package frama-c
Platform dedicated to the analysis of source code written in C
Install
Dune Dependency
Authors
-
MMichele Alberti
-
TThibaud Antignac
-
GGergö Barany
-
PPatrick Baudin
-
NNicolas Bellec
-
TThibaut Benjamin
-
AAllan Blanchard
-
LLionel Blatter
-
FFrançois Bobot
-
RRichard Bonichon
-
VVincent Botbol
-
QQuentin Bouillaguet
-
DDavid Bühler
-
ZZakaria Chihani
-
LLoïc Correnson
-
JJulien Crétin
-
PPascal Cuoq
-
ZZaynah Dargaye
-
BBasile Desloges
-
JJean-Christophe Filliâtre
-
PPhilippe Herrmann
-
MMaxime Jacquemin
-
FFlorent Kirchner
-
AAlexander Kogtenkov
-
RRemi Lazarini
-
TTristan Le Gall
-
JJean-Christophe Léchenet
-
MMatthieu Lemerre
-
DDara Ly
-
DDavid Maison
-
CClaude Marché
-
AAndré Maroneze
-
TThibault Martin
-
FFonenantsoa Maurica
-
MMelody Méaulle
-
BBenjamin Monate
-
YYannick Moy
-
PPierre Nigron
-
AAnne Pacalet
-
VValentin Perrelle
-
GGuillaume Petiot
-
DDario Pinto
-
VVirgile Prevosto
-
AArmand Puccetti
-
FFélix Ridoux
-
VVirgile Robles
-
JJan Rochel
-
MMuriel Roger
-
JJulien Signoles
-
NNicolas Stouls
-
KKostyantyn Vorobyov
-
BBoris Yakobowski
Maintainers
Sources
frama-c-29.0-Copper.tar.gz
sha256=d2fbb3b8d0ff83945872e9e6fa258e934a706360e698dae3b4d5f971addf7493
doc/src/frama-c-wp.core/Cfloat.ml.html
Source file Cfloat.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
(**************************************************************************) (* *) (* This file is part of WP plug-in of Frama-C. *) (* *) (* Copyright (C) 2007-2024 *) (* CEA (Commissariat a l'energie atomique et aux energies *) (* alternatives) *) (* *) (* you can redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation, version 2.1. *) (* *) (* It is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* See the GNU Lesser General Public License version 2.1 *) (* for more details (enclosed in the file licenses/LGPLv2.1). *) (* *) (**************************************************************************) (* -------------------------------------------------------------------------- *) (* --- Floats Arithmetic Model --- *) (* -------------------------------------------------------------------------- *) open Ctypes open Qed open Lang open Lang.F (* -------------------------------------------------------------------------- *) (* --- Library --- *) (* -------------------------------------------------------------------------- *) let library = "cfloat" let f32 = datatype ~library "f32" let f64 = datatype ~library "f64" let t32 = Lang.(t_datatype f32 []) let t64 = Lang.(t_datatype f64 []) let ftau = function | Float32 -> t32 | Float64 -> t64 let ft_suffix = function Float32 -> "f32" | Float64 -> "f64" let pp_suffix fmt ft = Format.pp_print_string fmt (ft_suffix ft) let link phi = Qed.Engine.F_call phi (* Qed exact representations, linked to f32/f64 *) let fq32 = extern_f ~library ~result:t32 ~link:(link "to_f32") "q32" let fq64 = extern_f ~library ~result:t64 ~link:(link "to_f64") "q64" let f_model ft = extern_f ~library ~result:(ftau ft) "model_%a" pp_suffix ft let f_delta ft = extern_f ~library ~result:(ftau ft) "delta_%a" pp_suffix ft let f_epsilon ft = extern_f ~library ~result:(ftau ft) "epsilon_%a" pp_suffix ft let f_sqrt ft = extern_f ~library ~result:(ftau ft) "sqrt_%a" pp_suffix ft (* -------------------------------------------------------------------------- *) (* --- Model Setting --- *) (* -------------------------------------------------------------------------- *) type model = Real | Float let model = Context.create ~default:Float "Cfloat.model" let tau_of_float f = match Context.get model with | Real -> Logic.Real | Float -> ftau f let float_name = function | Float32 -> "float" | Float64 -> "double" let model_name = function | Float -> "Float" | Real -> "Real" (* -------------------------------------------------------------------------- *) (* --- Operators --- *) (* -------------------------------------------------------------------------- *) type op = | LT | EQ | LE | NE | NEG | ADD | SUB | MUL | DIV | REAL | ROUND | EXACT [@@@ warning "-32"] let op_name = function | LT -> "lt" | EQ -> "eq" | LE -> "le" | NE -> "ne" | NEG -> "neg" | ADD -> "add" | SUB -> "sub" | MUL -> "mul" | DIV -> "div" | REAL -> "of" | ROUND -> "to" | EXACT -> "exact" [@@@ warning "+32"] (* -------------------------------------------------------------------------- *) (* --- Registry --- *) (* -------------------------------------------------------------------------- *) module REGISTRY = WpContext.Static (struct type key = lfun type data = op * c_float let name = "Wp.Cfloat.REGISTRY" include Lang.Fun end) let find = REGISTRY.find let () = Context.register begin fun () -> REGISTRY.define fq32 (EXACT,Float32) ; REGISTRY.define fq64 (EXACT,Float64) ; end (* -------------------------------------------------------------------------- *) (* --- Literals --- *) (* -------------------------------------------------------------------------- *) let rfloat = Floating_point.round_to_single_precision_float let fmake ulp value = match ulp with | Float32 -> F.e_fun ~result:t32 fq32 [F.e_float (rfloat value)] | Float64 -> F.e_fun ~result:t64 fq64 [F.e_float value] let qmake ulp q = fmake ulp (Q.to_float q) let re_mantissa = "\\([-+]?[0-9]*\\)" let re_comma = "\\(.\\(\\(0*[1-9]\\)*\\)0*\\)?" let re_exponent = "\\([eE]\\([-+]?[0-9]*\\)\\)?" let re_suffix = "\\([flFL]\\)?" let re_real = Str.regexp (re_mantissa ^ re_comma ^ re_exponent ^ re_suffix ^ "$") let parse_literal ~model v r = try if Str.string_match re_real r 0 then let has_suffix = try ignore (Str.matched_group 7 r) ; true with Not_found -> false in if has_suffix && model = Float then Q.of_float v else let ma = Str.matched_group 1 r in let mb = try Str.matched_group 3 r with Not_found -> "" in let me = try Str.matched_group 6 r with Not_found -> "0" in let n = int_of_string me - String.length mb in let d n = let s = Bytes.make (succ n) '0' in Bytes.set s 0 '1' ; Q.of_string (Bytes.to_string s) in let m = Q.of_string (ma ^ mb) in if n < 0 then Q.div m (d (-n)) else if n > 0 then Q.mul m (d n) else m else Q.of_float v with Failure _ -> Warning.error "Unexpected constant literal %S" r let acsl_lit l = let open Cil_types in F.e_real (parse_literal ~model:(Context.get model) l.r_nearest l.r_literal) let code_lit ulp value original = match Context.get model , ulp , original with | Float , Float32 , _ -> F.e_fun ~result:t32 fq32 [F.e_float value] | Float , Float64 , _ -> F.e_fun ~result:t64 fq64 [F.e_float value] | Real , _ , None -> F.e_float value | Real , _ , Some r -> F.e_real (parse_literal ~model:Real value r) (* -------------------------------------------------------------------------- *) (* --- Literal Output --- *) (* -------------------------------------------------------------------------- *) let printers = [ Printf.sprintf "%.0g" ; Printf.sprintf "%.1g" ; Printf.sprintf "%.2g" ; Printf.sprintf "%.3g" ; Printf.sprintf "%.4g" ; Printf.sprintf "%.5g" ; Printf.sprintf "%.6g" ; Printf.sprintf "%.9g" ; Printf.sprintf "%.12g" ; Printf.sprintf "%.15g" ; Printf.sprintf "%.18g" ; Printf.sprintf "%.21g" ; Printf.sprintf "%.32g" ; Printf.sprintf "%.64g" ; ] let re_int_float = Str.regexp "\\(-?[0-9]+\\)\\(e[+-]?[0-9]+\\)?$" let force_float r = if Str.string_match re_int_float r 0 then let group n r = try Str.matched_group n r with Not_found -> "" in group 1 r ^ ".0" ^ group 2 r else r let float_lit ulp (q : Q.t) = let v = match ulp with | Float32 -> rfloat @@ Q.to_float q | Float64 -> Q.to_float q in let reparse ulp r = match ulp with | Float32 -> rfloat @@ float_of_string r | Float64 -> float_of_string r in let rec lookup ulp v = function | [] -> Pretty_utils.to_string Floating_point.pretty v | pp::pps -> let r = force_float @@ pp v in if reparse ulp r = v then r else lookup ulp v pps in lookup ulp v printers (* -------------------------------------------------------------------------- *) (* --- Finites --- *) (* -------------------------------------------------------------------------- *) let fclass value _args = match Context.get model with | Real -> F.e_bool value | Float -> raise Not_found let () = Context.register begin fun () -> LogicBuiltins.hack "\\is_finite" (fclass true) ; LogicBuiltins.hack "\\is_NaN" (fclass false) ; LogicBuiltins.hack "\\is_infinite" (fclass false) ; LogicBuiltins.hack "\\is_plus_infinity" (fclass false) ; LogicBuiltins.hack "\\is_minus_infinity" (fclass false) ; end (* -------------------------------------------------------------------------- *) (* --- Computations --- *) (* -------------------------------------------------------------------------- *) let rec exact e = match F.repr e with | Qed.Logic.Kreal r -> r | Qed.Logic.Kint z -> Q.of_bigint z | Qed.Logic.Fun( f , [ q ] ) when f == fq32 || f == fq64 -> exact q | _ -> raise Not_found let round ulp e = match F.repr e with | Qed.Logic.Fun( f , [ b ] ) -> begin match find f with | REAL , ulp2 when ulp2 = ulp -> b | _ -> qmake ulp (exact e ) end | _ -> qmake ulp (exact e) let compute_float op ulp xs = match op , xs with | NEG , [ x ] -> qmake ulp (Q.neg (exact x)) | ADD , [ x ; y ] -> qmake ulp (Q.add (exact x) (exact y)) | SUB , [ x ; y ] -> qmake ulp (Q.sub (exact x) (exact y)) | MUL , [ x ; y ] -> qmake ulp (Q.mul (exact x) (exact y)) | DIV , [ x ; y ] -> let res = match Q.div (exact x) (exact y) with | x when Q.classify x = Q.NZERO -> x | _ -> raise Not_found (* let Why3 take care of the division*) in qmake ulp res | ROUND , [ x ] -> round ulp x | REAL , [ x ] -> F.e_real (exact x) | LE , [ x ; y ] -> F.e_bool (Q.leq (exact x) (exact y)) | LT , [ x ; y ] -> F.e_bool (Q.lt (exact x) (exact y)) | EQ , [ x ; y ] -> F.e_bool (Q.equal (exact x) (exact y)) | NE , [ x ; y ] -> F.e_bool (not (Q.equal (exact x) (exact y))) | _ -> raise Not_found let compute_real op xs = match op , xs with | NEG , [ x ] -> F.e_opp x | ADD , [ x ; y ] -> F.e_add x y | SUB , [ x ; y ] -> F.e_sub x y | MUL , [ x ; y ] -> F.e_mul x y | DIV , [ x ; y ] -> F.e_div x y | (ROUND|REAL) , [ x ] -> x | LE , [ x ; y ] -> F.e_leq x y | LT , [ x ; y ] -> F.e_lt x y | EQ , [ x ; y ] -> F.e_eq x y | NE , [ x ; y ] -> F.e_neq x y | _ -> raise Not_found let return_type ft = function | REAL -> Logic.Real | _ -> ftau ft module Compute = WpContext.StaticGenerator (struct type t = model * c_float * op let compare = Stdlib.compare let pretty fmt (m, ft, op) = Format.fprintf fmt "%s_%a_%s" (model_name m) pp_suffix ft (op_name op) end) (struct let name = "Wp.Cfloat.Compute" type key = model * c_float * op type data = lfun * (term list -> term) let compile (m, ft, op) = let impl = match m with | Real -> compute_real op | Float -> compute_float op ft in let name = op_name op in let phi = match op with | LT | EQ | LE | NE -> let prop = Format.asprintf "%s_%a" name pp_suffix ft in let bool = Format.asprintf "%s_%ab" name pp_suffix ft in extern_p ~library ~bool ~prop () | _ -> let result = return_type ft op in extern_f ~library ~result "%s_%a" name pp_suffix ft in Lang.F.set_builtin phi impl ; REGISTRY.define phi (op, ft) ; (phi, impl) end) (* -------------------------------------------------------------------------- *) (* --- Operations --- *) (* -------------------------------------------------------------------------- *) let flt_eq ft = Compute.get (Context.get model, ft, EQ) |> fst let flt_neq ft = Compute.get (Context.get model, ft, NE) |> fst let flt_le ft = Compute.get (Context.get model, ft, LE) |> fst let flt_lt ft = Compute.get (Context.get model, ft, LT) |> fst let flt_neg ft = Compute.get (Context.get model, ft, NEG) |> fst let flt_add ft = Compute.get (Context.get model, ft, ADD) |> fst let flt_sub ft = Compute.get (Context.get model, ft, SUB) |> fst let flt_mul ft = Compute.get (Context.get model, ft, MUL) |> fst let flt_div ft = Compute.get (Context.get model, ft, DIV) |> fst let flt_of_real ft = Compute.get (Context.get model, ft, ROUND) |> fst let real_of_flt ft = Compute.get (Context.get model, ft, REAL) |> fst (* -------------------------------------------------------------------------- *) (* --- Builtins --- *) (* -------------------------------------------------------------------------- *) let builtin kind ft op xs = let phi, impl = Compute.get ((Context.get model), ft, op) in let xs = (if kind=`ReV then List.rev xs else xs) in try impl xs with Not_found -> let result = match kind with | `Binop | `Unop -> ftau ft | `Rel | `ReV -> Logic.Bool in F.e_fun ~result phi xs let register_builtins ft = begin let suffix = float_name ft in let register (prefix,kind,op) = LogicBuiltins.hack (Printf.sprintf "\\%s_%s" prefix suffix) (builtin kind ft op) in List.iter register [ "eq",`Rel,EQ ; "ne",`Rel,NE ; "lt",`Rel,LT ; "gt",`ReV,LT ; "le",`Rel,LE ; "ge",`ReV,LE ; "neg",`Unop,NEG ; "add",`Binop,ADD ; "sub",`Binop,SUB ; "mul",`Binop,MUL ; "div",`Binop,DIV ; ] ; end let () = Context.register begin fun () -> register_builtins Float32 ; register_builtins Float64 ; end (* -------------------------------------------------------------------------- *) (* --- Models --- *) (* -------------------------------------------------------------------------- *) let hack_sqrt_builtin ft = let choose xs = match Context.get model with | Real -> F.e_fun ~result:t_real Cmath.f_sqrt xs | Float -> F.e_fun ~result:(ftau ft) (f_sqrt ft) xs in let name = match ft with | Float32 -> "sqrtf" | Float64 -> "sqrt" in LogicBuiltins.hack name choose let () = let open LogicBuiltins in let register_builtin ft = add_builtin "\\model" [F ft] (f_model ft) ; add_builtin "\\delta" [F ft] (f_delta ft) ; add_builtin "\\epsilon" [F ft] (f_epsilon ft) ; hack_sqrt_builtin ft in register_builtin Float32 ; register_builtin Float64 (* -------------------------------------------------------------------------- *) (* --- Conversion Symbols --- *) (* -------------------------------------------------------------------------- *) let real_of_float f a = match Context.get model with | Real -> a | Float -> e_fun ~result:Logic.Real (real_of_flt f) [a] let float_of_real f a = match Context.get model with | Real -> a | Float -> e_fun ~result:(ftau f) (flt_of_real f) [a] let float_of_int f a = float_of_real f (Cmath.real_of_int a) (* -------------------------------------------------------------------------- *) (* --- Float Arithmetics --- *) (* -------------------------------------------------------------------------- *) let fbinop rop fop f x y = match Context.get model with | Real -> rop x y | Float -> e_fun ~result:(ftau f) (fop f) [x;y] let fcmp rop fop f x y = match Context.get model with | Real -> rop x y | Float -> p_call (fop f) [x;y] let fadd = fbinop e_add flt_add let fsub = fbinop e_sub flt_sub let fmul = fbinop e_mul flt_mul let fdiv = fbinop e_div flt_div let fopp f x = match Context.get model with | Real -> e_opp x | Float -> e_fun ~result:(ftau f) (flt_neg f) [x] let flt = fcmp p_lt flt_lt let fle = fcmp p_leq flt_le let feq = fcmp p_equal flt_eq let fneq = fcmp p_neq flt_neq (* -------------------------------------------------------------------------- *) (* --- Registry --- *) (* -------------------------------------------------------------------------- *) let configure m = begin let orig_model = Context.push model m in let orig_floats = Context.push Lang.floats tau_of_float in let rollback () = Context.pop model orig_model ; Context.pop Lang.floats orig_floats in rollback end (* -------------------------------------------------------------------------- *)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>