package mc2

  1. Overview
  2. Docs

Source file Premise.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

open Solver_types

type t = premise

let prefix p = match p with
  | Hyp -> "H"
  | Lemma _ -> "T"
  | Simplify _ | P_raw_steps _ | P_steps _ -> "L"
  | _ -> "C"

let[@inline] pp_clause_name out { c_name=s; c_premise=p; _ } =
  Format.fprintf out "%s%d" (prefix p) s

let[@inline] pp_term_id out {t_id;_} = Fmt.int out t_id

(* negation of the atom *)
let[@inline] atom_is_pos (a:atom) : bool = match a.a_term.t_var with
  | Var_bool { pa; _ } -> a==pa
  | Var_none | Var_semantic _ -> assert false

let[@inline] pp_atom_id out a =
  Fmt.fprintf out "%s%d" (if atom_is_pos a then "+" else "-") a.a_term.t_id

let[@inline] raw_steps l : t =
  assert (match l with []|[_] -> false | _ -> true);
  P_raw_steps l

let[@inline] raw_steps_or_simplify l = match l with
  | [c] -> Simplify c
  | [] -> assert false
  | _ -> P_raw_steps l

let[@inline] steps init steps =
  assert (steps<>[]);
  P_steps {init;steps}

let[@inline] pp_raw_premise_step out c = pp_clause_name out c

let[@inline] pp_premise_step out = function
  | Step_resolve {c;_} -> pp_clause_name out c

let pp out = function
  | Hyp -> Format.fprintf out "hyp"
  | Local -> Format.fprintf out "local"
  | Lemma l ->
    Format.fprintf out "@[th_lemma@ %a@]" Lemma.pp l
  | Simplify c -> Format.fprintf out "simpl %a" pp_clause_name c
  | P_raw_steps l ->
    Fmt.fprintf out "steps{@[%a@]}"
      (Util.pp_list ~sep:"," pp_raw_premise_step) l
  | P_steps {init;steps} ->
    Format.fprintf out "hyper_res{@[%a;@,%a@]}"
      pp_clause_name init (Util.pp_list ~sep:";" pp_premise_step) steps
OCaml

Innovation. Community. Security.