package herdtools7

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file types.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
(******************************************************************************)
(*                                ASLRef                                      *)
(******************************************************************************)
(*
 * SPDX-FileCopyrightText: Copyright 2022-2023 Arm Limited and/or its affiliates <open-source-office@arm.com>
 * SPDX-License-Identifier: BSD-3-Clause
 *)
(******************************************************************************)
(* Disclaimer:                                                                *)
(* This material covers both ASLv0 (viz, the existing ASL pseudocode language *)
(* which appears in the Arm Architecture Reference Manual) and ASLv1, a new,  *)
(* experimental, and as yet unreleased version of ASL.                        *)
(* This material is work in progress, more precisely at pre-Alpha quality as  *)
(* per Arm’s quality standards.                                               *)
(* In particular, this means that it would be premature to base any           *)
(* production tool development on this material.                              *)
(* However, any feedback, question, query and feature request would be most   *)
(* welcome; those can be sent to Arm’s Architecture Formal Team Lead          *)
(* Jade Alglave <jade.alglave@arm.com>, or by raising issues or PRs to the    *)
(* herdtools7 github repository.                                              *)
(******************************************************************************)

open AST
open ASTUtils
open Infix
module SEnv = StaticEnv

type env = SEnv.env

module TypingRule = Instrumentation.TypingRule

let ( |: ) = Instrumentation.TypingNoInstr.use_with

let undefined_identifier pos x =
  Error.fatal_from pos (Error.UndefinedIdentifier x)

let thing_equal astutil_equal env = astutil_equal (StaticModel.equal_in_env env)
let expr_equal = thing_equal expr_equal
let type_equal = thing_equal type_equal
let array_length_equal = thing_equal array_length_equal
let bitwidth_equal = thing_equal bitwidth_equal
let slices_equal = thing_equal slices_equal
let bitfield_equal = thing_equal bitfield_equal
let constraints_equal = thing_equal constraints_equal
let assoc_map map li = List.map (fun (x, y) -> (x, map y)) li

(* --------------------------------------------------------------------------*)

(* Begin Anonymize *)
let rec make_anonymous (env : env) (ty : ty) : ty =
  match ty.desc with
  | T_Named x -> (
      match IMap.find_opt x env.global.declared_types with
      | Some (t1, _) -> make_anonymous env t1
      | None -> undefined_identifier ty x)
  | _ -> ty
(* End *)

(* TODO: rethink to have physical equality when structural equality? *)
(* TODO: memoize? *)
(* Begin Structure *)
let rec get_structure (env : env) (ty : ty) : ty =
  let () =
    if false then Format.eprintf "@[Getting structure of %a.@]@." PP.pp_ty ty
  in
  let with_pos = add_pos_from ty in
  (match ty.desc with
  | T_Named x -> (
      match IMap.find_opt x env.global.declared_types with
      | None -> undefined_identifier ty x
      | Some (t1, _) -> get_structure env t1)
  | T_Int _ | T_Real | T_String | T_Bool | T_Bits _ | T_Enum _ -> ty
  | T_Tuple tys -> T_Tuple (List.map (get_structure env) tys) |> with_pos
  | T_Array (e, t) -> T_Array (e, (get_structure env) t) |> with_pos
  | T_Record fields ->
      let fields' = assoc_map (get_structure env) fields |> canonical_fields in
      T_Record fields' |> with_pos
  | T_Exception fields ->
      let fields' = assoc_map (get_structure env) fields |> canonical_fields in
      T_Exception fields' |> with_pos)
  |: TypingRule.Structure
(* End *)

(* --------------------------------------------------------------------------*)

(* Begin BuiltinSingular *)
let is_builtin_singular ty =
  (match ty.desc with
  | T_Real | T_String | T_Bool | T_Bits _ | T_Enum _ | T_Int _ -> true
  | T_Tuple _ | T_Array (_, _) | T_Record _ | T_Exception _ | T_Named _ -> false)
  |: TypingRule.BuiltinSingularType
(* End *)

(* Begin BuiltinAggregate *)
let is_builtin_aggregate ty =
  (match ty.desc with
  | T_Tuple _ | T_Array _ | T_Record _ | T_Exception _ -> true
  | T_Int _ | T_Bits (_, _) | T_Real | T_String | T_Bool | T_Enum _ | T_Named _
    ->
      false)
  |: TypingRule.BuiltinAggregateType
(* End *)

(* Begin BuiltinSingularOrAggregate *)
let is_builtin ty =
  (is_builtin_singular ty || is_builtin_aggregate ty)
  |: TypingRule.BuiltinSingularOrAggregate
(* End *)

(* Begin Named *)
let is_named ty =
  (match ty.desc with T_Named _ -> true | _ -> false) |: TypingRule.NamedType
(* End *)

(* Begin Anonymous *)
let is_anonymous ty = (not (is_named ty)) |: TypingRule.AnonymousType
(* End *)

(* A named type is singular if its underlying (a.k.a. anonimized) type is a builtin-singular type,
   otherwise it is aggregate. *)
(* Begin Singular *)
let is_singular env ty =
  make_anonymous env ty |> is_builtin_singular |: TypingRule.SingularType
(* End *)

(* A named type is singular if its underlying (a.k.a. anonimized) type is a builtin-aggregate type. *)
(* Begin Aggregate *)
let is_aggregate env ty =
  make_anonymous env ty |> is_builtin_aggregate |: TypingRule.AggregateType
(* End *)

(* Begin NonPrimitive *)
let rec is_non_primitive ty =
  (match ty.desc with
  | T_Real | T_String | T_Bool | T_Bits _ | T_Enum _ | T_Int _ -> false
  | T_Named _ -> true
  | T_Tuple tys -> List.exists is_non_primitive tys
  | T_Array (_, ty) -> is_non_primitive ty
  | T_Record fields | T_Exception fields ->
      List.exists (fun (_, ty) -> is_non_primitive ty) fields)
  |: TypingRule.NonPrimitiveType
(* End *)

(* Begin Primitive *)
let is_primitive ty = (not (is_non_primitive ty)) |: TypingRule.PrimitiveType
(* End *)

let parameterized_constraints =
  let next_uid = ref 0 in
  fun var ->
    let uid = !next_uid in
    incr next_uid;
    Parameterized (uid, var)

let parameterized_ty var =
  T_Int (parameterized_constraints var) |> add_dummy_annotation

let to_well_constrained ty =
  match ty.desc with
  | T_Int (Parameterized (_uid, var)) -> var_ var |> integer_exact
  | _ -> ty

let get_well_constrained_structure env ty =
  get_structure env ty |> to_well_constrained

(* --------------------------------------------------------------------------*)

module Domain = struct
  module IntSet = Diet.Z

  type syntax = AST.int_constraint list

  (** Represents the domain of an integer expression. *)
  type t = Finite of IntSet.t | Top | FromSyntax of syntax

  let add_interval_to_intset acc bot top =
    if bot > top then acc
    else
      let interval = IntSet.Interval.make bot top in
      IntSet.add interval acc

  let pp f =
    let open Format in
    function
    | Top -> pp_print_string f "ℤ"
    | Finite set -> fprintf f "@[{@,%a}@]" IntSet.pp set
    | FromSyntax slices -> PP.pp_int_constraints f slices

  exception StaticEvaluationTop

  (* Begin NormalizeToInt *)
  let eval (env : env) (e : expr) =
    match StaticModel.reduce_to_z_opt env e with
    | None -> raise StaticEvaluationTop
    | Some i -> i
  (* End *)

  (* Begin ConstraintToIntSet *)
  let add_constraint_to_intset env acc = function
    | Constraint_Exact e ->
        let v = eval env e in
        add_interval_to_intset acc v v
    | Constraint_Range (bot, top) ->
        let bot = eval env bot and top = eval env top in
        add_interval_to_intset acc bot top
  (* End *)

  (* Begin IntSetOfIntConstraints *)
  let int_set_of_int_constraints env constraints =
    match constraints with
    | [] -> Error.fatal_from ASTUtils.dummy_annotated Error.EmptyConstraints
    | _ -> (
        try
          Finite
            (List.fold_left
               (add_constraint_to_intset env)
               IntSet.empty constraints)
        with StaticEvaluationTop -> FromSyntax constraints)
  (* End *)

  (* Begin IntSetToIntConstraints *)
  let int_set_to_int_constraints =
    let interval_to_constraint interval =
      let x = IntSet.Interval.x interval and y = IntSet.Interval.y interval in
      let expr_of_z z = L_Int z |> literal in
      Constraint_Range (expr_of_z x, expr_of_z y)
    in
    fun is ->
      IntSet.fold
        (fun interval acc -> interval_to_constraint interval :: acc)
        is []
  (* End *)

  (* Begin IntSetOp *)
  let rec int_set_raise_interval_op fop op is1 is2 =
    match (is1, is2) with
    | Top, _ | _, Top -> Top
    | Finite is1, Finite is2 -> (
        try
          Finite
            (IntSet.fold
               (fun i1 -> IntSet.fold (fun i2 -> IntSet.add (fop i1 i2)) is2)
               is1 IntSet.empty)
        with StaticEvaluationTop ->
          let s1 = int_set_to_int_constraints is1
          and s2 = int_set_to_int_constraints is2 in
          int_set_raise_interval_op fop op (FromSyntax s1) (FromSyntax s2))
    | Finite is1, FromSyntax _ ->
        let s1 = int_set_to_int_constraints is1 in
        int_set_raise_interval_op fop op (FromSyntax s1) is2
    | FromSyntax _, Finite is2 ->
        let s2 = int_set_to_int_constraints is2 in
        int_set_raise_interval_op fop op is1 (FromSyntax s2)
    | FromSyntax s1, FromSyntax s2 ->
        FromSyntax (StaticOperations.constraint_binop op s1 s2)

  (* End *)

  let monotone_interval_op op i1 i2 =
    let open IntSet.Interval in
    let x = op (x i1) (x i2) and y = op (y i1) (y i2) in
    if x < y then make x y else raise StaticEvaluationTop

  let anti_monotone_interval_op op i1 i2 =
    let open IntSet.Interval in
    let x = op (x i1) (y i2) and y = op (y i1) (x i2) in
    if x < y then make x y else raise StaticEvaluationTop

  let of_literal = function
    | L_Int n -> Finite (IntSet.singleton n)
    | _ -> raise StaticEvaluationTop

  (* [of_expr env e] returns the symbolic integer domain for the integer-typed expression [e]. *)
  let rec of_expr env e =
    match e.desc with
    | E_Literal v -> of_literal v
    | E_Var x -> (
        try SEnv.lookup_constants env x |> of_literal
        with Not_found -> (
          try SEnv.type_of env x |> of_type env
          with Not_found -> Error.fatal_from e (Error.UndefinedIdentifier x)))
    | E_Unop (NEG, e1) ->
        of_expr env (E_Binop (MINUS, !$0, e1) |> add_pos_from e)
    | E_Binop (((PLUS | MINUS | MUL) as op), e1, e2) ->
        let is1 = of_expr env e1
        and is2 = of_expr env e2
        and fop =
          match op with
          | PLUS -> monotone_interval_op Z.add
          | MINUS -> anti_monotone_interval_op Z.sub
          | MUL -> monotone_interval_op Z.mul
          | _ -> assert false
        in
        int_set_raise_interval_op fop op is1 is2
    | _ ->
        let () =
          if false then
            Format.eprintf "@[<2>Cannot interpret as int set:@ @[%a@]@]@."
              PP.pp_expr e
        in
        FromSyntax [ Constraint_Exact e ]

  and of_width_expr env e =
    let e_domain = of_expr env e in
    let exact_domain = FromSyntax [ Constraint_Exact e ] in
    match e_domain with
    | Finite int_set ->
        if Z.equal (IntSet.cardinal int_set) Z.one then e_domain
        else exact_domain
    | FromSyntax [ Constraint_Exact _ ] -> e_domain
    | _ -> exact_domain

  and of_type env ty =
    let ty = make_anonymous env ty in
    match ty.desc with
    | T_Int UnConstrained -> Top
    | T_Int (Parameterized (_uid, var)) ->
        FromSyntax [ Constraint_Exact (var_ var) ]
    | T_Int (WellConstrained constraints) ->
        int_set_of_int_constraints env constraints
    | T_Int PendingConstrained -> assert false
    | T_Bool | T_String | T_Real ->
        failwith "Unimplemented: domain of primitive type"
    | T_Bits _ | T_Enum _ | T_Array _ | T_Exception _ | T_Record _ | T_Tuple _
      ->
        failwith "Unimplemented: domain of a non singular type."
    | T_Named _ -> assert false (* make anonymous *)

  let mem v d =
    match (v, d) with
    | L_Bool _, _
    | L_Real _, _
    | L_String _, _
    | L_BitVector _, _
    | L_Label _, _ ->
        false
    | L_Int _, Top -> true
    | L_Int i, Finite intset -> IntSet.mem i intset
    | L_Int _, _ -> false

  let equal d1 d2 =
    match (d1, d2) with
    | Top, Top -> true
    | Finite is1, Finite is2 -> IntSet.equal is1 is2
    | _ -> false

  let compare _d1 _d2 = assert false

  (** The [StaticApprox] module creates constant approximation of integer
      constraints as sets of integers. *)
  module StaticApprox = struct
    (** The two possible types of approximations. *)
    type approx = Over | Under

    exception CannotOverApproximate
    (** Raised if over approximation is not possible. *)

    (** Return bottom for Under approximation, top for over approximation. *)
    let bottom_top approx =
      if approx = Over then raise CannotOverApproximate else IntSet.empty

    let make_interval approx z1 z2 =
      if Z.leq z1 z2 then IntSet.(add (Interval.make z1 z2) empty)
      else bottom_top approx

    let literal_to_z = function L_Int z -> Some z | _ -> None

    let apply_unop loc op z =
      let open Error in
      try Operations.unop_values loc Error.Static op (L_Int z) |> literal_to_z
      with ASLException { desc = UnsupportedUnop _ } -> None

    let apply_binop loc op z1 z2 =
      let open Error in
      try
        Operations.binop_values loc Static op (L_Int z1) (L_Int z2)
        |> literal_to_z
      with ASLException { desc = UnsupportedBinop _ } -> None

    (* Begin ApproxExpr *)
    let rec approx_expr approx env e =
      match e.desc with
      | E_Literal (L_Int z) -> IntSet.singleton z
      | E_Literal _ -> bottom_top approx
      | E_Var x -> (
          match approx with
          | Over -> approx_type Over env (SEnv.type_of env x)
          | Under -> IntSet.empty)
      | E_Unop (op, e') ->
          IntSet.filter_map_individual (apply_unop e op)
            (approx_expr approx env e')
      | E_Binop (op, e1, e2) ->
          IntSet.cross_filter_map_individual (apply_binop e op)
            (approx_expr approx env e1)
            (approx_expr approx env e2)
      | E_Cond (_econd, e2, e3) -> (
          let s2 = approx_expr approx env e2
          and s3 = approx_expr approx env e3 in
          match approx with
          | Over -> IntSet.union s2 s3
          | Under -> IntSet.inter s2 s3)
      | _ -> bottom_top approx
    (* End *)

    (* Begin ApproxType *)
    and approx_type approx env t =
      match t.desc with
      | T_Named _ -> make_anonymous env t |> approx_type approx env
      | T_Int (WellConstrained cs) -> approx_constraints approx env cs
      | _ -> bottom_top approx
    (* End *)

    (* Begin ApproxConstraints *)
    and approx_constraints approx env cs =
      let join =
        let empty = IntSet.empty (* will not be used *) in
        match approx with
        | Under -> list_iterated_op ~empty IntSet.inter
        | Over -> list_iterated_op ~empty IntSet.union
      in
      List.map (approx_constraint approx env) cs
      |> join |: TypingRule.ApproxConstraints
    (* End *)

    (* Begin ApproxConstraint *)
    and approx_constraint approx env = function
      | Constraint_Exact e ->
          approx_expr approx env e |: TypingRule.ApproxConstraint
      | Constraint_Range (e1, e2) -> (
          try
            let z1, z2 =
              match approx with
              | Over -> (approx_expr_min env e1, approx_expr_max env e2)
              | Under -> (approx_expr_max env e1, approx_expr_min env e2)
            in
            make_interval approx z1 z2
          with Not_found | CannotOverApproximate -> bottom_top approx)
    (* end *)

    (* Begin ApproxExprMin *)
    and approx_expr_min env e = approx_expr Over env e |> IntSet.min_elt
    (* End *)

    (* Begin ApproxExprMax *)
    and approx_expr_max env e = approx_expr Over env e |> IntSet.max_elt
    (* End *)
  end

  (* Begin SymDomIsSubset *)
  let is_subset env is1 is2 =
    let () =
      if false then Format.eprintf "Is %a a subset of %a?@." pp is1 pp is2
    in
    let open StaticApprox in
    (match (is1, is2) with
    | _, Top -> true
    | Top, _ -> false
    | Finite ints1, Finite ints2 -> IntSet.(is_empty (diff ints1 ints2))
    | FromSyntax cs1, FromSyntax cs2 -> (
        constraints_equal env cs1 cs2
        ||
        try
          let s1 = approx_constraints Over env cs1
          and s2 = approx_constraints Under env cs2 in
          IntSet.subset s1 s2
        with CannotOverApproximate -> false)
    | Finite s1, FromSyntax cs2 ->
        let s2 = approx_constraints Under env cs2 in
        IntSet.subset s1 s2
    | FromSyntax cs1, Finite s2 -> (
        try
          let s1 = approx_constraints Over env cs1 in
          IntSet.subset s1 s2
        with CannotOverApproximate -> false))
    |: TypingRule.SymDomIsSubset
  (* End *)
end

(* --------------------------------------------------------------------------*)

let is_bits_width_fixed env ty =
  match ty.desc with
  | T_Bits _ -> (
      let open Domain in
      match of_type env ty with
      | Finite int_set -> IntSet.cardinal int_set = Z.one
      | Top -> false
      | _ -> failwith "Wrong domain for a bitwidth.")
  | _ -> failwith "Wrong type for some bits."

let _is_bits_width_constrained env ty = not (is_bits_width_fixed env ty)

(* --------------------------------------------------------------------------*)

(* Begin Subtype *)
let rec subtypes_names env s1 s2 =
  if String.equal s1 s2 then true
  else
    match IMap.find_opt s1 env.SEnv.global.subtypes with
    | None -> false
    | Some s1' -> subtypes_names env s1' s2

let subtypes env t1 t2 =
  (match (t1.desc, t2.desc) with
  | T_Named s1, T_Named s2 -> subtypes_names env s1 s2
  | _ -> false)
  |: TypingRule.Subtype
(* End Subtype *)

let rec bitfields_included env bfs1 bfs2 =
  let rec mem_bfs bfs2 bf1 =
    match find_bitfield_opt (bitfield_get_name bf1) bfs2 with
    | None -> false
    | Some (BitField_Simple _ as bf2) -> bitfield_equal env bf1 bf2
    | Some (BitField_Nested (name2, slices2, bfs2') as bf2) -> (
        match bf1 with
        | BitField_Simple _ -> bitfield_equal env bf1 bf2
        | BitField_Nested (name1, slices1, bfs1) ->
            String.equal name1 name2
            && slices_equal env slices1 slices2
            && incl_bfs bfs1 bfs2'
        | BitField_Type _ -> false)
    | Some (BitField_Type (name2, slices2, ty2) as bf2) -> (
        match bf1 with
        | BitField_Simple _ -> bitfield_equal env bf1 bf2
        | BitField_Nested _ -> false
        | BitField_Type (name1, slices1, ty1) ->
            String.equal name1 name2
            && slices_equal env slices1 slices2
            && subtype_satisfies env ty1 ty2)
  and incl_bfs bfs1 bfs2 = List.for_all (mem_bfs bfs2) bfs1 in
  incl_bfs bfs1 bfs2

(* Begin TypingRule.SubtypeSatisfaction *)
and subtype_satisfies env t s =
  (* A type T subtype-satisfies type S if and only if all of the following
     conditions hold: *)
  (match ((make_anonymous env s).desc, (make_anonymous env t).desc) with
  (* If S has the structure of an integer type then T must have the structure
     of an integer type. *)
  | T_Int _, T_Int _ ->
      let d_s = Domain.of_type env s and d_t = Domain.of_type env t in
      let () =
        if false then
          Format.eprintf "domain_subtype_satisfies: %a included in %a?@."
            Domain.pp d_t Domain.pp d_s
      in
      Domain.is_subset env d_t d_s
  (* If S has the structure of a real/string/bool then T must have the
     same structure. *)
  | ( ((T_Real | T_String | T_Bool) as s_anon),
      ((T_Real | T_String | T_Bool) as t_anon) ) ->
      s_anon = t_anon
  (* If S has the structure of an enumeration type then T must have
     the structure of an enumeration type with exactly the same
     enumeration literals. *)
  | T_Enum li_s, T_Enum li_t -> list_equal String.equal li_s li_t
  (*
      • If S has the structure of a bitvector type then T must have the
        structure of a bitvector type of the same width.
      • If S has the structure of a bitvector type which has bitfields then T
        must have the structure of a bitvector type of the same width and for
        every bitfield in S there must be a bitfield in T of the same name, width
        and offset, whose type type-satisfies the bitfield in S.
    *)
  | T_Bits (w_s, bf_s), T_Bits (w_t, bf_t) ->
      let bitfields_subtype = bitfields_included env bf_s bf_t in
      let widths_subtype =
        let t_width_domain = Domain.of_width_expr env w_t
        and s_width_domain = Domain.of_width_expr env w_s in
        let () =
          if false then
            Format.eprintf "Is %a included in %a?@." Domain.pp t_width_domain
              Domain.pp s_width_domain
        in
        Domain.is_subset env t_width_domain s_width_domain
      in
      bitfields_subtype && widths_subtype
  (* If S has the structure of an array type with elements of type E then
     T must have the structure of an array type with elements of type E,
     and T must have the same element indices as S. *)
  | T_Array (length_s, ty_s), T_Array (length_t, ty_t) -> (
      type_equal env ty_s ty_t
      &&
      match (length_s, length_t) with
      | ArrayLength_Expr length_expr_s, ArrayLength_Expr length_expr_t ->
          expr_equal env length_expr_s length_expr_t
      | ArrayLength_Enum (name_s, _), ArrayLength_Enum (name_t, _) ->
          String.equal name_s name_t
      | ArrayLength_Enum (_, _), ArrayLength_Expr _
      | ArrayLength_Expr _, ArrayLength_Enum (_, _) ->
          false)
  (* If S has the structure of a tuple type then T must have the
     structure of a tuple type with same number of elements as S,
     and each element in T must type-satisfy the corresponding
     element in S.*)
  | T_Tuple li_s, T_Tuple li_t ->
      List.compare_lengths li_s li_t = 0
      && List.for_all2 (type_satisfies env) li_t li_s
  (* If S has the structure of an exception type then T must have the
     structure of an exception type with at least the same fields
     (each with the same type) as S.
     If S has the structure of a record type then T must have the
     structure of a record type with at least the same fields
     (each with the same type) as S. *)
  | T_Exception fields_s, T_Exception fields_t
  | T_Record fields_s, T_Record fields_t ->
      List.for_all
        (fun (name_s, ty_s) ->
          List.exists
            (fun (name_t, ty_t) ->
              String.equal name_s name_t && type_equal env ty_s ty_t)
            fields_t)
        fields_s
  | T_Named _, _ -> assert false
  | _, _ -> false)
  |: TypingRule.SubtypeSatisfaction

(* End *)
(* Begin TypeSatisfaction *)
and type_satisfies env t s =
  ((* Type T type-satisfies type S if and only if at least one of the following
      conditions holds: *)
   (* T is a subtype of S *)
   subtypes env t s
  (* T subtype-satisfies S and at least one of S or T is an anonymous type *)
  || ((is_anonymous t || is_anonymous s) && subtype_satisfies env t s)
  ||
  (* T is an anonymous bitvector with no bitfields and S has the
     structure of a bitvector (with or without bitfields) of the
     same width as T. *)
  (* Here we interpret "same width" as statically the same width *)
  match (t.desc, (get_structure env s).desc) with
  | T_Bits (width_t, []), T_Bits (width_s, _) ->
      bitwidth_equal env width_t width_s
  | _ -> false)
  |: TypingRule.TypeSatisfaction
(* End *)

(* --------------------------------------------------------------------------*)

(* Begin TypeClash *)
let rec type_clashes env t s =
  (*
   Definition VPZZ:
   A type T type-clashes with S if any of the following hold:
      • they both have the structure of integers
      • they both have the structure of reals
      • they both have the structure of strings
      • they both have the structure of enumeration types with the same
        enumeration literals
      • they both have the structure of bitvectors
      • they both have the structure of arrays whose element types
        type-clash
      • they both have the structure of tuples of the same length whose
        corresponding element types type-clash
      • S is either a subtype or a supertype of T *)
  (* We will add a rule for boolean and boolean. *)
  ((subtypes env s t || subtypes env t s)
  ||
  let s_struct = get_structure env s and t_struct = get_structure env t in
  match (s_struct.desc, t_struct.desc) with
  | T_Int _, T_Int _
  | T_Real, T_Real
  | T_String, T_String
  | T_Bits _, T_Bits _
  | T_Bool, T_Bool ->
      true
  | T_Enum li_s, T_Enum li_t -> list_equal String.equal li_s li_t
  | T_Array (_, ty_s), T_Array (_, ty_t) -> type_clashes env ty_s ty_t
  | T_Tuple li_s, T_Tuple li_t ->
      List.compare_lengths li_s li_t = 0
      && List.for_all2 (type_clashes env) li_s li_t
  | _ -> false)
  |: TypingRule.TypeClash
(* End *)

let subprogram_clashes env (f1 : func) (f2 : func) =
  (* Two subprograms clash if all of the following hold:
      • they have the same name
      • they are the same kind of subprogram
      • they have the same number of formal arguments
      • every formal argument in one type-clashes with the corresponding formal
        argument in the other

     TODO: they are the same kind of subprogram
  *)
  String.equal f1.name f2.name
  && List.compare_lengths f1.args f2.args = 0
  && List.for_all2
       (fun (_, t1) (_, t2) -> type_clashes env t1 t2)
       f1.args f2.args

(* --------------------------------------------------------------------------*)

let supertypes_set (env : env) =
  let rec aux acc x =
    let acc = ISet.add x acc in
    match IMap.find_opt x env.global.subtypes with
    | Some x' -> aux acc x'
    | None -> acc
  in
  aux ISet.empty

let find_named_lowest_common_supertype env x1 x2 =
  (* TODO: Have a better algorithm? This is in O(h * log h) because set
     insertions are in O (log h), where h is the max height of the subtype
     tree. Wikipedia says it is in O(h) generally, and it can be precomputed,
     in which case it becomes O(1). *)
  let set1 = supertypes_set env x1 in
  let rec aux x =
    if ISet.mem x set1 then Some x
    else
      match IMap.find_opt x env.global.subtypes with
      | None -> None
      | Some x' -> aux x'
  in
  aux x2

(* [unpack_options li] is [Some [x1; ... x_n]] if [li] is [[Some x1; ... Some x_n]], [None] otherwise *)
let unpack_options li =
  let exception NoneFound in
  let unpack_one = function Some elt -> elt | None -> raise NoneFound in
  try Some (List.map unpack_one li) with NoneFound -> None

(* Begin LowestCommonAncestor *)
let rec lowest_common_ancestor env s t =
  let ( let+ ) o f = Option.map f o in
  (* The lowest common ancestor of types S and T is: *)
  (match (s.desc, t.desc) with
  | _, _ when type_equal env s t ->
      (* • If S and T are the same type: S (or T). *)
      Some s
  | T_Named name_s, T_Named name_t -> (
      (* If S and T are both named types: the (unique) common supertype of S
         and T that is a subtype of all other common supertypes of S and T. *)
      match find_named_lowest_common_supertype env name_s name_t with
      | Some name -> Some (T_Named name |> add_dummy_annotation)
      | None ->
          let anon_s = make_anonymous env s and anon_t = make_anonymous env t in
          lowest_common_ancestor env anon_s anon_t)
  | _, T_Named _ | T_Named _, _ ->
      let anon_s = make_anonymous env s and anon_t = make_anonymous env t in
      if type_equal env anon_s anon_t then
        Some (match s.desc with T_Named _ -> s | _ -> t)
      else lowest_common_ancestor env anon_s anon_t
  | T_Int _, T_Int UnConstrained | T_Int UnConstrained, T_Int _ ->
      (* If either S or T is an unconstrained integer type: the unconstrained
         integer type. *)
      Some integer
  | T_Int _, T_Int (Parameterized _) | T_Int (Parameterized _), T_Int _ ->
      lowest_common_ancestor env (to_well_constrained s) (to_well_constrained t)
  | T_Int (WellConstrained cs_s), T_Int (WellConstrained cs_t) ->
      (* If S and T both are well-constrained integer types: the
         well-constrained integer type with domain the union of the
         domains of S and T. *)
      (* TODO: simplify domains ? If domains use a form of diets,
         this could be more efficient. *)
      Some (add_dummy_annotation (T_Int (WellConstrained (cs_s @ cs_t))))
  | T_Bits (e_s, _), T_Bits (e_t, _) when expr_equal env e_s e_t ->
      (* We forget the bitfields if they are not equal. *)
      Some (T_Bits (e_s, []) |> add_dummy_annotation)
  | T_Array (width_s, ty_s), T_Array (width_t, ty_t)
    when array_length_equal env width_s width_t ->
      let+ t = lowest_common_ancestor env ty_s ty_t in
      T_Array (width_s, t) |> add_dummy_annotation
  | T_Tuple li_s, T_Tuple li_t when List.compare_lengths li_s li_t = 0 ->
      (* If S and T both are tuple types with the same number of elements:
         the tuple type with the type of each element the lowest common ancestor
         of the types of the corresponding elements of S and T. *)
      let+ li =
        List.map2 (lowest_common_ancestor env) li_s li_t |> unpack_options
      in
      add_dummy_annotation (T_Tuple li)
  | _ -> None)
  |: TypingRule.LowestCommonAncestor
(* End *)
OCaml

Innovation. Community. Security.