package mc2

  1. Overview
  2. Docs

Source file Term.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481

(** {1 Modular Term Structure} *)

open Solver_types

module Fields = Term_fields

type view = term_view = ..
type t = term
type tc = tc_term

let[@inline] id t = t.t_id
let[@inline] view t = t.t_view
let[@inline] equal t u = t.t_id = u.t_id
let[@inline] compare t u = CCInt.compare t.t_id u.t_id
let[@inline] hash t = CCHash.int t.t_id
let[@inline] pp out (t:t): unit = t.t_tc.tct_pp out t.t_view
let[@inline] field_get f t = Fields.get f t.t_fields
let[@inline] field_set f t = t.t_fields <- Fields.set f true t.t_fields
let[@inline] field_clear f t = t.t_fields <- Fields.set f false t.t_fields

(* store plugin id at 4 lowest bits *)
let plugin_id_width = 4

(* bitmask *)
let p_mask = (1 lsl plugin_id_width) - 1

let[@inline] plugin_id t : int = id t land p_mask
let[@inline] plugin_specific_id t : int = id t lsr plugin_id_width
let[@inline] weight t = t.t_weight
let[@inline] set_weight t f = t.t_weight <- f
let[@inline] is_deleted t = field_get field_t_is_deleted t
let[@inline] is_added t = field_get field_t_is_added t
let[@inline] var t = t.t_var
let[@inline] ty t = t.t_ty
let[@inline] iter_subterms (t:term): term Iter.t = t.t_tc.tct_subterms t.t_view
let[@inline] is_bool t = Type.is_bool t.t_ty
let[@inline] subterms t : t list = iter_subterms t |> Iter.to_list
let[@inline] level t = match t.t_assign with
  | TA_none -> -1
  | TA_assign {level;_} -> level
let[@inline] level_for t v = match t.t_assign with
  | TA_none -> -1
  | TA_assign {level;value;_} ->
    if Value.equal value v then level else -1
let[@inline] gc_marked (t:t) : bool = field_get field_t_gc_marked t
let[@inline] gc_unmark (t:t) : unit = field_clear field_t_gc_marked t
let[@inline] gc_mark (t:t) : unit = field_set field_t_gc_marked t

let[@inline] value (t:t): value option = match t.t_assign with
  | TA_none -> None
  | TA_assign {value;_} -> Some value
let[@inline] value_exn (t:t): value = match t.t_assign with
  | TA_none -> assert false
  | TA_assign {value;_} -> value
let[@inline] has_some_value (t:t): bool = match t.t_assign with
  | TA_none -> false
  | _ -> true
let[@inline] has_value (t:t) (v:value): bool = match t.t_assign with
  | TA_none -> false
  | TA_assign {value;_} -> Value.equal value v

let[@inline] max_level l1 l2 =
  if l1<0 || l2<0 then -1
  else max l1 l2

(* max level of arguments *)
let[@inline] level_sub_aux ~f (t:t) : level =
  let res = ref 0 in
  iter_subterms t
    (fun u ->
       let lev = level u in
       res := f !res lev);
  !res

let[@inline] level_semantic (t:t) : level = level_sub_aux ~f:max_level t
let[@inline] level_sub (t:t) : level = level_sub_aux ~f:max t

let[@inline] mk_eq (t:t) (u:t) : t = Type.mk_eq (ty t) t u

let[@inline] reason t = match t.t_assign with
  | TA_none -> None
  | TA_assign {reason;_} -> Some reason

let[@inline] reason_exn t = match reason t with
  | Some r -> r
  | None -> assert false

let[@inline] decide_state_exn (t:t) : decide_state = match var t with
  | Var_semantic {v_decide_state=s;_} -> s
  | _ -> assert false

(** {2 Assignment view} *)

let[@inline] assigned (t:term): bool = match t.t_assign with
  | TA_none -> false
  | _ -> true

let[@inline] assignment (t:term) = match t.t_assign with
  | TA_assign {value=V_true;_} -> Some (A_bool (t,true))
  | TA_assign {value=V_false;_} -> Some (A_bool (t,false))
  | TA_assign {value;_}
    -> Some (A_semantic (t,value))
  | TA_none -> None

(** {2 Containers} *)

module As_key = struct
  type t = term
  let compare = compare
  let equal = equal
  let hash = hash
end
module Map = CCMap.Make(As_key)
module Set = CCSet.Make(As_key)
module Tbl = CCHashtbl.Make(As_key)

(** {2 Low Level constructors. Use at your own risks.} *)
module Unsafe = struct
  let max_plugin_id = (1 lsl plugin_id_width) - 1

  let[@inline] mk_plugin_id (id:int): plugin_id =
    if id > max_plugin_id then (
      failwith "add_plugin: too many plugins";
    );
    id

  (* build a fresh term *)
  let make_term t_id t_view t_ty t_tc : t =
    let t_fields = Fields.empty in
    let t_weight = 0. in
    let t_idx = ~-1 in
    let t_watches = Vec.create ()in
    { t_id; t_view; t_ty; t_fields; t_weight; t_idx;
      t_var=Var_none; t_assign=TA_none; t_watches; t_tc; }
end

(* make a fresh variable for this term *)
let mk_var_ (t:t): var =
  if Type.is_bool t.t_ty then (
    let t_id_double = t.t_id lsl 1 in
    let pa = {
      a_term=t;
      a_watched = Vec.create();
      a_id = t_id_double; (* aid = vid*2 *)
    } and na = {
        a_term=t;
        a_watched = Vec.create();
        a_id = t_id_double + 1; (* aid = vid*2+1 *)
      } in
    Var_bool {pa; na}
  ) else (
    Var_semantic {
      v_decide_state=Type.mk_decide_state t.t_ty;
    }
  )

let[@inline] has_var t = match t.t_var with
  | Var_none -> false
  | Var_bool _
  | Var_semantic _ -> true

let[@inline] setup_var t =
  if not (has_var t) then (
    let v = mk_var_ t in
    t.t_var <- v;
    assert (has_var t);
  )

let[@inline] add_watch (t:t) (u:t) : unit =
  Vec.push t.t_watches u

let marked t = Term_fields.get field_t_seen t.t_fields
let mark t = t.t_fields <- Term_fields.set field_t_seen true t.t_fields
let unmark t = t.t_fields <- Term_fields.set field_t_seen false t.t_fields

module Bool = struct
  type t = bool_term

  let both_atoms_marked (t:t): bool =
    let seen_pos = Term_fields.get field_t_mark_pos t.t_fields in
    let seen_neg = Term_fields.get field_t_mark_neg t.t_fields in
    seen_pos && seen_neg

  let[@inline] is_true t = has_value t Value.true_
  let[@inline] is_false t = has_value t Value.false_

  let[@inline] assigned_atom t : atom option = match t.t_assign, var t with
    | TA_assign {value=V_true;_}, Var_bool{pa;_} -> Some pa
    | TA_assign {value=V_false;_}, Var_bool{na;_} -> Some na
    | _ -> None

  let[@inline] assigned_atom_exn t : atom = match assigned_atom t with
    | Some a -> a
    | None -> assert false

  let[@inline] pa_unsafe (t:t) : atom = match t.t_var with
    | Var_bool {pa; _} -> pa
    | _ -> assert false

  let[@inline] na_unsafe (t:t) : atom = match t.t_var with
    | Var_bool {na; _} -> na
    | _ -> assert false

  let[@inline] pa (t:t) : atom = setup_var t; pa_unsafe t
  let[@inline] na (t:t) : atom = setup_var t; na_unsafe t
  let[@inline] mk_neq t u = mk_eq t u |> na
  let[@inline] mk_eq t u = mk_eq t u |> pa
end

let[@inline] eval (t:term) : eval_res = t.t_tc.tct_eval t

let debug_no_val out t : unit =
  let state = if is_deleted t then "][D" else "" in
  let inheap = if t.t_idx >= 0 then "¿" else "" in
  Format.fprintf out "%a[%d%s%s]" pp t (id t) state inheap

(* verbose debug printer *)
let debug out t : unit =
  let p_of_reason r = match r with Decision -> "@" | _ -> "$" in
  let pp_val out = function
    | TA_none -> ()
    | TA_assign {value;level;reason} ->
      let prefix = p_of_reason reason in
      Format.fprintf out "[%s%d@<1>→%a]" prefix level Value.pp value
  in
  debug_no_val out t;
  pp_val out t.t_assign

(* find a term in [w] that is not assigned, or otherwise,
       the one with highest level
       @return index of term to watch, and [true] if all are assigned *)
let rec find_watch_ w i highest : int * bool =
  if i=Array.length w then highest, true
  else if has_some_value w.(i) then (
    let highest =
      if level w.(i) > level w.(highest) then i else highest
    in
    find_watch_ w (i+1) highest
  ) else i, false

module Watch1 = struct
  type t = term array
  let dummy = [||]
  let make = Array.of_list
  let[@inline] make_a a : t = a
  let[@inline] iter w k = if Array.length w>0 then k w.(0)

  let init w t ~on_all_set : unit =
    let i, all_set = find_watch_ w 0 0 in
    (* put watch first *)
    Util.swap_arr w i 0;
    add_watch w.(0) t;
    if all_set then (
      on_all_set ();
    );
    ()

  let update w t ~watch ~on_all_set : watch_res =
    (* find another watch. If none is present, keep the
       current one and call [on_all_set]. *)
    assert (w.(0) == watch);
    let i, all_set = find_watch_ w 0 0 in
    if all_set then (
      on_all_set ();
      Watch_keep (* just keep current watch *)
    ) else (
      (* use [i] as the watch *)
      assert (i>0);
      Util.swap_arr w i 0;
      add_watch w.(0) t;
      Watch_remove
    )
end

module Watch2 = struct
  type t = term array
  let dummy = [||]
  let make = Array.of_list
  let[@inline] make_a a : t = a

  let[@inline] iter w k =
    if Array.length w>0 then (
      k w.(0);
      if Array.length w>1 then k w.(1)
    )

  let[@inline] init w t ~on_unit ~on_all_set : unit =
    let i0, all_set0 = find_watch_ w 0 0 in
    Util.swap_arr w i0 0;
    let i1, all_set1 = find_watch_ w 1 0 in
    Util.swap_arr w i1 1;
    add_watch w.(0) t;
    add_watch w.(1) t;
    assert (if all_set0 then all_set1 else true);
    if all_set0 then (
      on_all_set ()
    ) else if all_set1 then (
      assert (not (has_some_value w.(0)));
      on_unit w.(0);
    );
    ()

  let update w t ~watch ~on_unit ~on_all_set : watch_res =
    (* find another watch. If none is present, keep the
       current ones and call [on_unit] or [on_all_set]. *)
    if w.(0) == watch then (
      (* ensure that if there is only one watch, it's the first *)
      Util.swap_arr w 0 1;
    ) else assert (w.(1) == watch);
    let i, all_set1 = find_watch_ w 1 0 in
    if all_set1 then (
      if has_some_value w.(0) then (
        on_all_set ();
      ) else (
        on_unit w.(0);
      );
      Watch_keep (* just keep current watch *)
    ) else (
      (* use [i] as the second watch *)
      assert (i>1);
      Util.swap_arr w i 1;
      add_watch w.(1) t;
      Watch_remove
    )
end

(** {2 Typeclass} *)

module TC = struct
  type t = tc

  let make
      ?(init=fun _ _ -> ())
      ?(update_watches=fun _ _ ~watch:_ -> Watch_keep)
      ?(delete=fun _ -> ())
      ?(subterms=fun _ _ -> ())
      ?(eval=fun _ -> Eval_unknown)
      ~pp
      () : t =
    { tct_init=init;
      tct_update_watches=update_watches;
      tct_delete=delete;
      tct_subterms=subterms;
      tct_pp=pp;
      tct_eval=eval;
    }

  type lazy_tc = {
    mutable l_tc: tc option; (* filled by {!complete} *)
    l_get: tc_term lazy_t;
  }

  let[@inline] lazy_from_val (tc:tc) : lazy_tc = {
    l_tc=Some tc;
    l_get=Lazy.from_val tc; (* only call after [l_tc] is set. Used for perf. *)
  }

  let lazy_make () : lazy_tc =
    let rec t = {
      l_tc=None;
      l_get=lazy (
        begin match t.l_tc with
          | Some tc -> tc
          | None -> failwith "TC_build: uninitialized TC"
        end
      );
    } in
    t

  let[@inline] lazy_get {l_get=lazy t;_} = t

  let lazy_complete
      ?(init=fun _ _ -> ())
      ?(update_watches=fun _ _ ~watch:_ -> Watch_keep)
      ?(delete=fun _ -> ())
      ?(subterms=fun _ _ -> ())
      ?(eval=fun _ -> Eval_unknown)
      ~pp
      (t:lazy_tc) : unit =
    begin match t.l_tc with
      | Some _ -> failwith "TC_build.complete: already defined"
      | None ->
        let tc = {
          tct_init=init;
          tct_update_watches=update_watches;
          tct_delete=delete;
          tct_subterms=subterms;
          tct_pp=pp;
          tct_eval=eval;
        } in
        t.l_tc <- Some tc;
    end
end

(** {2 Hashconsing of a Theory Terms} *)

module type TERM_ALLOC_OPS = sig
  val p_id : plugin_id (** ID of the theory *)
  val initial_size: int (** initial size of table *)
  val equal : view -> view -> bool (** Shallow equality of two views of the plugin *)
  val hash : view -> int (** Shallow hash of a view of the plugin *)
  val tc : TC.lazy_tc (** Typeclass for terms *)
end

module type TERM_ALLOC = sig
  val make : view -> Type.t -> t (** Make a term of the theory *)
  val delete : t -> unit (** Delete a term of the theory *)
  val iter_terms : term Iter.t (** All terms *)
  val gc_all : unit -> int (** GC all unmarked tems; unmark alive terms *)
end

module[@inline] Term_allocator(Ops : TERM_ALLOC_OPS) : TERM_ALLOC = struct
  module H = CCHashtbl.Make(struct
      type t = view
      include Ops
    end)
  let () = assert (Ops.p_id <= Unsafe.max_plugin_id)

  (* view -> term *)
  let tbl = H.create Ops.initial_size

  (* delete a term: flag it for removal, then recycle its ID.
     The flag is used so that anything that might still hold it can know
     it has been deleted. *)
  let delete (t:t) : unit =
    Log.debugf 5 (fun k->k "(@[<1>term.alloc.delete@ %a@])" debug t);
    t.t_fields <- Term_fields.set field_t_is_deleted true t.t_fields;
    t.t_tc.tct_delete t;
    t.t_assign <- TA_none; (* unassign *)
    assert (plugin_id t = Ops.p_id);
    H.remove tbl (view t);
    ()

  (* obtain a fresh ID, unused by any other term *)
  let get_fresh_id : unit -> int =
    let id_alloc = ref 0 in
    fun () ->
      let n = !id_alloc in
      incr id_alloc;
      n

  (* build a fresh term *)
  let make_term_ t_view t_ty : t =
    let t_tc = TC.lazy_get Ops.tc in
    let p_specific_id = get_fresh_id () in
    let t_id = Ops.p_id lor (p_specific_id lsl plugin_id_width) in
    Unsafe.make_term t_id t_view t_ty t_tc

  (* inline make function *)
  let[@inline] make (view:view) (ty:Type.t) : t =
    try H.find tbl view
    with Not_found ->
      let t = make_term_ view ty in
      H.add tbl view t;
      t

  let[@inline] iter_terms k = H.values tbl k

  let gc_all () : int =
    Log.debugf 5 (fun k->k "(@[term.alloc.gc_all@ :p_id %d@])" Ops.p_id);
    let to_gc = Vec.create() in (* terms to be collected *)
    let n_alive = ref 0 in
    (* collect *)
    H.values tbl
      (fun t ->
         if gc_marked t then (
           incr n_alive;
           gc_unmark t;
         ) else (
           Vec.push to_gc t
         ));
    (* delete *)
    let n_collected = Vec.size to_gc in
    Vec.iter delete to_gc;
    Log.debugf 15
      (fun k->k "(@[term.alloc.gc.stats@ :collected %d@ :alive %d@])"
          n_collected !n_alive);
    n_collected
end

OCaml

Innovation. Community. Security.