package frama-c
Platform dedicated to the analysis of source code written in C
Install
Dune Dependency
Authors
-
MMichele Alberti
-
TThibaud Antignac
-
GGergö Barany
-
PPatrick Baudin
-
NNicolas Bellec
-
TThibaut Benjamin
-
AAllan Blanchard
-
LLionel Blatter
-
FFrançois Bobot
-
RRichard Bonichon
-
VVincent Botbol
-
QQuentin Bouillaguet
-
DDavid Bühler
-
ZZakaria Chihani
-
LLoïc Correnson
-
JJulien Crétin
-
PPascal Cuoq
-
ZZaynah Dargaye
-
BBasile Desloges
-
JJean-Christophe Filliâtre
-
PPhilippe Herrmann
-
MMaxime Jacquemin
-
FFlorent Kirchner
-
AAlexander Kogtenkov
-
RRemi Lazarini
-
TTristan Le Gall
-
JJean-Christophe Léchenet
-
MMatthieu Lemerre
-
DDara Ly
-
DDavid Maison
-
CClaude Marché
-
AAndré Maroneze
-
TThibault Martin
-
FFonenantsoa Maurica
-
MMelody Méaulle
-
BBenjamin Monate
-
YYannick Moy
-
PPierre Nigron
-
AAnne Pacalet
-
VValentin Perrelle
-
GGuillaume Petiot
-
DDario Pinto
-
VVirgile Prevosto
-
AArmand Puccetti
-
FFélix Ridoux
-
VVirgile Robles
-
JJan Rochel
-
MMuriel Roger
-
JJulien Signoles
-
NNicolas Stouls
-
KKostyantyn Vorobyov
-
BBoris Yakobowski
Maintainers
Sources
frama-c-29.0-Copper.tar.gz
sha256=d2fbb3b8d0ff83945872e9e6fa258e934a706360e698dae3b4d5f971addf7493
doc/src/frama-c-wp.core/CodeSemantics.ml.html
Source file CodeSemantics.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
(**************************************************************************) (* *) (* This file is part of WP plug-in of Frama-C. *) (* *) (* Copyright (C) 2007-2024 *) (* CEA (Commissariat a l'energie atomique et aux energies *) (* alternatives) *) (* *) (* you can redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation, version 2.1. *) (* *) (* It is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* See the GNU Lesser General Public License version 2.1 *) (* for more details (enclosed in the file licenses/LGPLv2.1). *) (* *) (**************************************************************************) (* -------------------------------------------------------------------------- *) (* --- C-Code Translation --- *) (* -------------------------------------------------------------------------- *) open Cil_datatype open Cil_types open Ctypes open Qed open Sigs open Lang open Lang.F module WpLog = Wp_parameters let constfold_ctyp = function | TArray (_,Some {enode = (Const CInt64 _) },_) as ct -> ct | TArray (ty,Some len,attr) as ct -> begin match Cil.constFold true len with | {enode = (Const CInt64 _) } as len -> TArray(ty,Some len,attr) | _ -> ct end | ct -> ct let constfold_coffset = function | Index({enode=Const (CInt64 _)}, _) as off -> off | Index(idx, next) as off -> begin match Cil.constFold true idx with | {enode = (Const CInt64 _) } as idx -> Index(idx, next) | _ -> off end | off -> off module Make(M : Sigs.Model) = struct module M = M type loc = M.loc type value = M.loc Sigs.value type sigma = M.Sigma.t type result = loc Sigs.result let pp_value fmt = function | Val e -> Format.fprintf fmt "Val:%a" F.pp_term e | Loc l-> Format.fprintf fmt "Loc:%a" M.pretty l let cval = function | Val e -> e | Loc l -> M.pointer_val l let cloc = function | Loc l -> l | Val e -> M.pointer_loc e (* -------------------------------------------------------------------------- *) (* --- Initializers --- *) (* -------------------------------------------------------------------------- *) let is_zero_int = function | Val e -> p_equal e e_zero | Loc l -> M.is_null l let is_zero_float = function | Val e -> p_equal e e_zero_real | Loc l -> M.is_null l let is_zero_ptr v = M.is_null (cloc v) let rec is_zero sigma obj l = match obj with | C_int _ -> is_zero_int (M.load sigma obj l) | C_float _ -> is_zero_float (M.load sigma obj l) | C_pointer _ -> is_zero_ptr (M.load sigma obj l) | C_comp { cfields = None } -> p_true (* cannot say anything interesting here *) | C_comp { cfields = Some fields } -> p_all (fun f -> is_zero sigma (Ctypes.object_of f.ftype) (M.field l f)) fields | C_array a -> (*TODO[LC] make zero-initializers model-dependent. For instance, a[N][M] becomes a[N*M] in MemTyped, but not in MemVar *) let x = Lang.freshvar ~basename:"k" Logic.Int in let k = e_var x in let obj = Ctypes.object_of a.arr_element in let range = match a.arr_flat with | None -> [] | Some f -> [ p_leq e_zero k ; p_lt k (e_int f.arr_size) ] in let init = is_zero sigma obj (M.shift l obj k) in p_forall [x] (p_hyps range init) let is_exp_range sigma l obj a b v = let x = Lang.freshvar ~basename:"k" Logic.Int in let k = e_var x in let range = [ p_leq a k ; p_leq k b ] in let init = match v with | None -> is_zero sigma obj (M.shift l obj k) | Some v -> let elt = (M.load sigma obj (M.shift l obj k)) in if Ctypes.is_pointer obj then M.loc_eq (cloc elt) (cloc v) else p_equal (cval elt) (cval v) in p_forall [x] (p_hyps range init) (* -------------------------------------------------------------------------- *) (* --- Recursion --- *) (* -------------------------------------------------------------------------- *) let s_exp : (sigma -> exp -> value) ref = ref (fun _ _ -> assert false) let s_cond : (sigma -> exp -> pred) ref = ref (fun _ _ -> assert false) let val_of_exp env e = cval (!s_exp env e) let loc_of_exp env e = cloc (!s_exp env e) (* -------------------------------------------------------------------------- *) (* --- L-Values --- *) (* -------------------------------------------------------------------------- *) let loc_of_lhost env = function | Var x -> M.cvar x | Mem e -> loc_of_exp env e let rec loc_of_offset env l typ = function | NoOffset -> l | Field(f,offset) -> loc_of_offset env (M.field l f) f.ftype offset | Index(e,offset) -> let k = val_of_exp env e in let te = Cil.typeOf_array_elem typ in let obj = Ctypes.object_of te in loc_of_offset env (M.shift l obj k) te offset let lval env (lhost,offset) = loc_of_offset env (loc_of_lhost env lhost) (Cil.typeOfLhost lhost) offset (* -------------------------------------------------------------------------- *) (* --- Unary Operator --- *) (* -------------------------------------------------------------------------- *) let exp_unop env typ unop e = let v = match Ctypes.object_of typ , unop with | C_int i , Neg -> Cint.iopp i (val_of_exp env e) | C_int i , BNot -> Cint.bnot i (val_of_exp env e) | C_float f , Neg -> Cfloat.fopp f (val_of_exp env e) | C_int _ , LNot -> Cvalues.bool_eq (val_of_exp env e) e_zero | C_float _ , LNot -> Cvalues.bool_eq (val_of_exp env e) e_zero_real | C_pointer _ , LNot -> Cvalues.is_true (M.is_null (loc_of_exp env e)) | _ -> Warning.error "Undefined unary operator (%a)" Printer.pp_typ typ in Val v (* -------------------------------------------------------------------------- *) (* --- Binary Operator --- *) (* -------------------------------------------------------------------------- *) let arith env tr iop fop e1 e2 = match Ctypes.object_of tr with | C_int i -> Val (iop i (val_of_exp env e1) (val_of_exp env e2)) | C_float f -> Val (fop f (val_of_exp env e1) (val_of_exp env e2)) | _ -> assert false let arith_int env tr iop e1 e2 = match Ctypes.object_of tr with | C_int i -> Val (iop i (val_of_exp env e1) (val_of_exp env e2)) | _ -> assert false let bool_of_comp env iop lop fop e1 e2 = let t1 = Cil.typeOf e1 in let t2 = Cil.typeOf e2 in if Cil.isPointerType t1 && Cil.isPointerType t2 then Cvalues.is_true (lop (loc_of_exp env e1) (loc_of_exp env e2)) else match Cil.unrollType t1 with | TFloat(f,_) -> let p = fop (Ctypes.c_float f) (val_of_exp env e1) (val_of_exp env e2) in e_if (F.e_prop p) e_one e_zero | _ -> iop (val_of_exp env e1) (val_of_exp env e2) let bool_of_exp env e = match Ctypes.object_of (Cil.typeOf e) with | C_int _ -> Cvalues.bool_neq (val_of_exp env e) e_zero | C_float _ -> Cvalues.bool_neq (val_of_exp env e) e_zero_real | C_pointer _ -> Cvalues.is_false (M.is_null (loc_of_exp env e)) | _ -> assert false let exp_binop env tr binop e1 e2 = match binop with | PlusA -> arith env tr Cint.iadd Cfloat.fadd e1 e2 | MinusA -> arith env tr Cint.isub Cfloat.fsub e1 e2 | Mult -> arith env tr Cint.imul Cfloat.fmul e1 e2 | Div -> arith env tr Cint.idiv Cfloat.fdiv e1 e2 | Mod -> arith_int env tr Cint.imod e1 e2 | Shiftlt -> arith_int env tr Cint.blsl e1 e2 | Shiftrt -> arith_int env tr Cint.blsr e1 e2 | BAnd -> arith_int env tr Cint.band e1 e2 | BOr -> arith_int env tr Cint.bor e1 e2 | BXor -> arith_int env tr Cint.bxor e1 e2 | Eq -> Val (bool_of_comp env Cvalues.bool_eq M.loc_eq Cfloat.feq e1 e2) | Ne -> Val (bool_of_comp env Cvalues.bool_neq M.loc_neq Cfloat.fneq e1 e2) | Lt -> Val (bool_of_comp env Cvalues.bool_lt M.loc_lt Cfloat.flt e1 e2) | Gt -> Val (bool_of_comp env Cvalues.bool_lt M.loc_lt Cfloat.flt e2 e1) | Le -> Val (bool_of_comp env Cvalues.bool_leq M.loc_leq Cfloat.fle e1 e2) | Ge -> Val (bool_of_comp env Cvalues.bool_leq M.loc_leq Cfloat.fle e2 e1) | LAnd -> Val (Cvalues.bool_and (bool_of_exp env e1) (bool_of_exp env e2)) | LOr -> Val (Cvalues.bool_or (bool_of_exp env e1) (bool_of_exp env e2)) | PlusPI -> let te = Cil.typeOf_pointed (Cil.typeOf e1) in let obj = Ctypes.object_of te in Loc(M.shift (loc_of_exp env e1) obj (val_of_exp env e2)) | MinusPI -> let te = Cil.typeOf_pointed (Cil.typeOf e1) in let obj = Ctypes.object_of te in Loc(M.shift (loc_of_exp env e1) obj (e_opp (val_of_exp env e2))) | MinusPP -> let te = Cil.typeOf_pointed (Cil.typeOf e1) in let obj = Ctypes.object_of te in Val(M.loc_diff obj (loc_of_exp env e1) (loc_of_exp env e2)) (* -------------------------------------------------------------------------- *) (* --- Cast --- *) (* -------------------------------------------------------------------------- *) let cast tr te ve = match Ctypes.object_of tr , Ctypes.object_of te with | C_int ir , C_int ie -> let v = cval ve in Val( if Ctypes.sub_c_int ie ir then v else Cint.downcast ir v ) | C_float fr , C_float fe -> let v = cval ve in Val( if Ctypes.equal_float fe fr then v else Cfloat.float_of_real fr (Cfloat.real_of_float fe v) ) | C_int ir , C_float fr -> Val(Cint.of_real ir (Cfloat.real_of_float fr (cval ve))) | C_float fr , C_int _ -> Val(Cfloat.float_of_real fr (Cmath.real_of_int (cval ve))) | C_pointer tr , C_pointer te -> let obj_r = Ctypes.object_of tr in let obj_e = Ctypes.object_of te in if Ctypes.compare obj_r obj_e = 0 then ve else Loc (M.cast {pre=obj_e;post=obj_r} (cloc ve)) | C_pointer te , C_int _ -> let e = cval ve in Loc(if F.equal e (F.e_zero) then M.null else M.loc_of_int (Ctypes.object_of te) e) | C_int ir , C_pointer _ -> Val (M.int_of_loc ir (cloc ve)) | t1, t2 when Ctypes.equal t1 t2 -> ve | _ -> Warning.error "cast (%a) into (%a) not yet implemented" Printer.pp_typ te Printer.pp_typ tr (* -------------------------------------------------------------------------- *) (* --- Undefined Exp --- *) (* -------------------------------------------------------------------------- *) let exp_undefined e = let ty = Cil.typeOf e in let x = Lang.freshvar ~basename:"w" (Lang.tau_of_ctype ty) in Val (e_var x) (* -------------------------------------------------------------------------- *) (* --- Exp-Node --- *) (* -------------------------------------------------------------------------- *) let exp_node env e = match e.enode with | Const (CStr s) -> Loc (M.literal ~eid:e.eid (Cstring.C_str s)) | Const (CWStr s) -> Loc (M.literal ~eid:e.eid (Cstring.W_str s)) | Const c -> Val (Cvalues.constant c) | Lval lv -> if Cil.isVolatileLval lv && Cvalues.volatile ~warn:"unsafe read-access to volatile l-value" () then exp_undefined e else let loc = lval env lv in let typ = Cil.typeOfLval lv in let obj = Ctypes.object_of typ in let data = M.load env obj loc in Lang.assume (Cvalues.is_object obj data) ; data | AddrOf lv -> Loc (lval env lv) | StartOf lv -> Loc (Cvalues.startof ~shift:M.shift (lval env lv) (Cil.typeOfLval lv)) | UnOp(op,e,ty) -> exp_unop env ty op e | BinOp(op,e1,e2,tr) -> exp_binop env tr op e1 e2 | AlignOfE _ | AlignOf _ | SizeOfE _ | SizeOf _ | SizeOfStr _ -> Val (Cvalues.constant_exp e) | CastE(tr,e) -> cast tr (Cil.typeOf e) (!s_exp env e) let rec call_node env e = match e.enode with | CastE(_,e) -> call_node env e | AddrOf lv | StartOf lv | Lval lv -> lval env lv | _ -> Warning.error ~source:"call" "Unsupported function pointer" (* -------------------------------------------------------------------------- *) (* --- Exp with Error --- *) (* -------------------------------------------------------------------------- *) let exp_protected env e = Warning.handle ~handler:exp_undefined ~severe:false ~effect:"Hide sub-term definition" (exp_node env) e (* -------------------------------------------------------------------------- *) (* --- Condition-Node --- *) (* -------------------------------------------------------------------------- *) let eq_t is_ptr t v1 v2 = match v1 , v2 with | Loc p , Loc q -> M.loc_eq p q | Val a , Val b -> p_equal a b | _ -> if is_ptr t then M.loc_eq (cloc v1) (cloc v2) else p_equal (cval v1) (cval v2) let neq_t is_ptr t v1 v2 = match v1 , v2 with | Loc p , Loc q -> M.loc_neq p q | Val a , Val b -> p_neq a b | _ -> if is_ptr t then M.loc_neq (cloc v1) (cloc v2) else p_neq (cval v1) (cval v2) let equal_typ t v1 v2 = eq_t Cil.isPointerType t v1 v2 let equal_obj obj v1 v2 = eq_t Ctypes.is_pointer obj v1 v2 let not_equal_typ t v1 v2 = neq_t Cil.isPointerType t v1 v2 let not_equal_obj obj v1 v2 = neq_t Ctypes.is_pointer obj v1 v2 let compare env vop lop fop e1 e2 = let t1 = Ctypes.object_of (Cil.typeOf e1) in let t2 = Ctypes.object_of (Cil.typeOf e2) in if not (Ctypes.equal t1 t2) then Warning.error "Comparison with different types (%a) and (%a)" Ctypes.pretty t1 Ctypes.pretty t2 ; match t1 with | C_pointer _ -> lop (loc_of_exp env e1) (loc_of_exp env e2) | C_float f -> (fop f) (val_of_exp env e1) (val_of_exp env e2) | _ -> vop (val_of_exp env e1) (val_of_exp env e2) let cond_node env e = match e.enode with | UnOp( LNot, e,_) -> p_not (!s_cond env e) | BinOp( LAnd, e1,e2,_) -> p_and (!s_cond env e1) (!s_cond env e2) | BinOp( LOr, e1,e2,_) -> p_or (!s_cond env e1) (!s_cond env e2) | BinOp( Eq, e1,e2,_) -> compare env p_equal M.loc_eq Cfloat.feq e1 e2 | BinOp( Ne, e1,e2,_) -> compare env p_neq M.loc_neq Cfloat.fneq e1 e2 | BinOp( Lt, e1,e2,_) -> compare env p_lt M.loc_lt Cfloat.flt e1 e2 | BinOp( Gt, e1,e2,_) -> compare env p_lt M.loc_lt Cfloat.flt e2 e1 | BinOp( Le, e1,e2,_) -> compare env p_leq M.loc_leq Cfloat.fle e1 e2 | BinOp( Ge, e1,e2,_) -> compare env p_leq M.loc_leq Cfloat.fle e2 e1 | _ -> begin match Ctypes.object_of (Cil.typeOf e) with | C_int _ -> p_neq (val_of_exp env e) e_zero | C_float _ -> p_neq (val_of_exp env e) e_zero_real | C_pointer _ -> p_not (M.is_null (loc_of_exp env e)) | obj -> Warning.error "Condition from (%a)" Ctypes.pretty obj end (* -------------------------------------------------------------------------- *) (* --- BootStrapping --- *) (* -------------------------------------------------------------------------- *) let exp env e = Current_loc.with_loc e.eloc (exp_protected env) e let cond env e = Current_loc.with_loc e.eloc (cond_node env) e let call env e = Current_loc.with_loc e.eloc (call_node env) e let result env tr = function | R_var x -> F.e_var x | R_loc l -> cval (M.load env (Ctypes.object_of tr) l) let return env tr e = cval (cast tr (Cil.typeOf e) (exp env e)) let () = s_exp := exp let () = s_cond := cond let instance_of floc kf = M.loc_eq floc (M.cvar (Kernel_function.get_vi kf)) (* -------------------------------------------------------------------------- *) (* --- Initializers --- *) (* -------------------------------------------------------------------------- *) let unchanged sa sb v = let obj = Ctypes.object_of v.vtype in let loc = M.cvar v in let va = M.load sa obj loc in let vb = M.load sb obj loc in equal_obj obj va vb let init_value ~sigma lv typ init = let obj = Ctypes.object_of typ in let outcome = Warning.catch ~severe:false ~effect:"Skip initializer" (fun () -> let l = lval sigma lv in let value_hyp = match init with | Some e -> let v = M.load sigma obj l in p_equal (val_of_exp sigma e) (cval v) | None -> is_zero sigma obj l in let init_hyp = match init with | Some { enode = Lval lv_init } when Cil.(isStructOrUnionType @@ typeOfLval lv_init) -> let l_initializer = lval sigma lv_init in p_equal (M.load_init sigma obj l) (M.load_init sigma obj l_initializer) | _ -> M.initialized sigma (Rloc(obj, l)) in value_hyp, init_hyp ) () in match outcome with | Warning.Failed warn -> warn , (F.p_true, F.p_true) | Warning.Result(warn , hyp) -> warn , hyp let init_range ~sigma lv typ low up value = let obj = Ctypes.object_of typ in let outcome = Warning.catch ~severe:false ~effect:"Skip initializer" (fun () -> let l = lval sigma lv in let e = Option.map (exp sigma) value in let low = e_bigint low and up = e_bigint up in (is_exp_range sigma l obj low up e), (M.initialized sigma (Rrange(l, obj, Some low, Some up))) ) () in match outcome with | Warning.Failed warn -> warn , (F.p_true, F.p_true) | Warning.Result(warn , hyp) -> warn , hyp type warned_hyp = Warning.Set.t * (Lang.F.pred * Lang.F.pred) (* Hypothesis for initialization of one variable *) let rec init_variable ~sigma lv init acc = match init with | SingleInit exp -> init_value ~sigma lv (Cil.typeOfLval lv) (Some exp) :: acc | CompoundInit ( ct , initl ) -> let ct = constfold_ctyp ct in let acc = (* updated acc with default init of structure *) match ct with | TComp ( { cfields = None },_) -> Wp_parameters.fatal "Initializer for incomplete type %a" Cil_printer.pp_typ ct | TComp ( { cstruct ; cfields = Some fields },_) when cstruct && (* not for union... *) (List.length initl) < (List.length fields) -> (* default init for unintialized field of a struct *) List.fold_left (fun acc f -> if List.exists (function | Field(g,_),_ -> Fieldinfo.equal f g | _ -> WpLog.fatal "Kernel invariant broken into an initializer") initl then acc else let init = init_value ~sigma (Cil.addOffsetLval (Field(f, NoOffset)) lv) f.ftype None in init :: acc) acc (List.rev fields) | _ -> acc in match ct with | TArray (ty,len,_) -> let delayed = match len with (* number of required elements *) | Some {enode = (Const CInt64 (size,_,_))} -> (size, None) | _ -> (* CIL invariant broken. *) WpLog.fatal "CIL invariant broken: unknown initialized array size" in let make_quant acc = function (* adds delayed initializations from info about the last consecutive indices having the same value, but that have not yet initialized. *) | (_,None) -> acc (* nothing was delayed *) | (il,Some (i0,_,exp)) when Integer.lt il i0 -> (* Added pred: \forall i \in [il .. i0] ; t[i]==exp *) init_range ~sigma lv ty il i0 (Some exp) :: acc | (_il,Some (_i0,off,exp)) -> (* case [_il=_i0], so uses [off] corresponding to [_i0] Added pred: t[i]==exp*) let lv = Cil.addOffsetLval off lv in init_value ~sigma lv ty (Some exp) :: acc in let add_missing_indices acc i0 = function (* adds eventual default value for missing indices. *) | (i1, _) -> if Integer.ge i0 i1 then (* no hole *) acc else (* defaults values Added pred: \forall i \in [i0 .. i1[ ; t[i]==default *) init_range ~sigma lv ty i0 (Integer.pred i1) None :: acc in let acc, delayed = List.fold_left (fun (acc,delayed) (off,init) -> let off = constfold_coffset off in let idx,acc = match off with | Index({enode=Const CInt64 (idx,_,_)}, _) -> (match delayed with | (iprev, _) when Integer.lt iprev idx -> (* CIL invariant broken. without that invariant, an algo with a 2sd pass is required for introducing default values *) WpLog.fatal "CIL invariant broken: unordered initializer"; | _ -> ()) ; idx, (* adds default values for missing indices *) add_missing_indices acc (Integer.succ idx) delayed | _ -> (* CIL invariant broken. *) WpLog.fatal "CIL invariant broken: unknown initialized index" in match off, init with (* only simple init can be delayed *) | Index(_, NoOffset), SingleInit init -> begin match delayed with | (i_prev,(Some (_,_,init_delayed) as delayed_info)) when Wp_parameters.InitWithForall.get () && Integer.equal (Integer.pred i_prev) idx && ExpStructEq.equal init_delayed init -> acc, (idx,delayed_info) | _ -> (* flush the delayed init, and store the new one *) let acc = make_quant acc delayed in acc, (idx, Some (idx,off,init)) end | Index(_, _),_ -> (* flush the delayed init, and adds the current one *) let acc = make_quant acc delayed in let lv = Cil.addOffsetLval off lv in (init_variable ~sigma lv init acc), (idx, None) | _ -> WpLog.fatal "CIL invariant broken: not an index" ) (acc,delayed) (List.rev initl) in let acc = make_quant acc delayed in add_missing_indices acc Integer.zero delayed | _ -> List.fold_left (fun acc (off,init) -> let lv = Cil.addOffsetLval off lv in init_variable ~sigma lv init acc) acc (List.rev initl) let init ~sigma v = function | None -> [init_value ~sigma (Cil.var v) v.vtype None] | Some init -> List.rev (init_variable ~sigma (Cil.var v) init []) end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>