package frama-c
Platform dedicated to the analysis of source code written in C
Install
Dune Dependency
Authors
-
MMichele Alberti
-
TThibaud Antignac
-
GGergö Barany
-
PPatrick Baudin
-
NNicolas Bellec
-
TThibaut Benjamin
-
AAllan Blanchard
-
LLionel Blatter
-
FFrançois Bobot
-
RRichard Bonichon
-
VVincent Botbol
-
QQuentin Bouillaguet
-
DDavid Bühler
-
ZZakaria Chihani
-
LLoïc Correnson
-
JJulien Crétin
-
PPascal Cuoq
-
ZZaynah Dargaye
-
BBasile Desloges
-
JJean-Christophe Filliâtre
-
PPhilippe Herrmann
-
MMaxime Jacquemin
-
FFlorent Kirchner
-
AAlexander Kogtenkov
-
RRemi Lazarini
-
TTristan Le Gall
-
JJean-Christophe Léchenet
-
MMatthieu Lemerre
-
DDara Ly
-
DDavid Maison
-
CClaude Marché
-
AAndré Maroneze
-
TThibault Martin
-
FFonenantsoa Maurica
-
MMelody Méaulle
-
BBenjamin Monate
-
YYannick Moy
-
PPierre Nigron
-
AAnne Pacalet
-
VValentin Perrelle
-
GGuillaume Petiot
-
DDario Pinto
-
VVirgile Prevosto
-
AArmand Puccetti
-
FFélix Ridoux
-
VVirgile Robles
-
JJan Rochel
-
MMuriel Roger
-
JJulien Signoles
-
NNicolas Stouls
-
KKostyantyn Vorobyov
-
BBoris Yakobowski
Maintainers
Sources
frama-c-29.0-Copper.tar.gz
sha256=d2fbb3b8d0ff83945872e9e6fa258e934a706360e698dae3b4d5f971addf7493
doc/src/frama-c-wp.core/Cint.ml.html
Source file Cint.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
(**************************************************************************) (* *) (* This file is part of WP plug-in of Frama-C. *) (* *) (* Copyright (C) 2007-2024 *) (* CEA (Commissariat a l'energie atomique et aux energies *) (* alternatives) *) (* *) (* you can redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation, version 2.1. *) (* *) (* It is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* See the GNU Lesser General Public License version 2.1 *) (* for more details (enclosed in the file licenses/LGPLv2.1). *) (* *) (**************************************************************************) (* -------------------------------------------------------------------------- *) (* --- Integer Arithmetics Model --- *) (* -------------------------------------------------------------------------- *) open Qed open Qed.Logic open Lang open Lang.F module FunMap = Map.Make(Lang.Fun) (* -------------------------------------------------------------------------- *) (* --- Kernel Interface --- *) (* -------------------------------------------------------------------------- *) let is_overflow_an_error iota = if Ctypes.signed iota then Kernel.SignedOverflow.get () else Kernel.UnsignedOverflow.get () let is_downcast_an_error iota = if Ctypes.signed iota then Kernel.SignedDowncast.get () else Kernel.UnsignedDowncast.get () (* -------------------------------------------------------------------------- *) (* --- Library Cint --- *) (* -------------------------------------------------------------------------- *) let is_cint_map = ref FunMap.empty let to_cint_map = ref FunMap.empty let is_cint f = FunMap.find f !is_cint_map let to_cint f = FunMap.find f !to_cint_map let library = "cint" let make_fun_int op i = Lang.extern_f ~library ~result:Logic.Int "%s_%a" op Ctypes.pp_int i let make_pred_int op i = Lang.extern_f ~library ~result:Logic.Prop ~coloring:true "%s_%a" op Ctypes.pp_int i (* let fun_int op = Ctypes.imemo (make_fun_int op) *) (* unused for now *) (* let pred_int op = Ctypes.imemo (make_pred_int op) *) (* unused for now *) (* Signature int,int -> int over Z *) let ac = { associative = true ; commutative = true ; idempotent = false ; invertible = false ; neutral = E_none ; absorbant = E_none ; } (* Functions -> Z *) let result = Logic.Int (* -------------------------------------------------------------------------- *) (* --- Library Cbits --- *) (* -------------------------------------------------------------------------- *) let library = "cbits" let balance = Lang.Left let op_lxor = { ac with neutral = E_int 0 ; invertible = true } let op_lor = { ac with neutral = E_int 0 ; absorbant = E_int (-1); idempotent = true } let op_land = { ac with neutral = E_int (-1); absorbant = E_int 0 ; idempotent = true } let f_lnot = Lang.extern_f ~library ~result "lnot" let f_lor = Lang.extern_f ~library ~result ~category:(Operator op_lor) ~balance "lor" let f_land = Lang.extern_f ~library ~result ~category:(Operator op_land) ~balance "land" let f_lxor = Lang.extern_f ~library ~result ~category:(Operator op_lxor) ~balance "lxor" let f_lsl = Lang.extern_f ~library ~result "lsl" let f_lsr = Lang.extern_f ~library ~result "lsr" let f_bitwised = [ f_lnot ; f_lor ; f_land ; f_lxor ; f_lsl ; f_lsr ] (* [f_bit_stdlib] is related to the function [bit_test] of Frama-C StdLib *) let f_bit_stdlib = Lang.extern_p ~library ~bool:"bit_testb" ~prop:"bit_test" () (* [f_bit_positive] is actually exported in forgoting the fact the position is positive *) let f_bit_positive = Lang.extern_p ~library ~bool:"bit_testb" ~prop:"bit_test" () (* At export, some constructs such as [e & (1 << k)] are written into [f_bit_export] construct *) let f_bit_export = Lang.extern_p ~library ~bool:"bit_testb" ~prop:"bit_test" () let () = let open LogicBuiltins in add_builtin "\\bit_test_stdlib" [Z;Z] f_bit_stdlib let () = let open LogicBuiltins in add_builtin "\\bit_test" [Z;Z] f_bit_positive let f_bits = [ f_bit_stdlib ; f_bit_positive ; f_bit_export ] let bit_test e k = let r = F.e_fun ~result:Logic.Bool (if k <= 0 then f_bit_positive else f_bit_stdlib) [e ; e_int k] in assert (is_prop r) ; r (* -------------------------------------------------------------------------- *) (* --- Matching utilities for simplifications --- *) (* -------------------------------------------------------------------------- *) let is_leq a b = F.is_true (F.e_leq a b) let match_integer t = match F.repr t with | Logic.Kint c -> c | _ -> raise Not_found let match_to_cint t = match F.repr t with | Logic.Fun( conv , [a] ) -> (to_cint conv), a | _ -> raise Not_found let match_mod t = match F.repr t with | Logic.Mod (e1, e2) -> e1, e2 | _ -> raise Not_found (* integration with qed should be improved! *) let is_positive t = match F.repr t with | Logic.Kint c -> Integer.le Integer.one c | _ -> false (* integration with qed should be improved! *) let rec is_positive_or_null e = match F.repr e with | Logic.Fun( f , [e] ) when Fun.equal f f_lnot -> is_negative e | Logic.Fun( f , es ) when Fun.equal f f_land -> List.exists is_positive_or_null es | Logic.Fun( f , es ) when Fun.equal f f_lor -> List.for_all is_positive_or_null es | Logic.Fun( f , es ) when Fun.equal f f_lxor -> (match mul_xor_sign es with | Some b -> b | _ -> false) | Logic.Fun( f , es ) when Fun.equal f f_lsr || Fun.equal f f_lsl -> List.for_all is_positive_or_null es | _ -> (* try some improvement first then ask to qed *) let improved_is_positive_or_null e = match F.repr e with | Logic.Add es -> List.for_all is_positive_or_null es | Logic.Mul es -> (match mul_xor_sign es with | Some b -> b | _ -> false) | Logic.Mod(e1,e2) when is_positive e2 || is_negative e2 -> (* e2<>0 ==> ( 0<=(e1 % e2) <=> 0<=e1 ) *) is_positive_or_null e1 | _ -> false in if improved_is_positive_or_null e then true else match F.is_true (F.e_leq e_zero e) with | Logic.Yes -> true | Logic.No | Logic.Maybe -> false and is_negative e = match F.repr e with | Logic.Fun( f , [e] ) when Fun.equal f f_lnot -> is_positive_or_null e | Logic.Fun( f , es ) when Fun.equal f f_lor -> List.exists is_negative es | Logic.Fun( f , es ) when Fun.equal f f_land -> List.for_all is_negative es | Logic.Fun( f , es ) when Fun.equal f f_lxor -> (match mul_xor_sign es with | Some b -> (not b) | _ -> false) | Logic.Fun( f , [k;n] ) when Fun.equal f f_lsr || Fun.equal f f_lsl -> is_positive_or_null n && is_negative k | _ -> (* try some improvement first then ask to qed *) let improved_is_negative e = match F.repr e with | Logic.Add es -> List.for_all is_negative es | Logic.Mul es -> (match mul_xor_sign es with | Some b -> (not b) | _ -> false) | _ -> false in if improved_is_negative e then true else match F.is_true (F.e_lt e e_zero) with | Logic.Yes -> true | Logic.No | Logic.Maybe -> false and mul_xor_sign es = try Some (List.fold_left (fun acc e -> if is_positive_or_null e then acc (* as previous *) else if is_negative e then (not acc) (* opposite sign *) else raise Not_found) true es) with Not_found -> None let match_positive_or_null e = if not (is_positive_or_null e) then raise Not_found; e let match_log2 x = (* undefined for 0 and negative values *) Integer.of_int (try Z.log2 x with _ -> raise Not_found) let match_power2, match_power2_minus1 = let is_power2 k = (* exists n such that k == 2**n? *) (Integer.gt k Integer.zero) && (Integer.equal k (Integer.logand k (Integer.neg k))) in let rec match_power2 e = match F.repr e with | Logic.Kint z when is_power2 z -> e_zint (match_log2 z) | Logic.Fun( f , [n;k] ) when Fun.equal f f_lsl && is_positive_or_null k -> e_add k (match_power2 n) | _ -> raise Not_found in let match_power2_minus1 e = match F.repr e with | Logic.Kint z when is_power2 (Integer.succ z) -> e_zint (match_log2 (Integer.succ z)) | _ -> match_power2 (e_add e_one e) in match_power2, match_power2_minus1 let match_fun op t = match F.repr t with | Logic.Fun( f , es ) when Fun.equal f op -> es | _ -> raise Not_found let match_ufun uop t = match F.repr t with | Logic.Fun( f , e::[] ) when Fun.equal f uop -> e | _ -> raise Not_found let match_positive_or_null_integer t = match F.repr t with | Logic.Kint c when Integer.le Integer.zero c -> c | _ -> raise Not_found let match_binop_arg1 match_f = function (* for binop *) | [e1;e2] -> (match_f e1),e2 | _ -> raise Not_found let match_binop_arg2 match_f = function (* for binop *) | [e1;e2] -> e1,(match_f e2) | _ -> raise Not_found let match_list_head match_f = function | [] -> raise Not_found | e::es -> (match_f e), es let match_binop_one_arg1 binop e = match F.repr e with | Logic.Fun( f , [one; e2] ) when Fun.equal f binop && one == e_one -> e2 | _ -> raise Not_found let match_list_extraction match_f = let match_f_opt n = try Some (match_f n) with Not_found -> None in let rec aux rs = function | [] -> raise Not_found | e::es -> match match_f_opt e with | Some k -> k, e, List.rev_append rs es | None -> aux (e::rs) es in aux [] let match_integer_arg1 = match_binop_arg1 match_integer let match_positive_or_null_arg2 = match_binop_arg2 match_positive_or_null let match_positive_or_null_integer_arg2 = match_binop_arg2 match_positive_or_null_integer let match_integer_extraction = match_list_head match_integer let match_power2_extraction = match_list_extraction match_power2 let match_power2_minus1_extraction = match_list_extraction match_power2_minus1 let match_binop_one_extraction binop = match_list_extraction (match_binop_one_arg1 binop) (* -------------------------------------------------------------------------- *) (* --- Conversion Symbols --- *) (* -------------------------------------------------------------------------- *) (* rule A: to_a(to_b x) = to_b x when domain(b) is all included in domain(a) *) (* rule B: to_a(to_b x) = to_a x when range(b) is a multiple of range(a) AND a is not bool *) (* to_iota(e) where e = to_iota'(e'), only ranges for iota *) let simplify_range_comp f iota e conv e' = let iota' = to_cint conv in let size' = Ctypes.i_bits iota' in let size = Ctypes.i_bits iota in if size <= size' then e_fun f [e'] (* rule B: iota' is multiple of iota -> keep iota(e') *) else if ((Ctypes.signed iota) || not (Ctypes.signed iota')) then e (* rule A: have iota > iota' check sign to apply rule. unsigned iota -> iota' must be unsigned signed iota -> iota' can have any sign *) else raise Not_found let simplify_f_to_bounds iota e = (* min(ctypes)<=y<=max(ctypes) ==> to_ctypes(y)=y *) let lower,upper = Ctypes.bounds iota in if (F.decide (F.e_leq e (e_zint upper))) && (F.decide (F.e_leq (e_zint lower) e)) then e else raise Not_found let f_to_int = Ctypes.i_memo (fun iota -> make_fun_int "to" iota) let configure_to_int iota = let simplify_range f iota e = begin try match F.repr e with | Logic.Kint value -> let size = Integer.of_int (Ctypes.i_bits iota) in let signed = Ctypes.signed iota in F.e_zint (Integer.cast ~size ~signed ~value) | Logic.Fun( fland , es ) when Fun.equal fland f_land && not (Ctypes.signed iota) && List.exists is_positive_or_null es -> (* to_uintN(a) == a & (2^N-1) when a >= 0 *) let m = F.e_zint (snd (Ctypes.bounds iota)) in F.e_fun f_land (m :: es) | Logic.Fun( flor , es ) when (Fun.equal flor f_lor) && not (Ctypes.signed iota) -> (* to_uintN(a|b) == (to_uintN(a) | to_uintN(b)) *) F.e_fun f_lor (List.map (fun e' -> e_fun f [e']) es) | Logic.Fun( flnot , [ e ] ) when (Fun.equal flnot f_lnot) && not (Ctypes.signed iota) -> begin match F.repr e with | Logic.Fun( f' , w ) when f' == f -> e_fun f [ e_fun f_lnot w ] | _ -> raise Not_found end | Logic.Fun( conv , [e'] ) -> (* unary op *) simplify_range_comp f iota e conv e' | _ -> raise Not_found with Not_found -> simplify_f_to_bounds iota e end in let simplify_conv f iota e = if iota = Ctypes.CBool then match F.is_equal e F.e_zero with | Yes -> F.e_zero | No -> F.e_one | Maybe -> raise Not_found else simplify_range f iota e in let simplify_leq f iota x y = let lower,upper = Ctypes.bounds iota in match F.repr y with | Logic.Fun( conv , [_] ) when (Fun.equal conv f) && (F.decide (F.e_leq x (e_zint lower))) -> (* x<=min(ctypes) ==> x<=to_ctypes(y) *) e_true | _ -> begin match F.repr x with | Logic.Fun( conv , [_] ) when (Fun.equal conv f) && (F.decide (F.e_leq (e_zint upper) y)) -> (* max(ctypes)<=y ==> to_ctypes(y)<=y *) e_true | _ -> raise Not_found end in let f = f_to_int iota in F.set_builtin_1 f (simplify_conv f iota) ; F.set_builtin_leq f (simplify_leq f iota) ; to_cint_map := FunMap.add f iota !to_cint_map let simplify_p_is_bounds iota e = let bounds = Ctypes.bounds iota in (* min(ctypes)<=y<=max(ctypes) <==> is_ctypes(y) *) match F.is_true (F.e_and [F.e_leq (e_zint (fst bounds)) e; F.e_leq e (e_zint (snd bounds))]) with | Logic.Yes -> e_true | Logic.No -> e_false | _ -> raise Not_found (* is_<cint> : int -> prop *) let p_is_int = Ctypes.i_memo (fun iota -> make_pred_int "is" iota) let configure_is_int iota = let f = p_is_int iota in let simplify = function | [e] -> begin match F.repr e with | Logic.Kint k -> let vmin,vmax = Ctypes.bounds iota in F.e_bool (Z.leq vmin k && Z.leq k vmax) | Logic.Fun( flor , es ) when (Fun.equal flor f_lor) && not (Ctypes.signed iota) -> (* is_uintN(a|b) == is_uintN(a) && is_uintN(b) *) F.e_and (List.map (fun e' -> e_fun f [e']) es) | _ -> simplify_p_is_bounds iota e end | _ -> raise Not_found in F.set_builtin f simplify; is_cint_map := FunMap.add f iota !is_cint_map let convert i a = e_fun (f_to_int i) [a] (* -------------------------------------------------------------------------- *) type model = | Natural (** Integer arithmetics with no upper-bound *) | Machine (** Integer/Module wrt Kernel options on RTE *) let () = Context.register begin fun () -> Ctypes.i_iter configure_to_int; Ctypes.i_iter configure_is_int; end let model = Context.create "Cint.model" let current () = Context.get model let configure m = let orig_model = Context.push model m in (fun () -> Context.pop model orig_model) let to_integer a = a let of_integer i a = convert i a let of_real i a = convert i (Cmath.int_of_real a) let range i a = match Context.get model with | Natural -> if Ctypes.signed i then F.p_true else F.p_leq F.e_zero a | Machine -> p_call (p_is_int i) [a] let ensures warn i a = if warn i then a else e_fun (f_to_int i) [a] let downcast = ensures is_downcast_an_error let overflow = ensures is_overflow_an_error (* -------------------------------------------------------------------------- *) (* --- Arithmetics --- *) (* -------------------------------------------------------------------------- *) let binop f i x y = overflow i (f x y) let unop f i x = overflow i (f x) (* C Code Semantics *) let iopp = unop e_opp let iadd = binop e_add let isub = binop e_sub let imul = binop e_mul let idiv = binop e_div let imod = binop e_mod (* -------------------------------------------------------------------------- *) (* --- Bits --- *) (* -------------------------------------------------------------------------- *) (* smp functions raise Not_found when simplification isn't possible *) let smp1 zf = (* f(c1) ~> zf(c1) *) function | [e] -> begin match F.repr e with | Logic.Kint c1 -> e_zint (zf c1) | _ -> raise Not_found end | _ -> raise Not_found let smp2 f zf = (* f(c1,c2) ~> zf(c1,c2), f(c1,c2,...) ~> f(zf(c1,c2),...) *) function | e1::e2::others -> begin match (F.repr e1), (F.repr e2) with (* integers should be at the beginning of the list *) | Logic.Kint c1, Logic.Kint c2 -> let z12 = ref (zf c1 c2) in let rec smp2 = function (* look at the other integers *) | [] -> [] | (e::r) as l -> begin match F.repr e with | Logic.Kint c -> z12 := zf !z12 c; smp2 r | _ -> l end in let others = smp2 others in let c12 = e_zint !z12 in if others = [] || F.is_absorbant f c12 then c12 else if F.is_neutral f c12 then e_fun f others else e_fun f (c12::others) | _ -> raise Not_found end | _ -> raise Not_found let bitk_positive k e = F.e_fun ~result:Logic.Bool f_bit_positive [e;k] let smp_mk_bit_stdlib = function | [ a ; k ] when is_positive_or_null k -> (* No need to expand the logic definition of the ACSL stdlib symbol when [k] is positive (the definition must comply with the simplification) *) bitk_positive k a | [ a ; k ] -> (* TODO: expand the current logic definition of the ACSL stdlib symbol *) F.e_neq F.e_zero (F.e_fun f_land [a; (F.e_fun f_lsl [F.e_one;k])]) | _ -> raise Not_found let smp_bitk_positive = function | [ a ; k ] -> (* requires k>=0 *) begin try e_eq (match_power2 a) k with Not_found -> match F.repr a with | Logic.Kint za -> let zk = match_positive_or_null_integer k (* simplifies constants *) in if Integer.is_zero (Integer.logand za (Integer.shift_left Integer.one zk)) then e_false else e_true | Logic.Fun( f , [e;n] ) when Fun.equal f f_lsr && is_positive_or_null n -> bitk_positive (e_add k n) e | Logic.Fun( f , [e;n] ) when Fun.equal f f_lsl && is_positive_or_null n -> begin match is_leq n k with | Logic.Yes -> bitk_positive (e_sub k n) e | Logic.No -> e_false | Logic.Maybe -> raise Not_found end | Logic.Fun( f , es ) when Fun.equal f f_land -> F.e_and (List.map (bitk_positive k) es) | Logic.Fun( f , es ) when Fun.equal f f_lor -> F.e_or (List.map (bitk_positive k) es) | Logic.Fun( f , [a;b] ) when Fun.equal f f_lxor -> F.e_neq (bitk_positive k a) (bitk_positive k b) | Logic.Fun( f , [a] ) when Fun.equal f f_lnot -> F.e_not (bitk_positive k a) | Logic.Fun( conv , [a] ) (* when is_to_c_int conv *) -> let iota = to_cint conv in let range = Ctypes.i_bits iota in let signed = Ctypes.signed iota in if signed then (* beware of sign-bit *) begin match is_leq k (e_int (range-2)) with | Logic.Yes -> bitk_positive k a | Logic.No | Logic.Maybe -> raise Not_found end else begin match is_leq (e_int range) k with | Logic.Yes -> e_false | Logic.No -> bitk_positive k a | Logic.Maybe -> raise Not_found end | _ -> raise Not_found end | _ -> raise Not_found let introduction_bit_test_positive es b = (* introduces bit_test(n,k) only when k>=0 *) let k,_,es = match_power2_extraction es in let es' = List.map (bitk_positive k) es in if b == e_zero then e_not (e_and es') else try let k' = match_power2 b in e_and ( e_eq k k' :: es' ) with Not_found -> let bs = match_fun f_land b in let k',_,bs = match_power2_extraction bs in let bs' = List.map (bitk_positive k') bs in match F.is_true (F.e_eq k k') with | Logic.Yes -> e_eq (e_and es') (e_and bs') | Logic.No -> e_and [e_not (e_and es'); e_not (e_and bs')] | Logic.Maybe -> raise Not_found let smp_land es = let introduction_bit_test_positive_from_land es = if true then raise Not_found; (* [PB] true: until alt-ergo 0.95.2 trouble *) let k,e,es = match_power2_extraction es in let t = match es with | x::[] -> x | _ -> e_fun f_land es in e_if (bitk_positive k t) e e_zero in try let r = smp2 f_land Integer.logand es in try match F.repr r with | Logic.Fun( f , es ) when Fun.equal f f_land -> introduction_bit_test_positive_from_land es | _ -> r with Not_found -> r with Not_found -> introduction_bit_test_positive_from_land es let smp_shift zf = (* f(e1,0)~>e1, c2>0==>f(c1,c2)~>zf(c1,c2), c2>0==>f(0,c2)~>0 *) function | [e1;e2] -> begin match (F.repr e1), (F.repr e2) with | _, Logic.Kint c2 when Z.equal c2 Z.zero -> e1 | Logic.Kint c1, Logic.Kint c2 when Z.leq Z.zero c2 -> (* undefined when c2 is negative *) e_zint (zf c1 c2) | Logic.Kint c1, _ when Z.equal c1 Z.zero && is_positive_or_null e2 -> (* undefined when c2 is negative *) e1 | _ -> raise Not_found end | _ -> raise Not_found let smp_lnot = function | ([e] as args) -> begin match F.repr e with | Logic.Fun( f , [e] ) when Fun.equal f f_lnot -> (* ~~e ~> e *) e | _ -> smp1 Integer.lognot args end | _ -> raise Not_found (* -------------------------------------------------------------------------- *) (* --- Comparision with L-AND / L-OR / L-NOT --- *) (* -------------------------------------------------------------------------- *) let smp_leq_improved f a b = ignore (match_fun f b) ; (* It must be an improved of [is_positive_or_null f(args)] *) (* a <= 0 && 0 <= f(args) *) if F.decide (F.e_leq a F.e_zero) && is_positive_or_null b then e_true else raise Not_found let smp_leq_with_land a b = let es = match_fun f_land a in let a1,_ = match_list_head match_positive_or_null_integer es in if F.decide (F.e_leq (e_zint a1) b) then e_true else raise Not_found (* Disabled rule : with Not_found -> (* a <= 0 && 0 <= (x&y) ==> a <= (x & y) *) smp_leq_improved f_land a b *) let smp_eq_with_land a b = let es = match_fun f_land a in try try let b1 = match_integer b in try (* (b1&~a2)!=0 ==> (b1==(a2&e) <=> false) *) let a2,_ = match_integer_extraction es in if Integer.is_zero (Integer.logand b1 (Integer.lognot a2)) then raise Not_found ; e_false with Not_found when b == e_minus_one -> (* -1==(a1&a2) <=> (-1==a1 && -1==a2) *) F.e_and (List.map (e_eq b) es) with Not_found -> introduction_bit_test_positive es b with Not_found -> try (* k>=0 & b1>=0 ==> (b1 & ((1 << k) -1) == b1 % (1 << k) <==> true) *) let b1,b2 = match_mod b in let k = match_power2 b2 in (* note: a positive or null k is required by match_power2, match_power2_minus1 *) let k',_,es = match_power2_minus1_extraction es in if not ((is_positive_or_null b1) && (F.decide (F.e_eq k k')) && (F.decide (F.e_eq b1 (F.e_fun f_land es)))) then raise Not_found ; F.e_true with Not_found -> (* k in {8,16,32,64} ==> ( (b1 & ((1 << k) -1) == to_cint_unsigned_bits(k, b1) <==> true ) *) let iota,b1 = match_to_cint b in if Ctypes.signed iota then raise Not_found ; let n = Ctypes.i_bits iota in if n = 1 then (* rejects [to_bool()] that is not a modulo *) raise Not_found ; let k',_,es = match_power2_minus1_extraction es in let k' = match_integer k' in let k = Integer.of_int n in if not ((Integer.equal k k') && (F.decide (F.e_eq b1 (F.e_fun f_land es)))) then raise Not_found ; F.e_true let smp_eq_with_lor a b = let b1 = match_integer b in let es = match_fun f_lor a in try (* b1==(a2|e) <==> (b1^a2)==(~a2&e) *) let a2,es = match_integer_extraction es in let k1 = Integer.logxor b1 a2 in let k2 = Integer.lognot a2 in e_eq (e_zint k1) (e_fun f_land [e_zint k2 ; e_fun f_lor es]) with Not_found when b == e_zero -> (* 0==(a1|a2) <=> (0==a1 && 0==a2) *) F.e_and (List.map (e_eq b) es) let smp_eq_with_lxor a b = (* b1==(a2^e) <==> (b1^a2)==e *) let b1 = match_integer b in let es = match_fun f_lxor a in try (* b1==(a2^e) <==> (b1^a2)==e *) let a2,es = match_integer_extraction es in let k1 = Integer.logxor b1 a2 in e_eq (e_zint k1) (e_fun f_lxor es) with Not_found when b == e_zero -> (* 0==(a1^a2) <=> (a1==a2) *) (match es with | e1::e2::[] -> e_eq e1 e2 | e1::((_::_) as e22) -> e_eq e1 (e_fun f_lxor e22) | _ -> raise Not_found) | Not_found when b == e_minus_one -> (* -1==(a1^a2) <=> (a1==~a2) *) (match es with | e1::e2::[] -> e_eq e1 (e_fun f_lnot [e2]) | e1::((_::_) as e22) -> e_eq e1 (e_fun f_lnot [e_fun f_lxor e22]) | _ -> raise Not_found) let smp_eq_with_lnot a b = let e = match_ufun f_lnot a in try (* b1==~e <==> ~b1==e *) let b1 = match_integer b in let k1 = Integer.lognot b1 in e_eq (e_zint k1) e with Not_found ->(* ~b==~e <==> b==e *) let b = match_ufun f_lnot b in e_eq e b (* -------------------------------------------------------------------------- *) (* --- Comparision with LSL / LSR --- *) (* -------------------------------------------------------------------------- *) let two_power_k k = try Integer.two_power k with Z.Overflow -> raise Not_found let two_power_k_minus1 k = try Integer.pred (Integer.two_power k) with Z.Overflow -> raise Not_found let smp_eq_with_lsl_cst a0 b0 = let b1 = match_integer b0 in let es = match_fun f_lsl a0 in try (* looks at the sd arg of a0 *) let e,a2= match_positive_or_null_integer_arg2 es in if not (Integer.is_zero (Integer.logand b1 (two_power_k_minus1 a2))) then (* a2>=0 && 0!=(b1 & ((2**a2)-1)) ==> ( (e<<a2)==b1 <==> false ) *) e_false else (* a2>=0 && 0==(b1 & ((2**a2)-1)) ==> ( (e<<a2)==b1 <==> e==(b1>>a2) ) *) e_eq e (e_zint (Integer.shift_right b1 a2)) with Not_found -> (* looks at the fistt arg of a0 *) let a1,e= match_integer_arg1 es in if is_negative e then raise Not_found ; (* [PB] can be generalized to any term for a1 *) if Integer.le Integer.zero a1 && Integer.lt b1 a1 then (* e>=0 && 0<=a1 && b1<a1 ==> ( (a1<<e)==b1 <==> false ) *) e_false else if Integer.ge Integer.zero a1 && Integer.gt b1 a1 then (* e>=0 && 0>=a1 && b1>a1 ==> ( (a1<<e)==b1 <==> false ) *) e_false else raise Not_found let smp_cmp_with_lsl cmp a0 b0 = if a0 == e_zero then let b,_ = match_fun f_lsl b0 |> match_positive_or_null_arg2 in cmp e_zero b (* q>=0 ==> ( (0 cmp(b<<q)) <==> (0 cmp b) ) *) else if b0 == e_zero then let a,_ = match_fun f_lsl a0 |> match_positive_or_null_arg2 in cmp a e_zero (* p>=0 ==> ( ((a<<p) cmp 0) <==> (a cmp 0) ) *) else let a,p = match_fun f_lsl a0 |> match_positive_or_null_arg2 in let b,q = match_fun f_lsl b0 |> match_positive_or_null_arg2 in if p == q then (* p>=0 && q>=0 && p==q ==> ( ((a<<p)cmp(b<<q))<==>(a cmp b) ) *) cmp a b else if a == b && (cmp==e_eq || is_positive_or_null a) then (* p>=0 && q>=0 && a==b ==> ( ((a<<p)== (b<<q))<==>(p == q) ) *) (* p>=0 && q>=0 && a==b && a>=0 ==> ( ((a<<p)cmp(b<<q))<==>(p cmp q) ) *) cmp p q else if a == b && is_negative a then (* p>=0 && q>=0 && a==b && a<0 ==> ( ((a<<p)cmp(b<<q))<==>(q cmp p) ) *) cmp q p else let p = match_integer p in let q = match_integer q in if Z.lt p q then (* p>=0 && q>=0 && p>q ==>( ((a<<p)cmp(b<<q))<==>(a cmp(b<<(q-p))) ) *) cmp a (e_fun f_lsl [b;e_zint (Z.sub q p)]) else if Z.lt q p then (* p>=0 && q>=0 && p<q ==>( ((a<<p)cmp(b<<q))<==>((a<<(p-q)) cmp b) ) *) cmp (e_fun f_lsl [a;e_zint (Z.sub p q)]) b else (* p>=0 && q>=0 && p==q ==>( ((a<<p)cmp(b<<q))<==>(a cmp b) ) *) cmp a b let smp_eq_with_lsl a b = try smp_eq_with_lsl_cst a b with Not_found -> smp_cmp_with_lsl e_eq a b let smp_leq_with_lsl a b = try smp_cmp_with_lsl e_leq a b with Not_found -> (* a <= 0 && 0 <= (x << y) ==> a <= (x << y) *) smp_leq_improved f_lsl a b let smp_eq_with_lsr a0 b0 = try let b1 = match_integer b0 in let e,a2 = match_fun f_lsr a0 |> match_positive_or_null_integer_arg2 in (* (e>>a2) == b1 <==> (e&~((2**a2)-1)) == (b1<<a2) That rule is similar to e/A2 == b2 <==> (e/A2)*A2 == b2*A2) with A2==2**a2 So, A2>0 and (e/A2)*A2 == e&~((2**a2)-1) *) (* build (e&~((2**a2)-1)) == (b1<<a2) *) e_eq (e_zint (Integer.shift_left b1 a2)) (e_fun f_land [e_zint (Integer.lognot (two_power_k_minus1 a2));e]) with Not_found -> (* This rule takes into acount several cases. One of them is (a>>p) == (b>>(n+p)) <==> (a&~((2**p)-1)) == (b>>n)&~((2**p)-1) That rule is similar to (a/P) == (b/(N*P)) <==> (a/P)*P == ((b/N)/P)*P with P==2**p, N=2**n, q=p+n. So, (a/P)*P==a&~((2**p)-1), b/N==b>>n, ((b/N)/P)*P==(b>>n)&~((2**p)-1) *) let a,p = match_fun f_lsr a0 |> match_positive_or_null_integer_arg2 in let b,q = match_fun f_lsr b0 |> match_positive_or_null_integer_arg2 in let n = Integer.min p q in let a = if Integer.lt n p then e_fun f_lsr [a;e_zint (Z.sub p n)] else a in let b = if Integer.lt n q then e_fun f_lsr [b;e_zint (Z.sub q n)] else b in let m = F.e_zint (Integer.lognot (two_power_k_minus1 n)) in e_eq (e_fun f_land [a;m]) (e_fun f_land [b;m]) let smp_leq_with_lsr x y = try let a,p = match_fun f_lsr y |> match_positive_or_null_integer_arg2 in (* x <= (a >> p) with p >= 0 *) if x == e_zero then (* p >= 0 ==> ( 0 <= (a >> p) <==> 0 <= a )*) e_leq e_zero a else (* p >= 0 ==> ( x <= (a >> p) <==> x <= a/(2**p) ) *) let k = two_power_k p in e_leq x (e_div a (e_zint k)) with Not_found -> try let a,p = match_fun f_lsr x |> match_positive_or_null_integer_arg2 in (* (a >> p) <= y with p >= 0 *) if y == e_zero then (* p >= 0 ==> ( (a >> p) <= 0 <==> a <= 0 ) *) e_leq a e_zero else (* p >= 0 ==> ( (a >> p) <= y <==> a/(2**p) <= y ) *) let k = two_power_k p in e_leq (e_div a (e_zint k)) y with Not_found -> (* x <= y && 0 <= (a&b) ==> x <= (a >> b) *) smp_leq_improved f_lsr x y (* Rewritting at export *) let bitk_export k e = F.e_fun ~result:Logic.Bool f_bit_export [e;k] let export_eq_with_land a b = let es = match_fun f_land a in if b == e_zero then let k,_,es = match_binop_one_extraction f_lsl es in (* e1 & ... & en & (1 << k) = 0 <==> !bit_test(e1 & ... & en, k) *) e_not (bitk_export k (e_fun f_land es)) else raise Not_found (* ACSL Semantics *) type l_builtin = { f: lfun ; eq: (term -> term -> term) option ; leq: (term -> term -> term) option ; smp: term list -> term ; } let () = Context.register begin fun () -> begin let mk_builtin n f ?eq ?leq smp = n, { f ; eq; leq; smp } in (* From [smp_mk_bit_stdlib], the built-in [f_bit_stdlib] is such that there is no creation of [e_fun f_bit_stdlib args] *) let bi_lbit_stdlib = mk_builtin "f_bit_stdlib" f_bit_stdlib smp_mk_bit_stdlib in let bi_lbit = mk_builtin "f_bit" f_bit_positive smp_bitk_positive in let bi_lnot = mk_builtin "f_lnot" f_lnot ~eq:smp_eq_with_lnot smp_lnot ~leq:(smp_leq_improved f_lnot) in let bi_lxor = mk_builtin "f_lxor" f_lxor ~eq:smp_eq_with_lxor ~leq:(smp_leq_improved f_lxor) (smp2 f_lxor Integer.logxor) in let bi_lor = mk_builtin "f_lor" f_lor ~eq:smp_eq_with_lor ~leq:(smp_leq_improved f_lor) (smp2 f_lor Integer.logor) in let bi_land = mk_builtin "f_land" f_land ~eq:smp_eq_with_land ~leq:smp_leq_with_land smp_land in let bi_lsl = mk_builtin "f_lsl" f_lsl ~eq:smp_eq_with_lsl ~leq:smp_leq_with_lsl (smp_shift Integer.shift_left) in let bi_lsr = mk_builtin "f_lsr" f_lsr ~eq:smp_eq_with_lsr ~leq:smp_leq_with_lsr (smp_shift Integer.shift_right) in List.iter begin fun (_name, { f; eq; leq; smp }) -> F.set_builtin f smp ; (match eq with | None -> () | Some eq -> F.set_builtin_eq f eq); (match leq with | None -> () | Some leq -> F.set_builtin_leq f leq) end [bi_lbit_stdlib ; bi_lbit; bi_lnot; bi_lxor; bi_lor; bi_land; bi_lsl; bi_lsr]; Lang.For_export.set_builtin_eq f_land export_eq_with_land end end (* ACSL Semantics *) let l_not a = e_fun f_lnot [a] let l_xor a b = e_fun f_lxor [a;b] let l_or a b = e_fun f_lor [a;b] let l_and a b = e_fun f_land [a;b] let l_lsl a b = e_fun f_lsl [a;b] let l_lsr a b = e_fun f_lsr [a;b] (* C Code Semantics *) (* we need a (forced) conversion to properly encode the semantics of C in terms of the semantics in Z(ACSL). Typically, lnot(128) becomes (-129), which must be converted to obtain an unsigned. *) let mask_unsigned i m = if Ctypes.signed i then m else convert i m let bnot i x = mask_unsigned i (l_not x) let bxor i x y = mask_unsigned i (l_xor x y) let bor _i = l_or (* no needs of range conversion *) let band _i = l_and (* no needs of range conversion *) let blsl i x y = overflow i (l_lsl x y) (* mult. by 2^y *) let blsr _i = l_lsr (* div. by 2^y, never overflow *) (** Simplifiers *) let dkey = Wp_parameters.register_category "is-cint-simplifier" let c_int_bounds_ival f = let (umin,umax) = Ctypes.bounds f in Ival.inject_range (Some umin) (Some umax) let max_reduce_quantifiers = 1000 module IntDomain = struct type t = Ival.t Tmap.t let is_top_ival = Ival.equal Ival.top let top = Tmap.empty [@@@ warning "-32"] let pretty fmt (k,v) = Format.fprintf fmt "%a: %a" Lang.F.pp_term k Ival.pretty v [@@@ warning "-32"] let pretty_tbl fmt dom = Tmap.iter (fun k v -> Format.fprintf fmt "%a,@, " pretty (k,v)) dom let find t dom = Tmap.find t dom let get t dom = try find t dom with Not_found -> Ival.top let narrow t v dom = if Ival.is_bottom v then (Wp_parameters.debug ~dkey "* Assume FALSE: %a@." pretty (t,v); raise Lang.Contradiction) else if is_top_ival v then dom else Tmap.change (fun _ v -> function | None -> Some v | (Some old) as old' -> let v = Ival.narrow v old in if Ival.is_bottom v then (Wp_parameters.debug ~dkey "* Assume FALSE: %a@." pretty (t,v); raise Lang.Contradiction) else if Ival.equal v old then old' else Some v) t v dom let add_with_bot t v dom = if is_top_ival v then dom else Tmap.add t v dom let add t v dom = if Ival.is_bottom v then (Wp_parameters.debug ~dkey "* Assume FALSE: %a@." pretty (t,v); raise Lang.Contradiction); add_with_bot t v dom let remove t dom = Tmap.remove t dom let assume_cmp = let module Local = struct type t = Integer of Ival.t | Term of Ival.t option end in fun cmp_str cmp t1 t2 dom -> (* Requires an int type for [t1,t2] *) let encode t = match Lang.F.repr t with | Kint z -> Local.Integer (Ival.inject_singleton z) | _ -> Local.Term (try Some (Tmap.find t dom) with Not_found -> None) in let term_dom = function | Some v -> v | None -> Ival.top in match encode t1, encode t2 with | Local.Integer cst1, Local.Integer cst2 -> (* assume cmp cst1 cst2 *) if Abstract_interp.Comp.False = Ival.forward_comp_int cmp cst1 cst2 then (Wp_parameters.debug ~dkey "* Assume FALSE: %a %s %a@." pretty (t1,cst1) cmp_str pretty (t2,cst2); raise Lang.Contradiction); dom | Local.Term None, Local.Term None -> dom (* nothing can be collected *) | Local.Term opt1, Local.Integer cst2 -> let v1 = term_dom opt1 in add t1 (Ival.backward_comp_int_left cmp v1 cst2) dom | Local.Integer cst1, Local.Term opt2 -> let v2 = term_dom opt2 in let cmp_sym = Abstract_interp.Comp.sym cmp in add t2 (Ival.backward_comp_int_left cmp_sym v2 cst1) dom | Local.Term opt1, Local.Term opt2 -> let v1 = term_dom opt1 in let v2 = term_dom opt2 in let cmp_sym = Abstract_interp.Comp.sym cmp in add t1 (Ival.backward_comp_int_left cmp v1 v2) (add t2 (Ival.backward_comp_int_left cmp_sym v2 v1) dom) let assume_literal t dom = match Lang.F.repr t with | Eq(a,b) when is_int a && is_int b -> assume_cmp "==" Abstract_interp.Comp.Eq a b dom | Leq(a,b) when is_int a && is_int b -> assume_cmp "<=" Abstract_interp.Comp.Le a b dom | Lt(a,b) when is_int a && is_int b -> assume_cmp "<" Abstract_interp.Comp.Lt a b dom | Fun(g,[a]) -> begin try let ubound = c_int_bounds_ival (is_cint g) (* may raise Not_found *) in narrow a ubound dom with Not_found -> dom end | Not p -> begin match Lang.F.repr p with | Fun(g,[a]) -> begin try (* just checks for a contraction *) let ubound = c_int_bounds_ival (is_cint g) (* may raise Not_found *) in let v = Tmap.find a dom (* may raise Not_found *) in if Ival.is_included v ubound then (Wp_parameters.debug ~dkey "* Assume FALSE: %a -> %a@." Lang.F.pp_term t pretty (a,v); raise Lang.Contradiction); dom with Not_found -> dom end | _ -> dom end | _ -> dom end let is_cint_simplifier = let reduce_bound ~add_bonus quant v tv dom t : term = (* Returns [new_t] such that [c_bind quant (alpha,t)] equals [c_bind quant v (alpha,new_t)] under the knowledge that [(not t) ==> (var in dom)]. Note: [~add_bonus] has not effect on the correctness. It is a parameter that can be used in order to get better results. Bonus: Add additionnal hypothesis when we could deduce better constraint on the variable *) let module Tool = struct exception Stop exception Empty exception Unknown of Integer.t type t = { when_empty: unit -> term; add_hyp: term list -> term -> term; when_true: bool ref -> unit; when_false: bool ref -> unit; when_stop: unit -> term; } end in let tools = Tool.(match quant with | Forall -> { when_empty=(fun () -> e_true); add_hyp =(fun hyps t -> e_imply hyps t); when_true=(fun bonus -> bonus := add_bonus); when_false=(fun _ -> raise Stop); when_stop=(fun () -> e_false); } | Exists ->{ when_empty= (fun () -> e_false); add_hyp =(fun hyps t -> e_and (t::hyps)); when_true=(fun _ -> raise Stop); when_false=(fun bonus -> bonus := add_bonus); when_stop=(fun () -> e_true); } | _ -> assert false) in if Vars.mem v (vars t) then try let bonus_min = ref false in let bonus_max = ref false in let dom = if Ival.cardinal_is_less_than dom max_reduce_quantifiers then (* try to reduce the domain when [var] is still in [t] *) let red reduced i () = match repr (QED.e_subst_var v (e_zint i) t) with | True -> tools.Tool.when_true reduced | False -> tools.Tool.when_false reduced | _ -> raise (Tool.Unknown i) in let min_bound = try Ival.fold_int (red bonus_min) dom (); raise Tool.Empty with Tool.Unknown i -> i in let max_bound = try Ival.fold_int_decrease (red bonus_max) dom (); raise Tool.Empty with Tool.Unknown i -> i in let red_dom = Ival.inject_range (Some min_bound) (Some max_bound) in Ival.narrow dom red_dom else dom in begin match Ival.min_and_max dom with | None, None -> t (* Cannot be reduced *) | Some min, None -> (* May be reduced to [min ...] *) if !bonus_min then tools.Tool.add_hyp [e_leq (e_zint min) tv] t else t | None, Some max -> (* May be reduced to [... max] *) if !bonus_max then tools.Tool.add_hyp [e_leq tv (e_zint max)] t else t | Some min, Some max -> if Integer.equal min max then (* Reduced to only one value: min *) QED.e_subst_var v (e_zint min) t else if Integer.lt min max then let h = if !bonus_min then [e_leq (e_zint min) tv] else [] in let h = if !bonus_max then (e_leq tv (e_zint max))::h else h in tools.Tool.add_hyp h t else assert false (* Abstract_interp.Error_Bottom raised *) end with | Tool.Stop -> tools.Tool.when_stop () | Tool.Empty -> tools.Tool.when_empty () | Abstract_interp.Error_Bottom -> tools.Tool.when_empty () | Abstract_interp.Error_Top -> t else (* [alpha] is no more in [t] *) if Ival.is_bottom dom then tools.Tool.when_empty () else t in let module Polarity = struct type t = Pos | Neg | Both let flip = function | Pos -> Neg | Neg -> Pos | Both -> Both let from_bool = function | false -> Neg | true -> Pos end in object (self) val mutable domain : IntDomain.t = IntDomain.top method name = "Remove redundant is_cint" method copy = {< domain = domain >} method target _ = () method fixpoint = () method assume p = Lang.iter_consequence_literals (fun p -> domain <- IntDomain.assume_literal p domain) (Lang.F.e_prop p) method private simplify ~is_goal p = let pool = Lang.get_pool () in let reduce op var_domain base = let dom = match Lang.F.repr base with | Kint z -> Ival.inject_singleton z | _ -> try Tmap.find base domain with Not_found -> Ival.top in var_domain := Ival.backward_comp_int_left op !var_domain dom in let rec reduce_on_neg var var_domain t = match Lang.F.repr t with (* NB. [var] has an int type *) | _ when not (is_prop t) -> () | Leq(a,b) when Lang.F.equal a var && is_int b -> reduce Abstract_interp.Comp.Le var_domain b | Leq(b,a) when Lang.F.equal a var && is_int b -> reduce Abstract_interp.Comp.Ge var_domain b | Lt(a,b) when Lang.F.equal a var && is_int b -> reduce Abstract_interp.Comp.Lt var_domain b | Lt(b,a) when Lang.F.equal a var && is_int b -> reduce Abstract_interp.Comp.Gt var_domain b | And l -> List.iter (reduce_on_neg var var_domain) l | Not p -> reduce_on_pos var var_domain p | _ -> () and reduce_on_pos var var_domain t = match Lang.F.repr t with | Neq _ | Leq _ | Lt _ -> reduce_on_neg var var_domain (e_not t) | Imply (l,p) -> List.iter (reduce_on_neg var var_domain) l; reduce_on_pos var var_domain p | Or l -> List.iter (reduce_on_pos var var_domain) l; | Not p -> reduce_on_neg var var_domain p | _ -> () in (* [~term_pol] gives the polarity of the term [t] from the top level. That informs about how should be considered the quantifiers of [t] *) let rec walk ~term_pol t = let walk_flip_pol t = walk ~term_pol:(Polarity.flip term_pol) t and walk_same_pol t = walk ~term_pol t and walk_both_pol t = walk ~term_pol:Polarity.Both t in match repr t with | _ when not (is_prop t) -> t | Bind((Forall|Exists),_,_) -> let ctx,t = e_open ~pool ~lambda:false t in let ctx_with_dom = List.map (fun ((quant,var) as qv) -> match tau_of_var var with | Int -> let tvar = (e_var var) in let var_domain = ref Ival.top in if quant = Forall then reduce_on_pos tvar var_domain t else reduce_on_neg tvar var_domain t; domain <- IntDomain.add_with_bot tvar !var_domain domain; qv, Some (tvar, var_domain) | _ -> qv, None) ctx in let t = walk_same_pol t in let f_close t = function | (quant,var), None -> e_bind quant var t | (quant,var), Some (tvar,var_domain) -> domain <- IntDomain.remove tvar domain; (* Bonus: Add additionnal hypothesis in forall when we could deduce a better constraint on the variable *) let add_bonus = match term_pol with | Polarity.Both -> false | _ -> (term_pol=Polarity.Pos) = (quant=Forall) in e_bind quant var (reduce_bound ~add_bonus quant var tvar !var_domain t) in List.fold_left f_close t ctx_with_dom | Fun(g,[a]) -> (* Here we simplifies the cints which are redoundant *) begin try let ubound = c_int_bounds_ival (is_cint g) in let dom = (Tmap.find a domain) in if Ival.is_included dom ubound then e_true else t with Not_found -> t end | Imply (l1,l2) -> e_imply (List.map walk_flip_pol l1) (walk_same_pol l2) | Not p -> e_not (walk_flip_pol p) | And _ | Or _ -> Lang.F.QED.f_map walk_same_pol t | _ -> Lang.F.QED.f_map ~pool ~forall:false ~exists:false walk_both_pol t in let walk_pred ~term_pol p = Lang.F.p_bool (walk ~term_pol (Lang.F.e_prop p)) in walk_pred ~term_pol:(Polarity.from_bool is_goal) p method equivalent_exp (e : term) = e method weaker_hyp p = Wp_parameters.debug ~dkey "Rewrite Hyp: %a@." Lang.F.pp_pred p; let r = self#simplify ~is_goal:false p in if not (r == p) then Wp_parameters.debug ~dkey "Hyp rewritten into: %a@." Lang.F.pp_pred r; r method stronger_goal p = Wp_parameters.debug ~dkey "Rewrite Goal: %a@." Lang.F.pp_pred p; let r = self#simplify ~is_goal:true p in if not (r == p) then Wp_parameters.debug ~dkey "Goal rewritten into: %a@." Lang.F.pp_pred r; r method equivalent_branch p = p method infer = [] end (** Mask Simplifier **) let dkey = Wp_parameters.register_category "mask-simplifier" module Masks = struct (* There is a contradiction when [m.unset & m.set != 0] *) type t = { unset: Integer.t ; (* Mask of the bits set to 1 *) set:Integer.t (* Mask of the bits set to 1 *) } exception Bottom let is_bottom v = not (Integer.is_zero (Integer.logand v.unset v.set)) let is_top v = Integer.is_zero v.unset && Integer.is_zero v.set let is_one_set mask v = if is_bottom v then false else not (Integer.is_zero (Integer.logand mask v.set)) let is_one_unset mask v = if is_bottom v then false else not (Integer.is_zero (Integer.logand mask v.unset)) let is_all_set mask v = if is_bottom v then false else Integer.equal mask (Integer.logand mask v.set) let is_all_unset mask v = if is_bottom v then false else Integer.equal mask (Integer.logand mask v.unset) let is_equal_no_bottom {unset=u1; set=s1} {unset=u2; set=s2} = Integer.equal u1 u2 && Integer.equal s1 s2 [@@@ warning "-32"] let is_equal v1 v2 = is_equal_no_bottom v1 v2 || (is_bottom v1 && is_bottom v2) let mk ~set ~unset = { unset ; set } let mk_exn ~set ~unset = let v = mk ~set ~unset in if is_bottom v then raise Bottom else v let of_integer z = mk ~set:z ~unset:(Integer.lognot z) (* N.B. there is not a unique bottom value *) let a_bottom = mk ~set:Integer.minus_one ~unset:Integer.minus_one let top = mk ~set:Integer.zero ~unset:Integer.zero [@@@ warning "-32"] let pretty_mask fmt m = if Integer.le Integer.zero m then Integer.pretty_hex fmt m else Format.fprintf fmt "~%a" Integer.pretty_hex (Integer.lognot m) [@@@ warning "-32"] let pretty fmt v = if is_bottom v then Format.fprintf fmt "BOTTOM" else if is_top v then Format.fprintf fmt "TOP" else Format.fprintf fmt "set:%a unset:%a" pretty_mask v.set pretty_mask v.unset let rewrite eval ctx e = try let v = eval ctx e in (* may raise Bottom *) if Integer.equal v.set (Integer.lognot v.unset) then e_zint v.set (* all bits are specified *) else e with Bottom -> e (** Eval functions should raise Bottom and never return a bottom *) let eval_not eval_exn ctx e = let v = eval_exn ctx e in (* may raise Bottom *) mk ~set:v.unset ~unset:v.set (* cannot build a bottom *) let neutral_land = mk ~set:(Integer.minus_one) ~unset:Integer.zero let eval_land eval_exn ctx es = List.fold_left (fun {set;unset} x -> let v = eval_exn ctx x in (* may raise Bottom *) mk ~set:(Integer.logand v.set set) (* cannot build a bottom *) ~unset:(Integer.logor v.unset unset)) neutral_land es let neutral_lor = mk ~set:Integer.zero ~unset:(Integer.minus_one) let eval_lor eval_exn ctx es = List.fold_left (fun {set;unset} x -> let v = eval_exn ctx x in (* may raise Bottom *) mk ~set:(Integer.logor v.set set) (* cannot build a bottom *) ~unset:(Integer.logand v.unset unset)) neutral_lor es let neutral_lxor = neutral_lor let eval_lxor eval_exn ctx es = let land4 a b c d = Integer.logand (Integer.logand a b) (Integer.logand c d) in List.fold_left (fun {set;unset} x -> let v = eval_exn ctx x in (* may raise Bottom *) let lnot_set = Integer.lognot set and lnot_unset = Integer.lognot unset and v_lnot_set = Integer.lognot v.set and v_lnot_unset = Integer.lognot v.unset in mk ~set:(Integer.logor (* cannot build a bottom *) (land4 lnot_set unset v.set v_lnot_unset) (land4 lnot_unset set v.unset v_lnot_set)) ~unset:(Integer.logor (land4 lnot_set unset v.unset v_lnot_set) (land4 lnot_unset set v.set v_lnot_unset))) neutral_lxor es let eval_lsr eval_exn ctx x n = try let n = match_positive_or_null_integer n in let v = eval_exn ctx x in (* may raise Bottom *) mk ~set:(Integer.shift_right v.set n) (* cannot build a bottom *) ~unset:(Integer.shift_right v.unset n) with Not_found -> top let eval_lsl eval_exn ctx x n = try let n = match_positive_or_null_integer n in let v = eval_exn ctx x in (* may raise Bottom *) mk ~set:(Integer.shift_left v.set n) (* cannot build a bottom *) ~unset:(Integer.shift_left v.unset n) with Not_found -> top let eval_to_cint eval_exn ctx iota e = let v = eval_exn ctx e in (* may raise Bottom *) let min,max = Ctypes.bounds iota in if not (Ctypes.signed iota) then (* The highest bits are unset *) mk ~set:(Integer.logand v.set max) (* cannot build a bottom *) ~unset:(Integer.logor v.unset (Integer.lognot max)) else (* Unsigned int type. So , [min = Integer.lognot max] *) let sign_bit_mask = Integer.succ max in if is_one_unset sign_bit_mask v then (* The sign bit is set to 0. So, the highest bits are unset *) mk ~set:(Integer.logand v.set max) (* cannot build a bottom *) ~unset:(Integer.logor v.unset min) else if is_one_set sign_bit_mask v then (* The sign bit is set to 1. So, the highest bits are set *) mk ~set:(Integer.logor v.set min) (* cannot build a bottom *) ~unset:(Integer.logand v.unset max) else (* The sign is unknown. So, the highest bits are unknown. *) mk ~set:(Integer.logand v.set max) (* cannot build a bottom *) ~unset:(Integer.logand v.unset max) (** Narrow *) (* may raise Bottom *) let narrow_exn ?(unset=Integer.zero) ?(set=Integer.zero) v = mk_exn ~unset:(Integer.logor unset v.unset) ~set:(Integer.logor set v.set) (** Reduce may raise Bottom *) let reduce_land reduce_exn ctx v es = try let k,es = match_list_head match_integer es in (* N.B. requires v<>bottom *) let unset = Integer.logand (Integer.logor v.set v.unset) (Integer.logxor v.set k) in reduce_exn ctx (F.e_fun f_land es) { v with unset } with Not_found -> if Integer.is_zero v.set then ctx else List.fold_left (fun ctx t -> (* bit(&ei... ,kv) ==> bit(ei,kv) *) reduce_exn ctx t { top with set = v.set }) ctx es let reduce_lor reduce_exn ctx v es = try let k,es = match_list_head match_integer es in (* N.B. requires v<>bottom *) let set = Integer.logand (Integer.logor v.set v.unset) (Integer.logxor v.set k) in reduce_exn ctx (F.e_fun f_land es) { v with set } with Not_found -> if Integer.is_zero v.unset then ctx else List.fold_left (fun ctx t -> (* !bit(|ei... ,kv) ==>!bit(ei,kv) *) reduce_exn ctx t { top with unset = v.unset }) ctx es let reduce_lnot reduce_exn ctx v e = reduce_exn ctx e (mk ~set:v.unset ~unset:v.set) let reduce_to_cint reduce_exn ctx v iota e = (* The lowest bits can be reduced *) let mask = if not (Ctypes.signed iota) then snd (Ctypes.bounds iota) else let min,max = (Ctypes.bounds iota) in Integer.sub max min in reduce_exn ctx e (mk ~set:(Integer.logand mask v.set) ~unset:(Integer.logand mask v.unset)) let reduce_lsr reduce_exn ctx v e n = try (* yes, that uses the opposite shift *) let n = match_positive_or_null_integer n in reduce_exn ctx e (mk ~set:(Integer.shift_left v.set n) ~unset:(Integer.shift_left v.unset n)) with Not_found -> ctx let reduce_lsl narrow_exn t reduce_exn ctx v e n = try (* yes, that uses the opposite shift *) let n = match_positive_or_null_integer n in (* the lowest bits of the left shift have to be set *) let ctx = narrow_exn ctx t { top with unset = two_power_k_minus1 n } in reduce_exn ctx e (mk ~set:(Integer.shift_right v.set n) ~unset:(Integer.shift_right v.unset n)) with Not_found -> ctx end module MasksDomain = struct (* - the domain values never contains a bottom - the key is never a Kint term *) type t = Masks.t Tmap.t [@@@ warning "-32"] let pretty fmt (key,v) = Format.fprintf fmt "%a:%a" Lang.F.pp_term key Masks.pretty v [@@@ warning "-32"] let pretty_table fmt dom = Tmap.iter (fun k v -> Format.fprintf fmt "%a@," pretty (k,v)) dom let find t dom = Tmap.find t dom let get dom t = let r = match F.repr t with | Kint k -> Masks.of_integer k | _ -> try find t dom with Not_found -> Masks.top in Wp_parameters.debug ~dkey "- Get %a@." pretty (t,r); r (* N.B. Catches the Masks.Bottom raised during evaluations *) let eval ~level (ctx:t) t = let eval get_exn ctx e = (* may raise Masks.Bottom *) match F.repr e with | Kint set -> Masks.mk ~set ~unset:(Integer.lognot set) | Fun(f,es) when f == f_land -> Masks.eval_land get_exn ctx es | Fun(f,es) when f == f_lor -> Masks.eval_lor get_exn ctx es | Fun(f,es) when f == f_lxor -> Masks.eval_lxor get_exn ctx es | Fun(f,[e;n]) when f == f_lsr -> Masks.eval_lsr get_exn ctx e n | Fun(f,[e;n]) when f == f_lsl -> Masks.eval_lsl get_exn ctx e n | Fun(f,[e]) when f == f_lnot -> Masks.eval_not get_exn ctx e | Fun(f,[e]) -> (try let iota = to_cint f in (* may raise Not_found *) Masks.eval_to_cint get_exn ctx iota e with Not_found -> Masks.top) | _ -> Masks.top in let eval_narrow_exn eval_subterm_exn ctx t = let ({Masks.set;unset} as v) = eval eval_subterm_exn ctx t (* may raises Masks.Bottom *) in try let v = get ctx t in Masks.narrow_exn ~unset ~set v (* may raises Masks.Bottom *) with Not_found -> v in let rec eval_rec_exn ctx t = eval_narrow_exn eval_rec_exn ctx t in let r = try match level with | 0 -> eval get ctx t (* from what is in the table for the sub-terms *) | 1 -> (* 0 + narrowing from from what is in the table for the term *) eval_narrow_exn get ctx t | _ -> (* 1 + recursive *) eval_rec_exn ctx t with Masks.Bottom -> Masks.a_bottom in Wp_parameters.debug ~dkey "* Eval ~level:%d %a@." level pretty (t,r); r (* [narrow_exn ctx t v] is the only one low level way to extend the [ctx] domain map and the key [t] is always an {i int} term. May raise Lang.Contradiction. *) let narrow_exn ctx t (v:Masks.t) = if Masks.is_top v then ctx else if Masks.is_bottom v then (Wp_parameters.debug ~dkey "* Assume FALSE: %a@." pretty (t,v); raise Lang.Contradiction) else match F.repr t with | Kint _ -> ctx | _ -> Tmap.change (fun _ v -> function | None -> Wp_parameters.debug ~dkey "* Assume %a@." pretty (t,v); Some v | (Some old) as old' -> let v = try Masks.narrow_exn ~unset:v.unset ~set:v.set old with Masks.Bottom -> Wp_parameters.debug ~dkey "* Assume FALSE: %a@." pretty (t,Masks.a_bottom); raise Lang.Contradiction in (* there is no bottom values in the map domains *) if Masks.is_equal_no_bottom v old then old' (* no narrowing *) else (Wp_parameters.debug ~dkey "* Assume %a@." pretty (t,v); Some v)) t v ctx (* may raise Lang.Contradiction *) let rec reduce ctx t (v:Masks.t) = Wp_parameters.debug ~dkey "- Reduce %a@." pretty (t,v); let ctx = if Masks.is_top v then ctx (* no possible reduction *) else if Masks.is_bottom v then (Wp_parameters.debug ~dkey "* Assume FALSE: %a@." pretty (t,v); raise Lang.Contradiction) else match F.repr t with | Fun(f,es) when f == f_land -> Masks.reduce_land reduce ctx v es | Fun(f,es) when f == f_lor -> Masks.reduce_lor reduce ctx v es | Fun(f,[e]) when f == f_lnot -> Masks.reduce_lnot reduce ctx v e | Fun(f,[e;n]) when f == f_lsr -> Masks.reduce_lsr reduce ctx v e n | Fun(f,[e;n]) when f == f_lsl -> Masks.reduce_lsl narrow_exn t reduce ctx v e n | Fun(f,[e]) -> begin try let iota = to_cint f in (* may raise Not_found *) Masks.reduce_to_cint reduce ctx v iota e with Not_found -> ctx end | _ -> ctx in let v = let {Masks.set;unset} = (* level 1 est unnecessary since the narrowing is done just after, level 2 may give better results *) eval ~level:0 ctx t in try Masks.narrow_exn ~unset ~set v (* may raise Masks.Bottom *) with Masks.Bottom -> Wp_parameters.debug ~dkey "* Assume FALSE: %a@." pretty (t,Masks.a_bottom); raise Lang.Contradiction in narrow_exn ctx t v (* @raises [Lang.Contradiction] when [h] introduces a contradiction *) let assume ctx h = (* [rtx = assume ctx h] such that [h |- ctx ==> rtx] *) Wp_parameters.debug ~dkey "Intro %a@." Lang.F.pp_term h; try match F.repr h with | Fun(f,[x]) -> let iota = is_cint f in (* may raise Not_found *) if not (Ctypes.signed iota) then (* The uppest bits are unset *) let mask = snd (Ctypes.bounds iota) in reduce ctx x { Masks.top with unset =Integer.lognot mask } else ctx | Fun(f,[x;k]) when f == f_bit_positive -> let k = match_positive_or_null_integer k in (* may raise Not_found *) if Integer.le Integer.zero k then reduce ctx x { Masks.top with set = two_power_k k } else ctx | Not x -> begin match F.repr x with | Fun(f,[x;k]) when f == f_bit_positive -> let k = match_positive_or_null_integer k in if Integer.le Integer.zero k then reduce ctx x { Masks.top with unset = two_power_k k } else ctx | _ -> ctx end | Eq(a,b) when is_int a && is_int b -> (* b may give a better constraint because it could be a constant *) let ctx = reduce ctx a (eval ~level:2 ctx b) in reduce ctx b (get ctx a) | _ -> ctx with Not_found -> ctx end let mask_simplifier = (* [r = rewrite_cst ctx e] such that [ctx |- e = r] *) let rewrite_cst ~highest ctx e = match F.repr e with | Kint _ -> e | Fun(f,[x;k]) when highest && f == f_bit_positive -> (* rewrites [bit_test(x,k)] *) (try let k = match_positive_or_null_integer k in (* may raise Not_found *) let v = MasksDomain.eval ~level:1 ctx x in let mask = two_power_k k in (* may raise Not_found *) if Masks.is_one_set mask v then (* [ctx] gives that the bit [k] of [x] is set *) e_true else if Masks.is_one_unset mask v then (* [ctx] gives that the bit [k] of [x] is unset *) e_false else (* note: does not rewrite [e] when is_bottom v because the polarity is unknown *) e with _ -> e) | Eq (a, b) when highest && is_int a && is_int b -> (try let b = match_integer b in (* may raise Not_found *) match F.repr a with | Fun(f,es) when f == f_land -> (* [k & t == b] specifies some bits of [t] *) let k,es = match_list_head match_integer es (* may raise Not_found *) in if not (Integer.is_zero (Integer.logand b (Integer.lognot k))) then (* [b] and [k] are such that the equality is false *) e_false else let set = b (* the bits of [t] that have to be set *) and unset = (* the bits of [t] that have to be unset *) Integer.logand k (Integer.lognot b) and v = (* the current bits of [t] *) try MasksDomain.find (F.e_fun f_land es) ctx with Not_found -> Masks.eval_land (fun _ctx i -> i) ctx (List.map (MasksDomain.eval ~level:1 ctx) es) in if Masks.is_one_unset set v then (* Some bits of [t] that has to be set is unset *) e_false else if Masks.is_one_set unset v then (* Some bits of [t] that has to be unset is set *) e_false else if Masks.is_all_set set v && Masks.is_all_unset unset v then (* The bits of [t] that have to be set are set && those that have to be unset are unset *) e_true else (* note: does not rewrite [e] when is_bottom v because the polarity is unknown *) e | _ -> e with _ -> e) | _ when is_int e -> Masks.rewrite (MasksDomain.eval ~level:1) ctx e | _ -> e in let nary_op e f rewrite es = (* requires [e==f es] *) (* reuse the previous term when there is no rewriting *) let modified = ref false in let xs = List.map (fun e -> let x = rewrite e in if not (x==e) then modified := true; x) es in if !modified then f xs else e in (* [r = rewrite ctx e] such that [ctx |- e = r] *) let rewrite ~highest ctx e = let x = match F.repr e with | Fun(f,es) when f == f_land -> let reduce unset x = match F.repr x with | Kint v -> F.e_zint (Integer.logand (Integer.lognot unset) v) | _ -> x and collect ctx unset_mask x = try let m = MasksDomain.eval ~level:1 ctx x in Integer.logor unset_mask m.Masks.unset with Not_found -> unset_mask in let unset_mask = List.fold_left (collect ctx) Integer.zero es in if Integer.is_zero unset_mask then e else if Integer.equal unset_mask Integer.minus_one then e_zero else nary_op e (F.e_fun f_land) (reduce unset_mask) es | _ -> e in let x = rewrite_cst ~highest ctx x in if x == e then raise Not_found (* to try substitutions in the subterms *) else x in object (** Must be 2^n-1 *) val mutable masks : MasksDomain.t = Tmap.empty method name = "Rewrite bitwise masks" method copy = {< masks = masks >} method target _ = () method infer = [] method fixpoint = () method assume p = Lang.iter_consequence_literals (fun p -> masks <- MasksDomain.assume masks p) (F.e_prop p) method equivalent_exp e = if Tmap.is_empty masks then e else (Wp_parameters.debug ~dkey "Rewrite Exp: %a@." Lang.F.pp_term e; let r = Lang.e_subst (rewrite ~highest:true masks) e in if not (r==e) then Wp_parameters.debug ~dkey "Exp rewritten into: %a@." Lang.F.pp_term r; r) method weaker_hyp p = if Tmap.is_empty masks then p else (Wp_parameters.debug ~dkey "Rewrite Hyp: %a@." Lang.F.pp_pred p; (* Does not rewrite [hyp] as much as possible. Any way, contradiction may be found later when [hyp] will be assumed *) let r = Lang.p_subst (rewrite ~highest:false masks) p in if not (r==p) then Wp_parameters.debug ~dkey "Hyp rewritten into: %a@." Lang.F.pp_pred r; r) method equivalent_branch p = if Tmap.is_empty masks then p else (Wp_parameters.debug ~dkey "Rewrite Branch: %a@." Lang.F.pp_pred p; let r = Lang.p_subst (rewrite ~highest:true masks) p in if not (r==p) then Wp_parameters.debug ~dkey "Branch rewritten into: %a@." Lang.F.pp_pred r; r) method stronger_goal p = if Tmap.is_empty masks then p else (Wp_parameters.debug ~dkey "Rewrite Goal: %a@." Lang.F.pp_pred p; let r = Lang.p_subst (rewrite ~highest:true masks) p in if not (r==p) then Wp_parameters.debug ~dkey "Goal rewritten into: %a@." Lang.F.pp_pred r; r ) end (* -------------------------------------------------------------------------- *)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>