package mc2

  1. Overview
  2. Docs

Source file Mc2_lra.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706

(** {1 Linear Rational Arithmetic} *)

(* Reference:
   http://smtlib.cs.uiowa.edu/logics-all.shtml#QF_LRA *)

open Mc2_core

(* FIXME: carry state instead *)
let _ = Random.self_init ();

module LE = Linexp
open LE.Infix

let name = "lra"

(* TODO: put this in some config instead *)
let lra_alt = ref 0

let set_lra_alt b = Log.debugf 10 (fun k->k "lra_alt %i" b); lra_alt := b

type num = Q.t

type ty_view +=
  | Ty_rat

type value_view +=
  | V_rat of num

(** Boolean operator for predicates *)
type op =
  | Eq0
  | Leq0
  | Lt0

(* a single constraint on a Q-sorted variables *)
type constr =
  | C_leq
  | C_lt
  | C_geq
  | C_gt
  | C_eq
  | C_neq

type term_view +=
  | Const of num
  | Pred of {
      op: op;
      expr: LE.t;
      mutable watches: Term.Watch2.t; (* can sometimes propagate *)
    } (** Arithmetic constraint *)

(* reason of bound *)
type reason =
  | Atom of atom (* atomic reason aka equality / inequality / disequality *)

let debug_reason out = function
  | Atom a -> Atom.debug out a

let atomic_reason : (reason -> atom) = function
  | Atom a -> a

type bound =
  | B_some of {strict:bool; num: num; expr: LE.t; reason:reason}
  | B_none (* no bound *)

type eq_cstr =
  | EC_eq of {num:num; reason:atom; expr: LE.t}
  | EC_neq of {l: (num * LE.t * atom) list} (* forbidden values *)
  | EC_none

(* state for a single Q-sorted variable *)
type decide_state +=
  | State of {
      mutable last_val: num; (* phase saving *)
      mutable low: bound;
      mutable up: bound;
      mutable eq: eq_cstr;
    }

type lemma_view +=
  | Lemma_lra

let k_rat = Service.Key.makef "%s.rat" name
let k_make_const = Service.Key.makef "%s.make_const" name
let k_make_pred = Service.Key.makef "%s.make_pred" name

let[@inline] equal_op a b =
  begin match a, b with
    | Eq0, Eq0
    | Leq0, Leq0
    | Lt0, Lt0 -> true
    | Eq0, _ | Leq0, _ | Lt0, _ -> false
  end

let[@inline] hash_op a = match a with
  | Eq0 -> 0
  | Leq0 -> 1
  | Lt0 -> 2

(* evaluate a linexp into a number *)
let[@inline] eval_le (e:LE.t) : (num * term list) option =
  LE.eval e
    ~f:(fun t -> match Term.value t with
        | Some (V_value {view=V_rat n;_}) -> Some n
        | _ -> None)

let tc_value =
  let pp out = function
    | V_rat q -> Q.pp_print out q
    | _ -> assert false
  and equal a b = match a, b with
    | V_rat a, V_rat b -> Q.equal a b
    | _ -> false
  and hash = function
    | V_rat r -> LE.hash_q r
    | _ -> assert false
  in
  Value.TC.make ~pp ~equal ~hash ()

let[@inline] mk_val (n:num) : value = Value.make tc_value (V_rat n)

(* evaluate the linear expression
   precondition: all terms in it are assigned *)
let[@inline] eval_le_num_exn (e:LE.t) : num = match eval_le e with
  | Some (n,_) -> n
  | None -> assert false

let pp_ty out = function Ty_rat -> Fmt.fprintf out "@<1>ℚ" | _ -> assert false

let mk_state _ : decide_state =
  State {
    last_val=Q.zero;
    up=B_none;
    low=B_none;
    eq=EC_none;
  }

let pp_constr out (e:constr) = match e with
  | C_leq -> Fmt.string out "≤"
  | C_lt -> Fmt.string out "<"
  | C_geq -> Fmt.string out "≥"
  | C_gt -> Fmt.string out ">"
  | C_eq -> Fmt.string out "="
  | C_neq -> Fmt.string out "≠"

let pp_bound out = function
  | B_none -> Fmt.string out "ø"
  | B_some {strict;num;reason;expr} ->
    let strict_str = if strict then "[strict]" else "" in
    Fmt.fprintf out "(@[%a%s@ :expr %a@ :reason %a@])"
      Q.pp_print num strict_str LE.pp expr debug_reason reason

let pp_eq out = function
  | EC_none -> Fmt.string out "ø"
  | EC_eq {num;reason;expr} ->
    Fmt.fprintf out "(@[= %a@ :expr %a@ :reason %a@])"
      Q.pp_print num LE.pp expr Atom.debug reason
  | EC_neq {l} ->
    let pp_tuple out (n,e,a) =
      Fmt.fprintf out "(@[%a@ :expr %a@ :reason %a@])"
        Q.pp_print n LE.pp e Atom.debug a
    in
    Fmt.fprintf out "(@[<hv>!=@ %a@])"
      (Util.pp_list pp_tuple) l

let pp_state out = function
  | State s ->
    Fmt.fprintf out "(@[<hv>:low %a@ :up %a@ :eq %a@])"
      pp_bound s.low pp_bound s.up pp_eq s.eq
  | _ -> assert false

let[@inline] subterms (t:term_view) : term Iter.t = match t with
  | Const _ -> Iter.empty
  | Pred {expr=e;_} -> LE.terms e
  | _ -> assert false

let pp_op out = function
  | Eq0 -> Fmt.string out "= 0"
  | Leq0 -> Fmt.string out "≤ 0"
  | Lt0 -> Fmt.string out "< 0"

let pp_term out = function
  | Const n -> Q.pp_print out n
  | Pred {op;expr;_} ->
    Fmt.fprintf out "(@[%a@ %a@])" LE.pp_no_paren expr pp_op op
  | _ -> assert false

(* evaluate [op n] where [n] is a constant *)
let[@inline] eval_bool_const op n : bool =
  begin match Q.sign n, op with
    | 0, Eq0 -> true
    | n, Leq0 when n<=0 -> true
    | n, Lt0 when n<0 -> true
    | _ -> false
  end

(* evaluate an arithmetic boolean expression *)
let eval (t:term) =
  match Term.view t with
  | Const n ->    Log.debugf 20 (fun k->k "lra.eval Const %a" Term.debug t);
    Eval_into (mk_val n, [])
  | Pred {op;expr=e;_} ->
    begin match eval_le e with
      | None ->    Log.debugf 20 (fun k->k "lra.eval None %a" Term.debug t);
        Eval_unknown
      | Some (n,l) ->    Log.debugf 20 (fun k->k "lra.eval %a = Some %a" Term.debug t Q.pp_print n);
        Eval_into (Value.of_bool @@ eval_bool_const op n, l)
    end
  | _ -> assert false

let tc_lemma : tc_lemma =
  Lemma.TC.make
    ~pp:(fun out l -> match l with
      | Lemma_lra -> Fmt.string out "lra"
      | _ -> assert false)
    ()

let lemma_lra = Lemma.make Lemma_lra tc_lemma

(* build plugin *)
let build
    p_id
    (Plugin.S_cons (_,true_, Plugin.S_cons (_,false_,Plugin.S_nil)))
  : Plugin.t =
  let tc_t = Term.TC.lazy_make() in
  let tc_ty = Type.TC.lazy_make() in
  let module T = Term.Term_allocator(struct
      let tc = tc_t
      let initial_size = 64
      let p_id = p_id
      let equal a b = match a, b with
        | Const n1, Const n2 -> Q.equal n1 n2
        | Pred p1, Pred p2 -> p1.op = p2.op && LE.equal p1.expr p2.expr
        | _ -> false
      let hash = function
        | Const n -> LE.hash_q n
        | Pred {op;expr;_} -> CCHash.combine3 10 (hash_op op) (LE.hash expr)
        | _ -> assert false
    end)
  in
  let module P = struct
    let id = p_id
    let name = name

    let gc_all = T.gc_all
    let iter_terms = T.iter_terms
    let check_if_sat _ = Sat

    let ty_rat = lazy (
      let tc = Type.TC.lazy_get tc_ty in
      Type.make_static Ty_rat tc
    )

    (* build a predicate on a linear expression *)
    let mk_pred (op:op) (e:LE.t) : term =
      begin match LE.as_const e with
        | Some n ->
          (* directly evaluate *)
          if eval_bool_const op n then true_ else false_
        | None ->
          (* simplify: if e is [n·x op 0], then rewrite into [sign(n)·x op 0] *)
          let e = match LE.as_singleton e with
            | None -> e
            | Some (n,t) ->
              let n = if Q.sign n >= 0 then Q.one else Q.minus_one in
              LE.singleton n t
          in
          let view = Pred {op; expr=e; watches=Term.Watch2.dummy} in
          let ans = T.make view Type.bool
          in Term.set_weight ans ((Term.weight ans) -. 1e30); ans
      end

    let mk_const (n:num) : term = T.make (Const n) (Lazy.force ty_rat)

    (* raise a conflict that deduces [expr_up_bound - expr_low_bound op 0] (which must
       eval to [false]) from [reasons] *)
    let raise_conflict acts
        ~sign ~op ~pivot ~expr_up_bound ~expr_low_bound ~(reasons: atom list) () : 'a =
      let expr = LE.diff expr_low_bound expr_up_bound in
      assert (not (LE.mem_term pivot expr));
      let concl = mk_pred op expr in
      let concl = if sign then Term.Bool.pa concl else Term.Bool.na concl in
      let c = concl :: List.map Atom.neg reasons in
      Log.debugf 30
        (fun k->k
            "(@[<hv>lra.raise_conflict@ :pivot %a@ :expr %a %a@ \
             :e_up_b %a@ :e_low_b %a@ \
             :reasons (@[<v>%a@])@ :clause %a@])"
            Term.debug pivot LE.pp expr pp_op op LE.pp expr_up_bound LE.pp expr_low_bound
            (Util.pp_list Atom.debug) reasons Clause.debug_atoms c);
      Actions.raise_conflict acts c lemma_lra

    (* [make op e t ~reason b] turns this unit constraint over [t]
       (which is true or false according to [b]) into a proper
       unit constraint *)
    let constr_of_unit (op:op) (e:LE.t) (t:term) (b:bool) : constr * LE.t * num =
      let coeff = LE.find_term_exn t e in
      let is_pos = Q.sign coeff >= 0 in
      (* [e' = - e / coeff] *)
      let e' = LE.mult (Q.div Q.minus_one coeff) (LE.remove_term t e) in
      let num = eval_le_num_exn e' in
      (* assuming [b=true] and [is_pos],
         we have that reason is the same in the current model as [op(t + num)] *)
      begin match op, b, is_pos with
        | Eq0, true, _ -> C_eq
        | Eq0, false, _ -> C_neq
        | Leq0, true, true -> C_leq
        | Leq0, true, false -> C_geq
        | Leq0, false, true -> C_gt
        | Leq0, false, false -> C_lt
        | Lt0, true, true -> C_lt
        | Lt0, true, false -> C_gt
        | Lt0, false, true -> C_geq
        | Lt0, false, false -> C_leq
      end, e', num

    (* check that there isn't a conflict of the shape [a <= t <= a, t != a] *)
    let check_tight_bound acts t : unit = match Term.decide_state_exn t with
      | State s ->
        begin match s.low, s.up, s.eq with
          | B_some low, B_some up, EC_neq {l} when
              Q.equal low.num up.num &&
              List.exists (fun (n,_,_) -> Q.equal low.num n) l
            ->
            assert (not low.strict);
            assert (not up.strict);
            let reason_neq, expr_neq =
              CCList.find_map
                (fun (n,e,r) -> if Q.equal low.num n then Some (r,e) else None)
                l |> CCOpt.get_exn
            in
            Log.debugf 30
              (fun k->k
                  "(@[<hv>lra.raise_conflict.tight-bound@ \
                   @[:term %a@]@ @[low: %a@]@ @[up: %a@]@ @[eq: %a@]@ \
                   expr-low %a@ expr-up %a@ expr-neq: %a@])"
                  Term.pp t pp_bound s.low pp_bound s.up pp_eq s.eq
                  LE.pp low.expr LE.pp up.expr LE.pp expr_neq);
            (* conflict is:
               [low <= t & t <= up & t != neq ===> (low < neq \/ neq < up)] *)
            let case1 =
              mk_pred Lt0 (LE.diff low.expr expr_neq)
            and case2 =
              mk_pred Lt0 (LE.diff expr_neq up.expr)
            in
            (* conflict should be:
               [low <= t & t <= up & low=up => t = neq]. *)
            let c =
              Term.Bool.pa case1 :: Term.Bool.pa case2 ::
              List.rev_map Atom.neg
              [atomic_reason low.reason; atomic_reason up.reason; reason_neq]
            in
            Actions.raise_conflict acts c lemma_lra
          | _ -> ()
        end
      | _ -> assert false

    (* add upper bound *)
    let add_up acts ~strict t num ~expr ~(reason:reason) : unit =
      Log.debugf 30 (fun k->k "add_up");
      match Term.decide_state_exn t with
      | State s ->
        (* check consistency *)
        begin match s.eq, s.low with
          | EC_eq eq, _ when
              (strict && Q.compare eq.num num >= 0) ||
              (not strict && Q.compare eq.num num > 0) ->
            raise_conflict acts
              ~sign:true ~op:(if strict then Lt0 else Leq0) ~pivot:t
              ~expr_up_bound:expr ~expr_low_bound:eq.expr
              ~reasons:[atomic_reason reason; eq.reason] ()
          | _, B_some b when
              ((strict || b.strict) && Q.compare b.num num >= 0) ||
              (Q.compare b.num num > 0) ->
            raise_conflict acts
              ~sign:true ~op:(if strict || b.strict then Lt0 else Leq0) ~pivot:t
              ~expr_up_bound:expr ~expr_low_bound:b.expr
              ~reasons:[atomic_reason reason; atomic_reason b.reason] ()
          | _ -> ()
        end;
        (* update *)
        let old_b = s.up in
        Actions.on_backtrack acts (fun () -> s.up <- old_b);
        begin match s.up with
          | B_none ->
            s.up <- B_some {strict;num;reason;expr};
            check_tight_bound acts t;
          | B_some b ->
            (* only replace if more tight *)
            if Q.compare b.num num > 0 ||
               (strict && not b.strict && Q.equal b.num num) then (
              s.up <- B_some {strict;num;reason;expr};
              check_tight_bound acts t;
            )
        end;
      | _ -> assert false

    (* add lower bound *)
    let add_low acts ~strict t num ~expr ~(reason:reason) : unit =
      Log.debugf 30 (fun k->k "add_low");
      match Term.decide_state_exn t with
      | State s ->
        (* check consistency *)
        begin match s.eq, s.up with
          | EC_eq eq, _ when
              (strict && Q.compare eq.num num <= 0) ||
              (not strict && Q.compare eq.num num < 0) ->
            raise_conflict acts
              ~sign:true ~op:(if strict then Lt0 else Leq0) ~pivot:t
              ~expr_low_bound:expr ~expr_up_bound:eq.expr
              ~reasons:[atomic_reason reason; eq.reason] ()
          | _, B_some b when
              ((strict || b.strict) && Q.compare b.num num <= 0) ||
              (Q.compare b.num num < 0) ->
            raise_conflict acts
              ~sign:true ~op:(if strict || b.strict then Lt0 else Leq0) ~pivot:t
              ~expr_low_bound:expr ~expr_up_bound:b.expr
              ~reasons:[atomic_reason reason; atomic_reason b.reason] ()
          | _ -> ()
        end;
        (* update state *)
        let old_b = s.low in
        Actions.on_backtrack acts (fun () -> s.low <- old_b);
        begin match s.low with
          | B_none ->
            s.low <- B_some {strict;num;reason;expr};
            check_tight_bound acts t;
          | B_some b ->
            (* only replace if more tight *)
            if Q.compare b.num num < 0 ||
               (strict && not b.strict && Q.equal b.num num) then (
              s.low <- B_some {strict;num;reason;expr};
              check_tight_bound acts t;
            )
        end
      | _ -> assert false

    (* add exact bound *)
    let add_eq acts t num ~expr ~(reason:reason) : unit = match Term.decide_state_exn t with
      | State s ->
        (* check compatibility with bounds *)
        begin match s.low, s.up with
          | B_some b, _ when
              (b.strict && Q.compare b.num num >= 0) ||
              (not b.strict && Q.compare b.num num > 0) ->
            raise_conflict acts ~op:(if b.strict then Lt0 else Leq0)
              ~sign:true ~pivot:t ~expr_up_bound:expr ~expr_low_bound:b.expr
              ~reasons:[atomic_reason reason; atomic_reason b.reason] ()
          | _, B_some b when
              (b.strict && Q.compare b.num num <= 0) ||
              (not b.strict && Q.compare b.num num < 0) ->
            raise_conflict acts ~op:(if b.strict then Lt0 else Leq0)
              ~sign:true ~pivot:t ~expr_low_bound:expr ~expr_up_bound:b.expr
              ~reasons:[atomic_reason reason; atomic_reason b.reason] ()
          | _ -> ()
        end;
        (* check other equality constraints, and update *)
        let old_b = s.eq in
        Actions.on_backtrack acts (fun () -> s.eq <- old_b);
        let reason = atomic_reason reason in
        begin match s.eq with
          | EC_none -> s.eq <- EC_eq {num;reason;expr}
          | EC_neq {l;_} ->
            (* check if compatible *)
            List.iter
              (fun (n2, expr2, reason_neq) ->
                 if Q.equal num n2 then (
                   (* conflict *)
                   assert (Atom.is_true reason_neq);
                   raise_conflict acts ~pivot:t ~op:Eq0 ~sign:false
                     ~expr_up_bound:expr ~expr_low_bound:expr2 ~reasons:[reason_neq; reason] ()
                 ))
              l;
            (* erase *)
            s.eq <- EC_eq {num;reason;expr}
          | EC_eq eq ->
            if Q.equal eq.num num then (
              () (* do nothing *)
            ) else (
              (* conflict *)
              raise_conflict acts ~sign:true
                ~pivot:t ~expr_up_bound:expr ~expr_low_bound:eq.expr ~op:Eq0
                ~reasons:[reason; eq.reason] ()
            )
        end
      | _ -> assert false

    (* add forbidden value *)
    let add_neq acts t num ~expr ~(reason:atom) : unit = match Term.decide_state_exn t with
      | State s ->
        let old_b = s.eq in
        Actions.on_backtrack acts (fun () -> s.eq <- old_b);
        begin match s.eq with
          | EC_none ->
            s.eq <- EC_neq {l=[num,expr,reason]};
            check_tight_bound acts t;
          | EC_neq neq ->
            (* just add constraint, if not redundant *)
            if not (List.exists (fun (n,_,_) -> Q.equal n num) neq.l) then (
              s.eq <- EC_neq {l=(num,expr,reason) :: neq.l};
              check_tight_bound acts t;
            )
          | EC_eq eq ->
            (* check if compatible *)
            if Q.equal eq.num num then (
              (* conflict *)
              raise_conflict acts
                ~pivot:t ~sign:false ~op:Eq0
                ~expr_up_bound:expr ~expr_low_bound:eq.expr
                ~reasons:[eq.reason;reason] ()
            )
        end
      | _ -> assert false

    (* add a unit constraint to [t]. The constraint is [reason],
       which is valued to [b] *)
    let add_unit_constr acts op expr (t:term) ~(reason:atom) (b:bool) : unit =
      assert (t != Atom.term reason);
      let constr, expr, num = constr_of_unit op expr t b in
      (* look into existing constraints *)
      Log.debugf 10
        (fun k->k"(@[<hv>lra.add_unit_constr@ :term %a@ :constr @[%a %a@] \
                  @ :reason %a@ :expr %a@ :cur-state %a@])"
            Term.debug t pp_constr constr Q.pp_print num Atom.debug reason
            LE.pp expr pp_state (Term.decide_state_exn t));
      (* update, depending on the kind of constraint [reason] is *)
      let reason = Atom reason in
      begin match constr with
        | C_leq -> add_up acts ~strict:false t num ~expr ~reason
        | C_lt -> add_up acts ~strict:true t num ~expr ~reason
        | C_geq -> add_low acts ~strict:false t num ~expr ~reason
        | C_gt -> add_low acts ~strict:true t num ~expr ~reason
        | C_eq -> add_eq acts t num ~expr ~reason
        | C_neq -> add_neq acts t num ~expr ~reason:(atomic_reason reason)
      end

    (* [t] should evaluate or propagate. Add constraint to its state or
            propagate *)
    let check_consistent _acts (t:term) : unit = match Term.view t with
      | Const _ -> ()
      | Pred _ ->
        (* check consistency *)
        begin match eval t, Term.value t with
          | Eval_into (V_true,_), Some V_true
          | Eval_into (V_false,_), Some V_false -> ()
          | Eval_into (V_false,subs), Some V_true
          | Eval_into (V_true,subs), Some V_false ->
            Error.errorf "inconsistency in lra: %a@ :subs (@[%a@])"
              Term.debug t (Util.pp_list Term.debug) subs
          | Eval_unknown, _ ->
            Error.errorf "inconsistency in lra: %a@ does-not-eval"
              Term.debug t
          | Eval_into _, _ -> assert false (* non boolean! *)
        end
      | _ -> assert false

    (* [u] is [t] or one of its subterms. All the other watches are up-to-date,
       so we can add a constraint or even propagate [t] *)
    let check_or_propagate acts (t:term) ~(u:term) : unit = match Term.view t with
      | Const _ -> ()
      | Pred p ->
        begin match Term.value t with
          | None ->
            (* term not assigned, means all subterms are. We can evaluate *)
            assert (t == u);
            assert (LE.terms p.expr |> Iter.for_all Term.has_some_value);
            begin match eval_le p.expr with
              | None -> assert false
              | Some (n,subs) ->
                let v = eval_bool_const p.op n in
                Actions.propagate_bool_eval acts t v ~subs
            end
          | Some V_true ->
            assert (t != u);
            add_unit_constr acts p.op p.expr u ~reason:(Term.Bool.pa t) true
          | Some V_false ->
            assert (t != u);
            add_unit_constr acts p.op p.expr u ~reason:(Term.Bool.na t) false
          | Some _ -> assert false
        end
      | _ -> assert false

    (* initialization of a term *)
    let init acts t : unit = match Term.view t with
      | Const _ -> ()
      | Pred p ->
        let watches = Term.Watch2.make (t :: LE.terms_l p.expr) in
        p.watches <- watches;
        Term.Watch2.init p.watches t
          ~on_unit:(fun u -> check_or_propagate acts t ~u)
          ~on_all_set:(fun () -> check_consistent acts t)
      | _ -> assert false

    let update_watches acts t ~watch : watch_res =
      match Term.view t with
      | Pred p ->
        Term.Watch2.update p.watches t ~watch
          ~on_unit:(fun u -> check_or_propagate acts t ~u)
          ~on_all_set:(fun () -> check_consistent acts t)
      | Const _ -> assert false
      | _ -> assert false

    let mk_eq t u = mk_pred Eq0 (LE.singleton1 t -.. LE.singleton1 u)

    (* can [t] be equal to [v] consistently with unit constraints? *)
    let can_be_eq (t:term) (n:num) : bool = match Term.decide_state_exn t with
      | State r ->
        begin match r.eq with
          | EC_none -> true
          | EC_eq {num;_} -> Q.equal num n
          | EC_neq {l} ->
            List.for_all (fun (num,_,_) -> not (Q.equal num n)) l
        end
        &&
        begin match r.low with
          | B_none -> true
          | B_some {num;strict;_} ->
            (strict && Q.compare num n < 0) ||
            (not strict && Q.compare num n <= 0)
        end
        &&
        begin match r.up with
          | B_none -> true
          | B_some {num;strict;_} ->
            (strict && Q.compare num n > 0) ||
            (not strict && Q.compare num n >= 0)
        end
      | _ -> assert false

    (* find a feasible value for [t] *)
    let find_val (t:term) : num =
      let sufficiently_large ~n forbid =
        List.fold_left Q.max n forbid |> Q.add Q.one
      and sufficiently_small ~n forbid =
        List.fold_left Q.min n forbid |> Q.add Q.minus_one
      in
      (* find an element of [)a,b(] that doesn't belong in [forbid] *)
      let rec find_between a b forbid =
        (* (a+b)/2 *)
        let mid = Q.div_2exp (Q.add a b) 1 in
        if CCList.mem ~eq:Q.equal mid forbid
        then find_between a mid forbid
        else mid
      in
      begin match Term.decide_state_exn t with
        | State r ->
          begin match r.eq with
            | EC_eq {num;_} -> num
            | _ ->
              let forbid = match r.eq with
                | EC_eq _ -> assert false
                | EC_neq {l;_} -> List.map (fun (n,_,_) -> n) l
                | EC_none -> []
              in
              begin match r.low, r.up with
                | B_none, B_none -> sufficiently_large ~n:Q.zero forbid
                | B_some {num;_}, B_none -> sufficiently_large ~n:num forbid
                | B_none, B_some {num;_} -> sufficiently_small ~n:num forbid
                | B_some low, B_some up when Q.equal low.num up.num ->
                  (* tight bounds, [n ≤ t ≤ n] *)
                  assert (not low.strict && not up.strict);
                  assert (not (CCList.mem ~eq:Q.equal low.num forbid));
                  low.num
                | B_some low, B_some up ->
                  assert (Q.compare low.num up.num < 0);
                  find_between low.num up.num forbid
              end
          end
        | _ -> assert false
      end

    (* decision, according to current constraints *)
    let decide _ (t:term) : value = match Term.decide_state_exn t with
      | State r as st ->
        let n =
          if can_be_eq t r.last_val then r.last_val
          else find_val t
        in
        Log.debugf 30
          (fun k->k"(@[<hv>lra.decide@ %a := %a@ :state %a@])"
              Term.debug t Q.pp_print n pp_state st);
        assert (can_be_eq t n);
        r.last_val <- n; (* save *)
        mk_val n
      | _ -> assert false

    let () =
      Term.TC.lazy_complete tc_t
        ~init ~update_watches ~subterms ~eval ~pp:pp_term;
      Type.TC.lazy_complete tc_ty
        ~pp:pp_ty ~decide ~eq:mk_eq ~mk_state;
      ()

    let provided_services = [
      Service.Any (k_rat, Lazy.force ty_rat);
      Service.Any (k_make_const, mk_const);
      Service.Any (k_make_pred, mk_pred);
    ]
  end in
  (module P)

let plugin : Plugin.Factory.t =
  Plugin.Factory.make ~priority:12 ~name ~build
    ~requires:Plugin.(K_cons (Builtins.k_true, K_cons (Builtins.k_false,K_nil)))
    ()
OCaml

Innovation. Community. Security.