package mc2

  1. Overview
  2. Docs

Source file Mc2_uf.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302

(** {1 Uninterpreted Functions and Constants} *)

open Mc2_core

module Fmt = CCFormat

let name = "uf"
let k_const = Service.Key.make "uf.const"
let k_app = Service.Key.make "uf.app"
let k_decl = Service.Key.make "uf.decl"

type term_view +=
  | Const of {
      id: ID.t;
      ty: Type.t
    }
  | App of {
      id: ID.t;
      ty: Type.t;
      args: term array;
      mutable watches: Term.Watch1.t; (* 1-watch on [arg_1,…,arg_n,f(args)] *)
    }

type lemma_view +=
  | Congruence_semantic
  | Congruence_bool

let build p_id Plugin.S_nil : Plugin.t =
  let tc = Term.TC.lazy_make () in
  let module P : Plugin.S = struct
    let id = p_id
    let name = name

    (* term allocator *)
    module T_alloc = Term.Term_allocator(struct
        let tc = tc
        let p_id = p_id
        let initial_size=256
        let[@inline] equal v1 v2 = match v1, v2 with
          | Const {id=f1;_}, Const {id=f2;_} -> ID.equal f1 f2
          | App {id=f1;args=a1;_}, App {id=f2;args=a2;_} ->
            ID.equal f1 f2 && CCArray.equal Term.equal a1 a2
          | Const _, _
          | App _, _ -> false
          | _ -> assert false
        let[@inline] hash = function
          | Const {id;ty} -> CCHash.combine3 10 (ID.hash id) (Type.hash ty)
          | App {id;ty;args;_} ->
            CCHash.combine4 20 (ID.hash id) (Type.hash ty) (CCHash.array Term.hash args)
          | _ -> assert false
      end)

    let pp out = function
      | Const {id;_} -> ID.Smtlib.pp out id
      | App {id;args;_} ->
        Fmt.fprintf out "(@[%a@ %a@])" ID.Smtlib.pp id (Util.pp_array Term.pp) args
      | _ -> assert false

    let[@inline] subterms v yield = match v with
      | Const _ -> ()
      | App {args; _} -> Array.iter yield args
      | _ -> assert false

    let tcl_pp out = function
      | Congruence_semantic -> Fmt.string out "congruence_semantic"
      | Congruence_bool -> Fmt.string out "congruence_bool"
      | _ -> assert false

    let tc_l = Lemma.TC.make ~pp:tcl_pp ()
    let lemma_congruence_semantic = Lemma.make Congruence_semantic tc_l
    let lemma_congruence_bool = Lemma.make Congruence_bool tc_l

    (* build [{ a1.(i)≠a2.(i) | i}], removing trivial ones *)
    let mk_neq_ a1 a2 : atom list =
      Iter.(0 -- (Array.length a1-1))
      |> Iter.flat_map
        (fun i ->
           let t = a1.(i) and u = a2.(i) in
           if Term.equal t u then Iter.empty
           else if Type.is_bool (Term.ty t) then (
             (* instead of a1.(i)≠a2.(i), assume w.l.o.g a1.(i)=true=a2.(i),
                then output  ¬a1.(i), ¬a2.(i) *)
             if Term.Bool.is_true a1.(i)
             then Iter.doubleton (Term.Bool.na a1.(i)) (Term.Bool.na a2.(i))
             else Iter.doubleton (Term.Bool.pa a1.(i)) (Term.Bool.pa a2.(i))
           ) else Iter.return (Term.Bool.mk_neq t u))
      |> Iter.to_rev_list

    (* [t] and [u] are two terms with equal arguments but distinct values,
       build [t1=u1 ∧ … ∧ tn=un => t=u] *)
    let mk_conflict_clause_semantic (t:term) (u:term) : atom list =
      begin match Term.view t, Term.view u with
        | App {id=f1; args=a1; _}, App {id=f2; args=a2; _} ->
          assert (ID.equal f1 f2);
          assert (Array.length a1 = Array.length a2);
          let conclusion = Term.Bool.mk_eq t u
          and body = mk_neq_ a1 a2 in
          conclusion :: body
        | _ -> assert false
      end

    (* [t] and [u] are two boolean terms with equal arguments but
       distinct values (assume [t=true] [u=false] w.l.o.g.)
       build [t1=u1 ∧ … ∧ tn=u ∧ t => u] *)
    let mk_conflict_clause_bool (t:term) (u:term) : atom list =
      let t, u = if Term.Bool.is_true t then t, u else u, t in
      assert (Term.Bool.is_false u);
      begin match Term.view t, Term.view u with
        | App {id=f1; args=a1; _}, App {id=f2; args=a2; _} ->
          assert (ID.equal f1 f2);
          assert (Array.length a1 = Array.length a2);
          let conclusion = Term.Bool.pa u
          and body1 = Term.Bool.na t
          and body2 = mk_neq_ a1 a2 in
          conclusion :: body1 :: body2
        | _ -> assert false
      end

    (* signature: a function applied to values *)
    type signature = {
      sig_head: ID.t;
      sig_args: value array
    }

    let pp_sig out {sig_head=id; sig_args=a} =
      Fmt.fprintf out "(@[%a@ %a@])" ID.Smtlib.pp id (Util.pp_array Value.pp) a

    module Sig_tbl = CCHashtbl.Make(struct
        type t = signature
        let equal a b =
          ID.equal a.sig_head b.sig_head &&
          CCArray.equal Value.equal a.sig_args b.sig_args
        let hash a =
          CCHash.combine2
            (ID.hash a.sig_head)
            (CCHash.array Value.hash a.sig_args)
      end)

    type e_reason = {
      e_level: level;
      e_term: term;
    }

    (* maps a signature to a value *)
    type tbl_entry = {
      e_sig: signature;
      mutable e_value: value;
      mutable e_reason: e_reason;
      (* terms [f(t1…tn) --> v] with [t_i --> sig[i]] *)
    }

    let pp_reason out {e_level=lvl;e_term=t} =
      Fmt.fprintf out "%a[at %d]" Term.debug t lvl
    let pp_entry out (e:tbl_entry) =
      Fmt.fprintf out "(@[<hv>entry@ :sig %a@ :val %a@ :reason (@[%a@])@])"
        pp_sig e.e_sig Value.pp e.e_value pp_reason e.e_reason

    (* big signature table *)
    let tbl_ : tbl_entry Sig_tbl.t = Sig_tbl.create 512

    (* check that [t], which should have fully assigned arguments,
       is consistent with the signature table *)
    let check_sig (acts:Actions.t) (t:term): unit =
      let v = Term.value_exn t in
      begin match Term.view t with
        | App {id;args;_} ->
          let sigtr = { sig_head=id; sig_args=Array.map Term.value_exn args } in
          Log.debugf 15
            (fun k->k "(@[uf.check_sig@ :sig %a@ :term %a@])" pp_sig sigtr Term.debug t);
          begin match Sig_tbl.get tbl_ sigtr with
            | None ->
              let lev_back = Term.max_level (Term.level t) (Term.level_semantic t) in
              let reason = {e_level=lev_back; e_term=t} in
              (* add new entry *)
              let entry = {
                e_sig=sigtr;
                e_value=v;
                e_reason=reason;
              } in
              Sig_tbl.add tbl_ sigtr entry;
              assert (lev_back>=0);
              (* on backtracking, remove [t] from reasons, and possibly remove
                 the whole entry *)
              Actions.on_backtrack acts
                (fun () ->
                   Log.debugf 15
                     (fun k->k "(@[<hv>uf.remove_entry@ :sig %a@ :lev %d@ :yields (@[%a@])@])"
                         pp_sig sigtr lev_back pp_reason entry.e_reason);
                   Sig_tbl.remove tbl_ sigtr)
            | Some entry ->
              if Value.equal v entry.e_value then (
                () (* compatible *)
              ) else (
                (* conflict *)
                (*Format.printf "tbl: %a@ entry %a@."
                    (Sig_tbl.print pp_sig pp_entry) tbl_ pp_entry entry;*)
                let u = entry.e_reason.e_term in
                Log.debugf 5
                  (fun k->k
                      "(@[<hv>uf.congruence_conflict@ :sig %a@ :t %a@ :u %a@ \
                       :t.args %a@ :u.args %a@])"
                      pp_sig sigtr Term.debug t Term.debug u
                      (Fmt.Dump.list Term.debug) (Term.subterms t)
                      (Fmt.Dump.list Term.debug) (Term.subterms u));
                if Type.is_bool (Term.ty t) then (
                  let c = mk_conflict_clause_bool t u in
                  Actions.raise_conflict acts c lemma_congruence_bool
                ) else (
                  let c = mk_conflict_clause_semantic t u in
                  Actions.raise_conflict acts c lemma_congruence_semantic
                )
              )
          end
        | _ -> assert false
      end

    let init acts t = match Term.view t with
      | Const _ -> ()
      | App ({args;_} as r) ->
        (* watch all arguments, plus term itself *)
        let watches =
          Term.Watch1.make_a
            (CCArray.init (Array.length args+1)
               (fun i-> if i=0 then t else args.(i-1)))
        in
        r.watches <- watches;
        Term.Watch1.init watches t ~on_all_set:(fun () -> check_sig acts t)
      | _ -> assert false

    let update_watches acts t ~watch = match Term.view t with
      | Const _ -> assert false (* no watches *)
      | App {watches;_} ->
        Term.Watch1.update watches t ~watch
          ~on_all_set:(fun () -> check_sig acts t)
      | _ -> assert false

    let check_if_sat _ = Sat
    let gc_all = T_alloc.gc_all
    let iter_terms = T_alloc.iter_terms

    let ty_decls_ : (Type.t list * Type.t) ID.Tbl.t = ID.Tbl.create 64

    let decl id ty_args ty_ret =
      Log.debugf 5
        (fun k->k "(@[uf.decl %a@ (@[%a@])@ %a@])"
            ID.pp id (Util.pp_list Type.pp) ty_args Type.pp ty_ret);
      if ID.Tbl.mem ty_decls_ id then (
        Error.errorf "%s: symbol `%a` already declared" name ID.pp id;
      );
      ID.Tbl.add ty_decls_ id (ty_args, ty_ret)

    (* compute type of [f l] *)
    let app_ty (f:ID.t) (l:term list) : Type.t =
      begin match ID.Tbl.get ty_decls_ f with
        | Some (args,_) when List.length args <> List.length l->
          Error.errorf "uf: type mismatch:@ `%a` needs %d arguments@ :got (@[%a@])"
            ID.pp f (List.length args) (Util.pp_list Term.pp) l
        | Some (ty_args,ty_ret) ->
          List.iter2
            (fun ty_arg arg ->
               if not (Type.equal ty_arg (Term.ty arg)) then (
                 Error.errorf
                   "uf: type mismatch:@ cannot apply `%a`@ :to (@[%a@])@ \
                    expected %a,@ got %a"
                   ID.pp f (Util.pp_list Term.pp) l Type.pp ty_arg Term.pp arg;
               ))
            ty_args l;
          ty_ret
        | None ->
          Error.errorf "uf: unknown function symbol `%a`" ID.pp f
      end

    (* constant builder *)
    let[@inline] const id : term =
      let ty = app_ty id [] in
      T_alloc.make (Const {id;ty}) ty

    (* application builder *)
    let[@inline] app id l : term = match l with
      | [] -> const id
      | _ ->
        (* proper application *)
        let ty = app_ty id l in
        let args = Array.of_list l in
        let watches = Term.Watch1.dummy in
        T_alloc.make (App {id;ty;args;watches}) ty

    let () =
      Term.TC.lazy_complete tc ~pp ~update_watches ~init ~subterms

    let provided_services =
      [ Service.Any (k_app, app);
        Service.Any (k_const, const);
        Service.Any (k_decl, decl);
      ]
  end
  in
  (module P : Plugin.S)

let plugin = Plugin.Factory.make ~priority:10 ~name ~requires:Plugin.K_nil ~build ()

OCaml

Innovation. Community. Security.