in if a == b then e_eq p_ofs q_ofs else let p_ofs' = e_add p_ofs a in let q_ofs' = e_add q_ofs b in e_and [ e_leq q_ofs p_ofs ; e_leq p_ofs' q_ofs' ] | _ -> raise Not_found end | _ -> raise Not_found let is_included args = is_true (r_included args) (* -------------------------------------------------------------------------- *) (* --- Simplifier for int/addr conversion --- *) (* -------------------------------------------------------------------------- *) let phi_int_of_addr p = if p == null then e_zero else match repr p with | Fun(f,[a]) when f == f_addr_of_int -> a | _ -> raise Not_found let phi_addr_of_int p = if p == e_zero then null else match repr p with | Fun(f,[a]) when f == f_int_of_addr -> a | _ -> raise Not_found (* -------------------------------------------------------------------------- *) (* --- Simplifier for (in)validity --- *) (* -------------------------------------------------------------------------- *) let null_base p = e_eq (e_fun f_base [p]) e_zero (* See: tests/why3/test_memory.why *) (* - lemma valid_rd_null: forall m n p. p.base = 0 -> (n <= 0 <-> valid_rd m p n) - lemma valid_rw_null: forall m n p. p.base = 0 -> (n <= 0 <-> valid_rw m p n) *) let r_valid_unref = function | [_; p; n] when decide (null_base p) -> e_leq n e_zero | _ -> raise Not_found (* - lemma valid_obj_null: forall m n. valid_obj m null n *) let r_valid_obj = function | [_; p; _] when decide (e_eq p null) -> e_true | _ -> raise Not_found (* - lemma invalid_null: forall m n p. p.base = 0 -> invalid m p n *) let r_invalid = function | [_; p; _] when decide (null_base p) -> e_true | _ -> raise Not_found (* -------------------------------------------------------------------------- *) (* --- Simplifiers Registration --- *) (* -------------------------------------------------------------------------- *) let () = Context.register begin fun () -> set_builtin_1 f_base phi_base ; set_builtin_1 f_offset phi_offset ; set_builtin_2 f_shift (phi_shift f_shift) ; set_builtin_eqp f_shift eq_shift ; set_builtin_eqp f_global eq_shift ; set_builtin p_separated r_separated ; set_builtin p_included r_included ; set_builtin_1 f_addr_of_int phi_addr_of_int ; set_builtin_1 f_int_of_addr phi_int_of_addr ; set_builtin p_invalid r_invalid ; set_builtin p_valid_rd r_valid_unref ; set_builtin p_valid_rw r_valid_unref ; set_builtin p_valid_obj r_valid_obj ; end (* -------------------------------------------------------------------------- *) (* --- Identify lfun --- *) (* -------------------------------------------------------------------------- *) let is_p_valid_rd lf = lf == p_valid_rd let is_p_valid_rw lf = lf == p_valid_rw let is_p_valid_obj lf = lf == p_valid_obj let is_p_invalid lf = lf == p_invalid let is_f_global lf = lf == f_global (* -------------------------------------------------------------------------- *) (* --- Range Comparison --- *) (* -------------------------------------------------------------------------- *) type range = | LOC of term * term (* loc - size *) | RANGE of term * Vset.set (* base - range offset *) let range ~shift ~addrof ~sizeof = function | Sigs.Rloc(obj,loc) -> LOC( addrof loc , sizeof obj ) | Sigs.Rrange(loc,obj,Some a,Some b) -> let s = sizeof obj in let p = addrof (shift loc obj a) in let n = e_mul s (e_range a b) in LOC( p , n ) | Sigs.Rrange(loc,_obj,None,None) -> RANGE( base (addrof loc) , Vset.range None None ) | Sigs.Rrange(loc,obj,Some a,None) -> let s = sizeof obj in RANGE( base (addrof loc) , Vset.range (Some (e_mul s a)) None ) | Sigs.Rrange(loc,obj,None,Some b) -> let s = sizeof obj in RANGE( base (addrof loc) , Vset.range None (Some (e_mul s b)) ) let range_set = function | LOC(l,n) -> let a = offset l in let b = e_add a n in base l , Vset.range (Some a) (Some b) | RANGE(base,set) -> base , set let r_included r1 r2 = match r1 , r2 with | LOC(l1,n1) , LOC(l2,n2) -> p_call p_included [l1;n1;l2;n2] | _ -> let base1,set1 = range_set r1 in let base2,set2 = range_set r2 in p_if (p_equal base1 base2) (Vset.subset set1 set2) (Vset.is_empty set1) let r_disjoint r1 r2 = match r1 , r2 with | LOC(l1,n1) , LOC(l2,n2) -> p_call p_separated [l1;n1;l2;n2] | _ -> let base1,set1 = range_set r1 in let base2,set2 = range_set r2 in p_imply (p_equal base1 base2) (Vset.disjoint set1 set2) let included ~shift ~addrof ~sizeof s1 s2 = let range = range ~shift ~addrof ~sizeof in r_included (range s1) (range s2) let separated ~shift ~addrof ~sizeof s1 s2 = let range = range ~shift ~addrof ~sizeof in r_disjoint (range s1) (range s2)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>