package mc2

  1. Overview
  2. Docs

Source file Proof.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
(*
MSAT is free software, using the Apache license, see file LICENSE
Copyright 2014 Guillaume Bury
Copyright 2014 Simon Cruanes
*)

open Solver_types

module Fmt = CCFormat

let merge = List.merge Atom.compare

let _c = ref 0
let fresh_pcl_name () = incr _c; "R" ^ (string_of_int !_c)

(* find set of duplicates in [c] *)
let find_duplicates (c:clause) : atom list =
  let r =
    Array.fold_left
      (fun acc a ->
         if Atom.marked a then Atom.Set.add a acc else (Atom.mark a; acc))
      Atom.Set.empty c.c_atoms
  in
  Array.iter Atom.unmark c.c_atoms;
  Atom.Set.to_list r

let find_absurd (c:clause) : atom list =
  Array.fold_left
    (fun acc a -> if Atom.is_absurd a then a::acc else acc) [] c.c_atoms

(* Comparison of clauses by their lists of atoms *)
let[@inline] cl_list_eq c d = CCList.equal Atom.equal c d
let[@inline] prove conclusion = conclusion

(* Interface exposed *)
type t = clause
and node = {
  conclusion : clause;
  step : step;
}
and step =
  | Hypothesis
  | Assumption
  | Lemma of lemma
  | Simplify of {
      init: t;
      duplicates: atom list;
      absurd: atom list;
    }
  | Hyper_res of {
      init: t;
      steps: premise_step list; (* list of steps to apply to [init] *)
    }

let[@inline] conclusion n = n.conclusion
let[@inline] step n = n.step

let pp_clause_step out = function
  | Step_resolve {c;pivot} ->
    Fmt.fprintf out "(@[res@ %a@ :on %a@])" Clause.debug c Term.debug pivot

let debug_step out (s:step) : unit = match s with
  | Hypothesis -> Fmt.string out "hypothesis"
  | Assumption -> Fmt.string out "assumption"
  | Lemma l -> Fmt.fprintf out "(@[lemma %a@])" Lemma.pp l
  | Simplify s ->
    Fmt.fprintf out "(@[<hv>simplify@ :from %a@ :dups (@[%a@])@ :absurd (@[%a@])@])"
      Clause.debug s.init
      Clause.debug_atoms s.duplicates Clause.debug_atoms s.absurd
  | Hyper_res {init;steps} ->
    Fmt.fprintf out "(@[<hv>hyper_res@ :init %a@ %a@])"
      Clause.debug init (Util.pp_list pp_clause_step) steps

let[@inline] mk_node conclusion step = {conclusion; step}

module Reconstruct : sig
  val expand : t -> node
  val recompute_update_proof_of_atom : atom -> value -> t
  val prove_unsat : clause -> t
  val prove_atom : atom -> t option
end = struct

  (* find pivots for resolving [l] with [init] *)
  let find_pivots (init:clause) (l:clause list) : premise_step list =
    Array.iter Atom.mark init.c_atoms;
    let steps =
      List.map
        (fun c ->
           let pivot =
             match
               Iter.of_array c.c_atoms
               |> Iter.filter
                 (fun a -> Atom.marked (Atom.neg a))
               |> Iter.to_list
             with
               | [a] -> a
               | [] ->
                 Error.errorf "(@[proof.expand.pivot_missing@ %a@])"
                   Clause.debug c
               | pivots ->
                 Error.errorf "(@[proof.expand.multiple_pivots@ %a@ :pivots %a@])"
                   Clause.debug c Clause.debug_atoms pivots
           in
           Array.iter Atom.mark c.c_atoms; (* add atoms to result *)
           Atom.unmark pivot;
           Atom.unmark (Atom.neg pivot);
           Step_resolve {pivot=Atom.term pivot;c})
        l
    in
    (* cleanup *)
    Array.iter Atom.unmark init.c_atoms;
    List.iter (fun c -> Array.iter Atom.unmark c.c_atoms) l;
    steps

  let expand (conclusion:clause) : node =
    Log.debugf 15 (fun k -> k "(@[proof.expanding@ %a@])" Clause.debug conclusion);
    begin match conclusion.c_premise with
      | Lemma l -> mk_node conclusion (Lemma l)
      | Hyp -> mk_node conclusion Hypothesis
      | Local -> mk_node conclusion Assumption
      | P_steps {init;steps} ->
        let step = Hyper_res {init;steps} in
        mk_node conclusion step
      | Simplify c ->
        let duplicates = find_duplicates c in
        let absurd = find_absurd c in
        mk_node conclusion (Simplify {init=c; duplicates; absurd})
      | P_raw_steps [] ->
        Error.errorf "proof: resolution error (no premise)@ %a@ :premise %a"
          Clause.debug conclusion Premise.pp conclusion.c_premise
      | P_raw_steps [_] ->
        Error.errorf "proof: resolution error (wrong hyperres)@ %a@ :premise %a"
          Clause.debug conclusion Premise.pp conclusion.c_premise
      | P_raw_steps ((c::r) as l) ->
        Log.debugf 30 (fun k->k"(@[<hv>proof.expanding.raw@ %a@])"
            (Util.pp_list Clause.debug ) l);
        (* find pivots for hyper-resolution *)
        let steps = find_pivots c r in
        (* update premise to memoize proof *)
        conclusion.c_premise <- Premise.steps c steps;
        let step = Hyper_res {init=c; steps} in
        mk_node conclusion step
    end

  (* update reason of a *)
  let[@inline] set_atom_reason (a:atom) (r:reason) : unit =
    begin match a.a_term.t_assign with
      | TA_none -> assert false
      | TA_assign{value;_} ->
        a.a_term.t_assign <- TA_assign{value;reason=r;level=0}
    end

  (* update proof of atom [a] with additional information at level 0 *)
  let rec recompute_update_proof_of_atom (a:atom) (v:value) : clause =
    assert (Atom.level a >= 0);
    begin match Atom.reason a with
      | Some (Bcp c) ->
        Log.debugf 10
          (fun k -> k "(@[<hv>proof.analyzing@ :atom %a@ :val %a@ :bcp %a@])"
              Atom.debug a Value.pp v Clause.debug c);
        if Array.length c.c_atoms = 1 then (
          Log.debugf 15 (fun k -> k "(@[<hv>proof.analyze.keep_old_reason@ %a@])" Atom.debug a);
          c
        ) else (
          let premise =
            Array.fold_left
              (fun acc b ->
                 if Atom.equal (Atom.neg a) b then acc
                 else (
                   let c = recompute_update_proof_of_atom b Value.false_ in
                   c :: acc
                 ))
              []
              c.c_atoms
          in
          let premise = Premise.raw_steps (c :: premise) in
          let c' = Clause.make [Atom.neg a] premise in
          (* update reason *)
          set_atom_reason a (Bcp c');
          Log.debugf 15
            (fun k -> k "(@[<hv>proof.analyze.new_reason@ %a@ :bcp %a@])" Atom.debug a Clause.debug c');
          c'
        )
      | _ ->
        Error.errorf "(@[proof.analyze.cannot_prove_atom@ %a@])" Atom.debug a
    end

  let prove_unsat (conflict:clause) : clause =
    if Array.length conflict.c_atoms = 0 then conflict
    else (
      Log.debugf 2 (fun k -> k "(@[@{<Green>proof.proving_unsat@}@ :from %a@])" Clause.debug conflict);
      let premise =
        Array.fold_left
          (fun acc a ->
             assert (Atom.is_false a || Atom.can_eval_to_false a);
             recompute_update_proof_of_atom a Value.false_ :: acc)
          [] conflict.c_atoms
      in
      let premise = Premise.raw_steps (conflict :: premise) in
      let res = Clause.make [] premise in
      Log.debugf 2 (fun k -> k "(@[@{<Green>proof.proof_found@}@ %a@ :premise %a@])"
          Clause.debug res Premise.pp premise);
      res
    )

  let prove_atom a =
    if Atom.is_true a && Atom.level a = 0 then (
      Some (recompute_update_proof_of_atom a Value.true_)
    ) else (
      None
    )
end

include Reconstruct

(* Proof nodes manipulation *)
let is_leaf = function
  | Hypothesis
  | Assumption
  | Lemma _ -> true
  | Simplify _ | Hyper_res _ -> false

let[@inline] parents_steps l : t list =
  List.map
    (function Step_resolve {c;_} -> c)
    l

let[@inline] parents_raw_steps l : t list = l

let parents = function
  | Hypothesis
  | Assumption
  | Lemma _ -> []
  | Simplify {init=p;_} -> [p]
  | Hyper_res {init;steps} ->
    init :: parents_steps steps

let expl = function
  | Hypothesis -> "hypothesis"
  | Assumption -> "assumption"
  | Lemma _ -> "lemma"
  | Simplify _ -> "simplify"
  | Hyper_res _ -> "hyper_res"

(* Compute unsat-core *)
let unsat_core proof =
  (* visit recursively the proof of [c] to find the unsat core (the leaves)
     @param res partial result (subset of unsat-core)
     @param visited set of clauses for which the `visited` flag should be cleared
     @param k continuation to call with results *)
  let rec aux res visited c k =
    if Clause.visited c then (
      k res visited
    ) else (
      Clause.mark_visited c;
      begin match c.c_premise with
        | Hyp | Local -> k (c :: res) visited
        | Lemma _ -> k res visited (* ignore lemmas *)
        | Simplify d -> aux res (c :: visited) d k
        | P_steps {init;steps} ->
          aux_l res (init::visited) (parents_steps steps) k
        | P_raw_steps cs -> aux_l res (c::visited) (parents_raw_steps cs) k
      end
    )
  and aux_l res visited l k = match l with
    | [] -> k res visited
    | c :: r ->
      aux res visited c
        (fun res visited -> aux_l res visited r k)
  in
  let res, visited = aux [] [] proof CCPair.make in
  List.iter Clause.clear_visited res;
  List.iter Clause.clear_visited visited;
  res

(* Iterate on proofs *)
module H = Clause.Tbl

type task =
  | Enter of t
  | Leaving of t

let[@inline] pop_opt s = try Some (Stack.pop s) with Stack.Empty -> None

(* helper for folding over proofs-as-DAGs *)
let rec fold_aux s h f acc =
  begin match pop_opt s with
    | None -> acc
    | Some (Leaving c) ->
      H.add h c true;
      fold_aux s h f (f acc (expand c))
    | Some (Enter c) ->
      if not (H.mem h c) then (
        Stack.push (Leaving c) s;
        let node = expand c in
        begin match node.step with
          | Simplify {init=p1;_} ->
            Stack.push (Enter p1) s
          | Hyper_res {init;steps} ->
            Stack.push (Enter init) s;
            List.iter
              (function
                | Step_resolve {c;_} -> Stack.push (Enter c) s)
              steps;
          | Hypothesis | Assumption | Lemma _ -> ()
        end
      );
      fold_aux s h f acc
  end

let fold f acc p =
  let h = H.create 42 in
  let s = Stack.create () in
  Stack.push (Enter p) s;
  fold_aux s h f acc

let[@inline] iter f p = fold (fun () x -> f x) () p

module Check : sig
  val check_step : t -> unit
  val check : t -> unit
end = struct
  let[@inline] set_of_c (c:clause): Atom.Set.t =
    Iter.of_array c.c_atoms |> Atom.Set.of_iter

  let pp_a_set out (a:Atom.Set.t) : unit =
    Fmt.fprintf out "(@[<v>%a@])"
      (Util.pp_iter ~sep:" ∨ " Atom.debug) (Atom.Set.to_iter a)

  (* state for one hyper{resolution,paramodulation} step *)
  type state = {
    killed: Term.Set.t;
    cur: Atom.Set.t;
  }

  (* rebuild explicitely clauses by hyper-res;
       check they are not tautologies;
       return conclusion *)
  let perform_hyper_step (init:t) (steps:premise_step list) : state =
    List.fold_left
      (fun (st:state) step ->
         begin match step with
           | Step_resolve {pivot;c=c2} ->
             (* perform resolution with [c] over [pivot] *)
             Array.fold_left
               (fun st a ->
                  let t = Atom.term a in
                  if Term.Set.mem t st.killed then st
                  else if Term.equal pivot t then (
                    if not (Atom.Set.mem (Atom.neg a) st.cur) then (
                      Error.errorf
                        "(@[<hv>proof.check_hyper_res.pivot_not_found@ \
                         :pivot %a@ :c1 %a@ :c2 %a@])"
                        Term.debug pivot pp_a_set st.cur Clause.debug c2
                    );
                    { cur=Atom.Set.remove (Atom.neg a) st.cur; killed=Term.Set.add t st.killed }
                  ) else (
                    { st with cur=Atom.Set.add a st.cur }
                  ))
               st c2.c_atoms
         end)
      {cur=set_of_c init; killed=Term.Set.empty}
      steps

  let check_node (n:node) : unit =
    (* compare lists of atoms, ignoring order and duplicates *)
    let check_same_set ~ctx ~expect:c d =
      if not (Atom.Set.equal c d) then (
        Error.errorf
          "(@[<hv>proof.check.distinct_clauses@ :ctx %s@ \
           :c1(expect) %a@ :c2(got) %a@ :c1\\c2 %a@ :c2\\c1 %a@])"
          ctx pp_a_set c pp_a_set d
          pp_a_set (Atom.Set.diff c d)
          pp_a_set (Atom.Set.diff d c)
      );
    in
    let concl = conclusion n in
    let step = step n in
    Log.debugf 15 (fun k->k"(@[<hv>proof.check.step@ :concl %a@ :step %a@])"
        Clause.debug concl debug_step step);
    begin match step with
      | Lemma _ -> () (* TODO: check lemmas *)
      | Hypothesis -> ()
      | Assumption -> ()
      | Simplify s ->
        let dups' = find_duplicates s.init in
        if not (Atom.Set.equal
              (Atom.Set.of_list s.duplicates) (Atom.Set.of_list dups')) then (
          Error.errorf
            "(@[<hv>proof.check.invalid_simplify_step@ :from %a@ :to %a@ :dups1 %a@ :dups2 %a@])"
            Clause.debug s.init Clause.debug concl Clause.debug_atoms s.duplicates
            Clause.debug_atoms dups'
        );
        begin match CCList.find_pred (fun a -> not (Atom.is_absurd a)) s.absurd with
          | None -> ()
          | Some a ->
            Error.errorf
              "(@[<hv>proof.check.invalid_simplify_step@ :in %a@ :not-absurd %a@])"
              Clause.debug s.init Atom.debug a
        end;
        (* remove absurd literals, and check equality modulo duplicates *)
        let c = set_of_c s.init in
        let c = Atom.Set.diff c (Atom.Set.of_list s.absurd) in
        check_same_set ~ctx:"in-dedup" c ~expect:(set_of_c concl)
      | Hyper_res {init;steps} ->
        let st = perform_hyper_step init steps in
        check_same_set ~ctx:"in-res" st.cur ~expect:(set_of_c concl);
        (* check it's not a tautology *)
        Atom.Set.iter
          (fun a ->
             if Atom.Set.mem (Atom.neg a) st.cur then (
               Error.errorf
                 "(@[<hv>proof.check_hyper_res.clause_is_tautology@ \
                  :clause %a@])"
                 pp_a_set st.cur

                  ))
               st.cur;
             ()
    end

  let check_step (p:t) : unit = check_node @@ expand p

  let check (p:t) : unit =
    iter check_node p
end

include Check


OCaml

Innovation. Community. Security.